
Automated synthesis and ranking of secure BPMN orchestrators

V. Ciancia, F. Martinelli, I. Matteucci, M. Petrocchi

Istituto di Informatica e Telematica
National Research Council, 56124 Pisa, Italy

Email: firstname.surname@iit.cnr.it

J. A. Martı́n, E. Pimentel

E.T.S. Ingenierı́a Informática,
Universidad de Málaga,

Campus de Teatinos, 29071 Málaga, Spain
Email: jamartin@lcc.uma.es

ernesto@lcc.uma.es

Abstract—We describe a formal methodology for the auto-
matic synthesis of a secure orchestrator for a set of BPMN
processes. The synthesized orchestrator is able to guarantee
that all the processes that are started reach their end, and
the resulting orchestrator process is secure, that is, it does not
allow discloure of certain secret messages.

In this work we present an implementation of a forth and
back translation from BPMN to crypto-CCS, in such a way to
exploit the PaMoChSA tool for synthesizing orchestrators.

Furthermore, we study the problem of ranking orchestrators
based on quantitative valuations of a process, and on the
temporal evolution of such valuations and their security, as
a function of the knowledge of the attacker.

Keywords-Synthesis of Functional and Secure Processes,
Secure Service Composition, Partial Model Checking, Process
Algebras, Business Process Modelling Notation, Quantitative
security.

I. OVERVIEW

Mathematical methods in program semantics and security

very often need to be validated trough implementation and

technology transfer. Traditionally, the task has been hindered

by the gap between abstract results and applications. The

advent of software engineering brought to light the so-

called semi-formal languages and methods, such as Unified
Modelling Language (UML) [1] or Business Process Model
and Notation (BPMN) [2]. These formalisms provide clean

syntax to support abstraction in software and system design,

and development practice. Semi-formal methods are nowa-

days part of the standard background of software engineers,

and may be used to bridge the mentioned gap, providing a

clean path from theoretical results to implementation.

In this paper, we consider the research line of verification

and synthesis of secure systems by partial model checking

[3]. In particular, we extend the work in [4] by exploiting the

PaMoChSA tool for synthesizing secure BPMN orchestrator

processes. The workflow we adopt is described in Figure 1.

For the first time, we transfer the related know-how from

the abstract realm of process calculi, and Crypto-CCS in

particular, to a real-world specification language, namely

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under
grant no 256980 (NESSoS) and under grant no 257930 (Aniketos).

BPMN. Crypto-CCS is a process calculus that features a

tractable form of logical deduction, permitting one to encode

various cryptographic primitives. In particular, the calculus

faithfully models asymmetric cryptography.

In the semi-formal approach, various indended semantics

can be assigned to a formalism, depending on the application

context. Following this tradition, we provide a security-

aware execution semantics to BPMN, incorporating secure

communication facilities, by the means of Crypto-CCS.

By doing so, we assign a formal semantics to BPMN

operators. This is done in Section III. For the purpose,

we define BPMN processeses that exchange cryptographic

messages. More precisely, we use existing BPMN facilities

to include asymmetric cryptography in the modelling lan-

guage. In this way, existing tools may be used to design

cryptography-aware systems. We provide a proof-of-concept

implementation, in the form of two XQuery transformations.

The first one translates a BPMN process into Crypto-CCS,

whose syntax is represented using a custom XML format.

The second transformation turns an XML representation

of a sequential Crypto-CCS process back into a BPMN

process. The translation is made to interoperate with the

previously developed tool PaMoChSA, performing synthesis

of (sequential) Crypto-CCS orchestrators [4]. The result is

a tool that accepts a BPMN collaboration diagram in input,

containing a black-box process representing the orchestrator.

The black-box in the original collaboration diagram is filled

with a process that orchestrates the BPMN processes, driving

all components to successful termination. The orchestrator is

secure, in the sense that it uses asymmetric cryptography to

forbid an attacker to learn an user-specified secret message.

Furthermore, we present a strategy based on C-semirings

[5] to evaluate different synthesized orchestrators in such

a way to provide a ranking, that drives the user to select

the orchestrator that better fits with the requirements. In

particular, the ordering relation we propose here depends

upon the knowledge of an attacker, so that a system is

considered better than another one, if it obtains better

valuations for all the possible initial knowledge bases of

the attacker.

Throughout the paper, we use a running example, pre-

sented in Section II. Then we proceed to explain the

2013 International Conference on Availability, Reliability and Security

978-0-7695-5008-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ARES.2013.60

455

Figure 1. The workflow of the proposed approach

translation from BPMN to Crypto-CCS in Section III. The

design of the tool is oriented to its integration into a service

repository, or market place, where some services may be

selected, and a service composition plan may be submitted

for execution to the system. Our approach adds to such a

framework the ability to automatically design composition

plans, in the form of BPMN processes, that orchestrate

existing (services and) composition plans. We detail this

view in Section IV. Furthermore, in Section V we present

our approach based on C-semirings to endow a list of secure

orchestrators with an order of preference. This allows the

user to chose the optimal one, according to some desired

measure, even in the case of multi-criteria optimization. The

selected orchestrator is a sequential process that is translated

back into a BPMN process and inserted into the original

collaboration diagram. This is detailed in Section VI. Finally,

Section VII relates our work with the existing literature.

II. BUSINESS PROCESS MODELLING NOTATION

The BPMN language [2] provides businesses with the ca-

pability of understanding their internal business procedures

in a graphical notation, and give organizations the ability

to communicate these procedures in a standard manner.

The graphical aspects of the notation are organized into

five specific kinds of elements: flow objects, data objects,

connecting objects, swimlanes, and artifacts1.

Let us now introduce the running example that we use

hereafter in order to show the result presented in the paper.

Example 2.1: Consider an user willing to purchase both

an airplane ticket and an insurance contract covering the trip.

As expected in the service-oriented approach, we suppose

that this is achieved by the orchestration of a booking service

and an insurance service.

The booking service is represented in Figure 2 by a

process accepting some cryptographic material from the

user, such as an encryption key, and the proof of a successful

payment transaction signed with the received key. After

such a request, the booking service issues a ticket, which

is then sent encrypted to the insurance service for further

processing.

1In this paper, we focus on a subset of BPMN constructs. In particular
we are interesting in the behavioral description of processes, so we consider
the BPMN costructs that describe processes.

The insurance service receives the encrypted ticket, and

returns an insured version of it. The procedure ends correctly

once the insured version of the ticket is generated. From a

security point of view, it is important to protect the ticket

from malicious users willing to discover its content (e.g.,
pairing the user name with the destination could represent

a privacy violation, according to some requirements of the

owner; or the ticket could be anonymous, and the attacker

could use it in place of the legitimate owner).

In Figure 2 we show the BPMN representation of the open

system we want to orchestrate in order to allow the services

to communicate to serve the request.

There are some communication issues in this apparently

simple procedure. For example, the user might be unable to

manage both operations by himself, for some reason that is

immaterial here. Furthermore, the two services might not be

able to communicate directly, due to firewalls, mismatching

policies, or incompatibilities in their interfaces. In this case,

one needs to synthesize a third service, called hereafter

orchestrator, whose aim is to make the system functional,
i.e., fully satisfying its goal (request and successfully obtain

both a ticket and the correspondent insurance). The correct

execution of the whole procedure is guaranteed by the

issurance and proper reception of the insured ticket.

Each entity of Example 2.1 is represented through a

BPMN a Flow Object. Flow Objects are the main graphical

elements that define the behaviour of a Business Process.

There are three types of flow objects:

• Events: an Event is something that “happens during the

course of a Process. These Events affect the flow of the

model and usually have a cause (trigger) or an impact

(result). There are three types of Events, based on when

they affect the flow: Start (the green node in Figure 2),

Intermediate, and End (the red node in Figure 2).

• Activities: an activity is a generic term for work that

company performs in a Process. An activity can be

atomic or non-atomic (compound). Tasks are a type of

activities. Referring to Figure 2, tasks are represented

by the squared boxes between the start and end events.

As an example a task of the Insurance service is

Insured_ticket : Insured.

• Gateways: A gateway is used to control the divergence

and convergence of Sequence Flows in a Process. A

456

Figure 2. The BPMN specification of a collaboration diagram in which the orchestrator is represented as a black box.

sequence flow is used to show the order that activities

will be performed in a process. A gateway will deter-

mine branching, forking, merging, and joining of paths.

In Figure 3 we show in yellow an example of a parallel

gateway and of inclusive gateway.

Figure 3. An example of BPMN Pool.

Each entity is represented by a pool, see Figure 3. A

pool is the graphical representation of a participant in a

collaboration digram. It also acts as a graphical container

for partitioning a set of activities from other pools. A pool

may have internal details, in the form of the Process, it is

denoted as white box, as the processes representing the User,

the Booking service and the Insurance service in Figure 2.

Or a pool mat have no internal details, i.e., it can be a black
box, as the pool representing the orchestrator in Figure 2.

A collaboration diagram depicts the interactions between

two or more business entities. A Collaboration usually

contains two or more pools. The Message exchange between

the Participants is shown by a Message Flow that connects

two pools (or the objects within the Pools). A message

flow is used to show the flow of Messages between two

Participants that are prepared to send and receive them. In

BPMN, two separate pools in a collaboration diagram will

represent the two participants (e.g., PartnerEntities and/or

PartnerRoles). Messages associated with the message flows

can also be shown. It is worth noticing the collaboration

digram represented in Figure 2 contains crypto-enhanced

message names. Cryptography is not a feature of BPMN

but we have extended BPMN to support it, as we will show

in the next section.

III. FROM BPMN TO CRYPTO-CCS

BPMN is a semi-formal specification language, whose

intended semantics may vary depending upon the entity

adopting the language. In this work, we specify a security-

aware formal semantics for BPMN collaboration diagrams,

using Crypto-CCS. The purpose of the semantics is to syn-

thesize an orchestrator for a given collaboration, using the

“synthesis by partial model checking” algorithm available

in the most recent version of the tool PaMoChSA [4],

available at [6]. The input language of PaMoChSA is an

XML representation of Crypto-CCS; BPMN is also based on

XML. Thus, the implementation of the translation is written

in the XML manipulation language Xquery [7]. The BPMN

synthesis process takes as input:

457

• A BPMN collaboration diagram containing exactly one

black-box process.

• The secret that an attacker (in the Dolev-Yao model)

must not be able to derive.

• The goal, that is, a success message that the orches-

trator must learn, or be able to derive, in order for the

orchestration to be meaningful.

• The initial knowledge bases of the attacker and of the

orchestrator.

Under such assumptions, the synthesis algorithm produces

a new BPMN collaboration diagram where the previous

black box is filled with a newly generated process, called the

orchestrator. The obtained collaboration uses cryptography,

as detailed in Section III-B below, in order to guarantee

that all the orchestrated services reach termination, the

orchestrator learns the goal message, and the attacker does

not learn the secret during the process.

A. Crypto-CCS in a nutshell

Here we briefly recall the Crypto-CCS language in order

to introduce the reader to the subsequent sections. A detailed

description of the language can be found in [3].

Crypto-CCS is a variant of CCS [8], endowed with

cryptographic primitives. A model defined in Crypto-CCS

consists of a set of sequential agents able to communicate by

exchanging messages (e.g., data manipulated by the agents).

A := 0 | c!m.A | c?x.A | [m1 · · ·mn �r x]A;A1

where m1, . . . ,mn,m are closed messages or variables, x
is a variable and c is an element of the set Ch of channels.

Informally, the Crypto-CCS semantics used in the sequel

is: 0 denotes a process that does nothing; c!m.A denotes a

message m sent over channel c and then behave as A; c?x.A
denotes a message m received over channel c which replaces

the variable x and then behave as A; [m1 · · ·mn �r x]A;A1

denotes an inference test that a process may use to check

whether message m is derivable from premises m1, . . . ,mn;

the continuations in the positive and negative case are A
(where m replaces x), or A1, respectively. Deduction is the

message-manipulating construct of the language, responsible

for its expressive power. In particular, it allows to model

asymmetric encryption. Let y be a key belonging to an asym-

metric pair of keys. We denote by y−1 the correspondent

complementary key. If y is used for encryption, then y−1 is

used for decryption, and vice versa. Given a set of messages

φ, then message m ∈ D(φ) if and only if m can be deduced

from the rules modelling public key cryptography.

The control part of the language consists of compound
systems:

S := S1 ‖ S2 | S\L | Aφ

Informally, S1 ‖ S2 denotes the parallel composition of S1

and S2, i.e. S1 ‖ S2 performs an action if either S1 or

S2 does. A synchronization (or internal) action, denoted

by τ , is observed whenever S1 and S2 can perform two

complementary send and receive actions over the same

channel; S\L prevents actions whose channels belong to the

set L, except for synchronization. Aφ is a single sequential

agent whose knowledge is described by φ.

B. The translation from BPMN to Crypto-CCS

In this section we explain the security-aware semantics

of BPMN that we propose. We provide semantics only to

a basic subset of BPMN, containing the most important

sequence flow and communication primitives, and the most

widely used types of gateways. The other BPMN gateways

can be translated in a similar way, and are not needed

to illustrate the synthesis algorithm. Indeed, we provide

translation of all the constructs that can be the outcome of

the reverse mapping from Crypto-CCS to BPMN.

The XQuery language features recursion and pattern

matching on XML trees. This is sufficient to provide an

inductive translation, done on the structure of a BPMN

process in one direction, and of a Crypto-CCS term in the

other direction. The mapping from BPMN to Crypto-CCS

is driven by the two dimensions of a BPMN collaboration

diagram: flow control and data flow.

Let B and C be the set of BPMN and Crypto-CCS pro-

cesses, respectively. The mapping is a function T : B+ → C,

where B+ denotes a non-empty sequence of BPMN pro-

cesses. Given BPMN processes P1, . . . Pn corresponding to

the mentioned white-box pools, the resulting Crypto-CCS

process is T (P1, . . . , Pn) = (T (P1) ‖ . . . ‖ T (Pn))\c1,...,cn
where c1, . . . , cn are fresh channels that are needed to model

internal communication of sub-processes, without letting the

orchestrator interfere.

One fundamental issue to deal with is how to encode cryp-

tographic primitives in BPMN collaborations. As BPMN

does not deal with cryptography explicitly, we encode it

in the name of messages. A cryptographically-enhanced

BPMN outgoing message takes the form msg : T [key] or

msg : T (key), where the key may also be omitted. Here,

msg is a (lower case, per PaMoChSA syntax) message

name, T is its type, and key is a private or public key

used for encryption. If the key is omitted, the message is

unencrypted. The type T (upper case) may not be omitted,

as PaMoChSA is a typed language. Special types are DKey
and EKey, denoting the public or private part of an encryp-

tion key, which may be transmitted. Similarly, an incoming

message takes the form V ar : T [key] or V ar : T (key)
where V ar (upper case) is a variable. The semantics is

that the process continues only if the received message

decrypts correctly using the given key. In that case, the

decrypted message is bound to V ar. When an orchestrator

is synthesized, each incoming message V ar : T (key) or

V ar : T [key] is replaced by V ar : T (key) = msg : T (key)
(V ar : T [key] = msg : T [key], respectively) where msg is

provided by the synthesis process.

458

For each BPMN process P , a Crypto-CCS process T (P)
is derived, according to the following encoding.

• The BPMN start event of P is translated into Crypto-

CCS input actions on a special channel having an

unique name Start, on a channel whose name is

derived from the process identifier.

• BPMN end events are translated into the Crypto-CCS

empty process ∅, terminating a sequence of actions.

• A BPMN task t in the process are translated directly

into a CCS action prefix. In particular, each task that is

not directly involved in BPMN inter-process commu-

nication is represented as a τ (unobservable) action.

The rationale is that such tasks are internal actions

of the process, therefore no synchronization between

those and the orchestrator ought to take place. They

are unobservable from an external point of view.

• A task t that participates in inter-process communica-

tion must respect three conditions: it has to be either

an instance of a BPMN send task or of a receive task;

it has a message flow f connecting it to the black-box;

f must have an associated BPMN message reference
m. In this situation, a Crypto-CCS communication is

generated. The BPMN task id is the channel name; the

message id of m is used as the message name, in the

case of a send action, or variable name, in the case of

a receive action. Notice that this encoding adds data-

flow semantics to BPMN, in that a received message

m can be used as a variable, and then referenced in

subsequent send operations, just like in process calculi.

This is made implicit in BPMN when using the same

message reference in different message flows.

• Sequence flows in the process are used to drive, in

the obvious way, a Crypto-CCS sequence flow in the

generated process; however, particular care has to be

put for the case of BPMN gateways (see below).

• A gateway g is translated into several parallel processes.

More specifically, when a sequence flow s going out of

a BPMN task t is connected to a gateway, a Crypto-

CCS output action for a dummy value on a fresh

channel ci is added to the process of t, with the

empty process ∅ as continuation. This results in several

processes, composed in parallel, each one sending a

dummy value on a different channel. Similarly, an

incoming connection from a gateway is translated into

an input action on a fresh channel di. Then, a fur-

ther process Pg is added to the obtained composition,

namely the translation of the gateway itself, which is

detailed below. All the freshly generated channels ci go

in the restriction at the top level of T (P1, . . . , Pn).
• A gateway g may be either parallel or exclusive. When

g is exclusive, Pg = c1?.P
′ ‖ . . . cn?.P

′, where ci are

the fresh channels generated from the tasks having an

outgoing sequence flow to g and P ′ = d1!x.∅ + . . . +

dm.∅, where di are the fresh channels coming from

tasks having an incoming sequence flow from g. In this

way, the exclusive behaviour is replicated in Crypto-

CCS, since output on any channel ci from a task results

in just one input on the channels dj to succeed. When

g is parallel, Pg = c1?x.c2?x.cn?x.P
′, where ci

are the channels from the tasks having outgoing flows

to g, and P ′ = d1!x.0 ‖ . . . ‖ dm!x.0. In this case, the

parallel behaviour is mimicked, as the process waits for

input on all channels ci and then outputs on all channels

dj . Notice that the order of input values does not matter

as the dummy value is ignored and the process has to

wait for input on all channels.

IV. SYNTHESIS OF A BPMN SECURE ORCHESTRATOR

In the marketplace, we can find many services described

as BPMN processes. In order to satisfy the requirements of

a user, some of these services (a finite number of these) has

to be selected and combined in order to satisfy functional

and security requirements. At synthesis time, all the BPMN

processes are composed with the orchestrator in a new

collaboration diagram. Hereafter, we consider the compound

system as a BPMN process in which the orchestrator is

a black box (see Figure 2). Indeed, the service developer

design the composition trough a BPMN process in which

the selected services are represented by white box pools.

We consider each service as a statuful process.

Referring to the example in Section 2.1, the compound

system S we deal with is specified in Crypto-CCS as

three processes, U, BS, and InS, respectively. The User, the

Booking service and the Insurance service act in parallel,

thus the full system specification is

S .
= U ‖ BS ‖ InS

Note that processes cannot directly communicate with each

other. Also, whereas the Booking service encrypts the ticket

with ku (see Figure 2), the Insurance service would expect

to decrypt the same ticket with decryption key k−1
ins. Hence,

these processes have to interact with an orchestrator, O in

order to communicate. The resulting orchestrated system is

S ‖ O.

The orchestrator we are looking for must not only be

functional, but also secure, since its functionality should

obey the security requirements imposed on the composed

system.

In this work we exploit the method presented in [4] for

automatically generating the description of the process in the

black box, i.e., the orchestrator. The PaMoChSA tool takes

as input the description of the compound system in Crypto-

CCS. Then it returns the orchestrator specified as a Crypto-

CCS process. Using the mapping function from Crypto-CCS

to BPMN, Section VI, we automatically synthesize a BPMN

description of the orchestrator. In this way, we obtain a

complete description of the compound system.

459

A. The PaMoChSA Synthesis Tool

In [4], the author proposed a tool to automatically synthe-

size functional and secure orchestrator specified in Crypto-

CCS, based on partial model checking, logic languages and

satisfiability. Let mF be a message that denotes the end of a

service execution, φO be the knowledge of the orchestrator,

and φX be the knowledge of the attacker.

The synthesized orchestrator process is consider func-

tional and secure because it is able to:

• Functional: combine several services in such a way

that mF falls into the orchestrator’s knowledge φO.

This implies that all services have successfully termi-

nated their execution.

• Secure: guarantee that the composite service is secure

by checking that the secret message m does not belong

to φX .

The tool PaMoChSA2012 [6] is an extension of the orig-

inal PaMoChSA tool, the Partial Model Checker Security

Analyser, see [9].

It is able to automatically synthesize a functional and

secure orchestrator starting from the description of services.

The algorithm can be more intuitively explained as path-

finding in a state graph. In principle, the behaviour of an

orchestrator is a tree. However, since the system and the

orchestrator are assumed to be deterministic, such a tree has

an equivalent description in terms of all its paths.

The PaMoChSA 2012 specification of the example intro-

duced in Section II is the following:

<GOAL> insured_ticket : Insured </GOAL>

<ORCH_KNOWLEDGE> k_ins : EKey ;
k_u : DKey; k_u : EKey </ORCH_KNOWLEDGE>

<FORMULA> ticket : Ticket </FORMULA>

<KNOWLEDGE> k_book : EKey; k_ins : EKey;
k_attack : EKey; k_attack : DKey </KNOWLEDGE>

<SPEC>
Parallel

(* User *)
Send(a, Encrypt(k_u: EKey, k_book : EKey)).
Send(a, Encrypt(money : Money, k_u : DKey).0

And

(* Booking service *)
Recv(c,ENC_K_U : Enc(EKey * EKey)).
If Deduce (K_U = Decrypt(ENC_K_U,k_book : DKey))
Then
Recv(c,ENC_MONEY : Enc(Money * DKey)).
If Deduce (MONEY = Decrypt(ENC_MONEY,K_U))
Then

Send(c,Encrypt(ticket : Ticket, K_U)).0
End Deduce
End Deduce

And

(* Insurance service *)
Recv(d, ENC_TICKET : Enc(Ticket * EKey)).
If Deduce (TICKET =

Decrypt(ENC_TICKET,k_ins : DKey))
Then

Send(d,insured_ticket : Insured).0
End Deduce

End Parallel
</SPEC>

In our running example, the functional goal of the orches-

trator is to deliver an insured ticket, while its secure goal

is to let the ticket a secret not falling into the intruder’s

knowledge.

The tags in the input file describe the information nec-

essary to synthesize an orchestrator. The tag formula intro-

duces the typed message that should not be learned by the

intruder (in our case, the ticket). The tag goal contains the

final “success” message (in this case, the insured ticket).

The terms in the Orch Knowledge tag represent the typed

messages that the orchestrator knows initially (in our running

example, the initial knowledge of the orchestrator contains

the public key of the insurance service, kins, and both

the public and private key of the user). Especially since

it knows private key, in this example the orchestrator is

considered a trusted party that acts on behalf of the user.

Indeed, this is not necessarily the case. The terms in the

knowledge tag represent the typed messages that the intruder

knowns at the beginning of the computation, i.e., some

public cryptographic keys (kbook and kins), plus a pair of

keys (kattack, k−1
attack) owned by the intruder. Finally, the

spec tag introduces the specification of the known part of

the system, i.e., the parallel composition of the user, plus

the booking and insurance services.

Figure 4 shows the results of the synthesis procedure. The

tool correctly synthesizes two secure orchestrators (basically,

they represent the same process, up-to a different order of

execution). The orchestrator is a process that communicates

with the user on channel a, forwarding messages to the

booking service on channel b. Then, it receives an encrypted

ticket from the booking service on channel b, decrypts the

obtained message, encrypts the ticket with the public key

kins, and sends the result to the insurance service over

channel c. Thus, the insurance service is able to decrypt the

ticket using key (k−1
ins) and to successfully issue the insured

ticket, therefore fulfilling the functional goal. Synthesized

orchestrators are secure, in the sense that their operations do

not let a potential intruder learn the secret message “ticket”.

460

*** Orchestrator:
Recv(a, Enc[k_book](k_u) : Enc(EKey*EKey)).
Recv(a, Enc[k_u](money) : Enc(Money*DKey)).
Send(c, Enc[k_book](k_u) : Enc(EKey*EKey)).
Send(c, Enc[k_u](money) : Enc(Money*DKey)).
Recv(c, Enc[k_u](ticket) : Enc(Ticket*EKey)).
Send(b, Enc[k_ins](ticket) : Enc(Ticket*EKey)).
Recv(b, insured_ticket : Insured).0

*** is secure.

*** Orchestrator:
Recv(a, Enc[k_book](k_u) : Enc(EKey*EKey)).
Send(c, Enc[k_book](k_u) : Enc(EKey*EKey)).
Recv(a, Enc[k_u](money) : Enc(Money*DKey)).
Send(c, Enc[k_u](money) : Enc(Money*DKey)).
Recv(c, Enc[k_u](ticket) : Enc(Ticket*EKey)).
Send(b, Enc[k_ins](ticket) : Enc(Ticket*EKey)).
Recv(b, insured_ticket : Insured).0

*** is secure.

*** Elapsed time: 0.008

Figure 4. Results: two secure orchestrators found.

V. SEMIRING-BASED SELECTION OF ORCHESTRATORS

Even though all synthesized orchestrators are inherently

secure, it is worth to make some specific considerations

on how to order the results of the synthesis process.

Clearly, non-functional requirements, such as QoS, could

be used to evaluate quantitative aspects on orchestrators.

Non functional aspects, including the degree of security,

can be formalised using semirings, as done in [10]. Therein,

security is a boolean value, determined by the violation of

a policy. In this work, we are able to take into account

some more context, namely, the presence of an intruder

equipped with a specified knowledge base, and capable of

deriving facts from it. Therefore, in this section, we provide

an ordering of secure orchestrators based on the relationship

between the knowledge of a possible attacker and the cost

of attacks based on such knowledge. Indeed, PaMoChSA

provides us a practical way to account for possible attacks

by bulding the state graph in such a way that additional

transitions are present, simulating eavesdropping and ma-

nipulation of messages by the intruder (with the exception

of communications happening on hide channels). Finally,

the knowledge of an intruder is always augmented with

the messages that are exchanged between the orchestrator

and the system, unless they used hidden channel. Rationale

is that the intruder can eavesdrop such communications in

order to acquire new information.

Moreover, sometimes it could be not possible to satisfy

both functional and security requirements. In particular, we

can synthesize a functional but not-secure orchestrator. In

this case, the designer can decide to prioritize orchestrator

with respect to functional aspects by using the same ap-

proach based on C-Semirings.

Referring to our example, according to the knowledge

of the intruder, it is not always possible to find secure

orchestrators. In those cases, the PaMoChSA tool is able

to list not only the ”only-functional” orchestrator, but also

to list all the possible attackers for each orchestrator.

Example 5.1: Let us consider the case in which the initial

knowledge of the intruder is augmented with the descritpion

key of the user as follows:

<KNOWLEDGE> k_book : EKey; k_ins : EKey;
k_attack : EKey; k_attack : DKey;
k_u : Dkey </KNOWLEDGE>

In this case, the tool answers that no secure orchestrator can

be found. As additional information, the tool outputs the list

of non-secure orchestrators and their attacks. In Figure 5 is

showed an excerpt of the output.

Using this information, it is possible to order orchestrators

according to the number of the attackers with respect to the

attacker knowledge. Indeed, if we change the knowledge

again, for instance, removing the user decryption key but

adding the encryption one, we obtain the result showed in

Figure 6.

This is coherent with the intuition. Having the private key

of the user allows the intuder to perform more attaks to the

system that having the public one.

Hence, in order to prioritize orchestrators, let us consider

the semiring K = (K,∩,∪,K, ∅), where K is the set of

subsets of typed messages; the additive operation is inter-

section, and the associated partial order is reverse inclusion.

This semiring represents the knowledge of an attacker in

several different possible worlds. To each such subset φX ,

one associates the set of orchestrators that are secure for φX ,

that is, there are no attacks starting from that knowledge.

Write φX � O whenever O is in this set. Clearly, whenever

φX ⊆ φ′X and φ′X � O, we have that φX � O, that is,

the less the knowledge of the attacker, the easier is for an

orchestrator to be secure. Indeed, monotonicity in the other

direction does not hold, since all the sets that contain the

secret m make the system necessarily not secure.

Let
 be the order associated to a semiring C that

measures the degree of security of the system.

Definition 5.1: Given orchestrators O1 and O2, write

O1 �φX
O2 whenever S ‖ O1
 S ‖ O2.

Using this definition, we can introduce the following order

among orchestrators.

Definition 5.2: The order relation ≤ is defined as O1 ≤
O2 whenever, for all φX , O1 � φXO2.

VI. A MAPPING FROM CRYPTO-CCS TO BPMN

Once an orchestrator has been chosen, it is possible to

map it again into a BPMN process. The reverse mapping is

461

*** Orchestrator:
Recv(a, Enc[k_book](k_u) : Enc(EKey*EKey)).
Recv(a, Enc[k_u](money) : Enc(Money*DKey)).
Send(c, Enc[k_book](k_u) : Enc(EKey*EKey)).
Send(c, Enc[k_u](money) : Enc(Money*DKey)).
Recv(c, Enc[k_u](ticket) : Enc(Ticket*EKey)).
Send(b, Enc[k_ins](ticket) : Enc(Ticket*EKey)).
Recv(b, insured_ticket : Insured).0

*** has 4810 attacks, listed below.
Eavesdrop(c, Enc[k_u](ticket))

Receive(c, Enc[k_u](ticket) : Enc(Ticket*EKey))

Eavesdrop(c, Enc[k_u](money))
Eavesdrop(c, Enc[k_u](ticket))

Eavesdrop(c, Enc[k_u](money))
Receive(c, Enc[k_u](ticket) : Enc(Ticket*EKey))

Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_u](money))
Eavesdrop(c, Enc[k_u](ticket))

Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_u](money))
Receive(c, Enc[k_u](ticket) : Enc(Ticket*EKey))

Eavesdrop(c, Enc[k_book](k_u))
Eavesdrop(c, Enc[k_u](ticket))

Eavesdrop(c, Enc[k_book](k_u))
Receive(c, Enc[k_u](ticket) : Enc(Ticket*EKey))

Eavesdrop(c, Enc[k_book](k_u))
Eavesdrop(c, Enc[k_u](money))
Eavesdrop(c, Enc[k_u](ticket))

Eavesdrop(c, Enc[k_book](k_u))
Eavesdrop(c, Enc[k_u](money))
Receive(c, Enc[k_u](ticket) : Enc(Ticket*EKey))

Eavesdrop(c, Enc[k_book](k_u))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_u](money))
Eavesdrop(c, Enc[k_u](ticket))

.....

Figure 5. The result from the orchestration process when the attacker
knows the public key of the user.

only needed for sequential BPMN processes whose tasks are

only send tasks or receive tasks, as orchestrators synthesized

by PaMoChSA always are sequential, communicating pro-

cesses with no internal actions. The backwards translation

is therefore straightforward. The resulting process has a

send or receive task for each input or output actions of the

orchestrator, connected to the corresponding task in another

process by a BPMN message flow

Using the mapping function, we obtain the BPMN spec-

ification of the chosen orchestrator. In Figure 7 we show

*** Orchestrator:
Recv(a, Enc[k_book](k_u) : Enc(EKey*EKey)).
Recv(a, Enc[k_u](money) : Enc(Money*DKey)).
Send(c, Enc[k_book](k_u) : Enc(EKey*EKey)).
Send(c, Enc[k_u](money) : Enc(Money*DKey)).
Recv(c, Enc[k_u](ticket) : Enc(Ticket*EKey)).
Send(b, Enc[k_ins](ticket) : Enc(Ticket*EKey)).
Recv(b, insured_ticket : Insured).0

*** has 9229 attacks, listed below.
Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_book](k_attack))
Send(c, Enc[k_attack](money))
Eavesdrop(c, Enc[k_attack](ticket))

Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_book](k_attack))
Send(c, Enc[k_attack](money))
Receive(c, Enc[k_attack](ticket) :
Enc(Ticket*EKey))

Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Send(c, Enc[k_book](k_attack))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_attack](money))
Eavesdrop(c, Enc[k_attack](ticket))

Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Send(c, Enc[k_book](k_attack))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_attack](money))
Receive(c, Enc[k_attack](ticket) :
Enc(Ticket*EKey))

Send(c, Enc[k_book](k_attack))
Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_attack](money))
Eavesdrop(c, Enc[k_attack](ticket))

Send(c, Enc[k_book](k_attack))
Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))
Send(c, Enc[k_attack](money))
Receive(c, Enc[k_attack](ticket) :
Enc(Ticket*EKey))

Eavesdrop(a, Enc[k_u](money))
Receive(c, Enc[k_book](k_u) : Enc(EKey*EKey))
Receive(c, Enc[k_u](money) : Enc(Money*DKey))

....

Figure 6. The result from the orchestration process when the attacker
knows the private key of the user.

462

the compound system in which the orchestrator black box

becomes a white box. The internal description is the one of

the first orchestrator obtained by the tool (Figure 4).

Remark 6.1: Converting a Crypto-CCS process to a

BPMN process and back results in the identity transforma-

tion. The reverse identity holds for sequential processes.

Indeed, the “backwards” translation from Crypto-CCS to

BPMN is only defined for sequential processes, since our

orchestrators are sequential.

VII. RELATED WORK

This paper covers several phases of the synthesis and

selection of an orchestrator process: i) inclusion of security

requirements in BPMN; ii) exhaustive verification of secrecy

properties in the service composition; iii) automatic syn-

thesis of secure orchestrators; and iv) orchestration ranking

according to how much information they disclose. Here we

recall some related work about almost all these phases. There

are many papers that describe possible security extensions

of BPMN. Brucker etal. [11] extend the visual notation of

BPMN to support role-based access control. Roles and re-

sponsibilities are described at design time and later enforced

at run time. In comparison, our extension of BPMN is more

modest in the sense that we only included cryptographic

primitives as part of the activity names, and thus less visual,

but similar roles can be defined using different private keys

on each activity. Other concerns as the separation of duties
and need to know are covered also by our approach by

enforcing the correct termination of all the services involved

and by analysing the knowledge gained by each participant.

In the existing literature, we can find several works

dealing with the mapping of BPMN into a process algebra

languages. For instance, [12] proposes a traslation of BPMN

into COWS in order to formally analyse BPMN processes.

In order to facilitate the use of model-checking techniques

to business analysts, the authors of [13] created a model-

checking plugin for SAP NetWeaver Business Process
Management. This plugin support the verification of se-

crecy properties with a push of a button and the subsequent

visualization of possible attack traces. However, since this

plugin is intended as a design tool, the designer is left with

the task to solve possible flaws in the business process. Our

approach, on the other hand, automatizes the generation of

secure orchestrators which are guaranteed to preserve the

given secrecy properties.

On the other hand, there are some papers proposing

compositional approaches to the synthesis of controllers,

able to dynamically enhance security, depending on some

runtime behaviour of a possible attacker, e.g., [14], [15].

The current work extends the existing research line on

the synthesis of secure controller programs [14] with the

introduction of cryptographic primitives. Also, it tries to

simplify the approach in [16] for the synthesis of deadlock-

free orchestrators that are compliant with security adaptation

contracts [17]. Compared to [16], this new approach loses

the ability to specify fine-grained constrains in the desired

orchestration but, on the other hand, there is no need to

design and adaptation contract.

Similarly, our approach to synthesis differs from the one

in [18], where automatic composition of services under

security policies is investigated. Work in [18] uses the

AVISPA tool [19] and acts in two stages: first, it derives a

protocol allowing composition of some services; then, some

desired security properties are implemented. The latter step

uses the functionality of AVISPA and, for the former step,

the desired composition is turned into a security property,

so that AVISPA itself can be used to derive an “attacker”

which actually is the orchestrator.

In [20], Li et al. present an approach for securing dis-

tributed adaptation. A plan is synthesized and executed,

allowing the different parties to apply a set of data trans-

formations in a distributed fashion. In particular, the authors

synthesize “security boxes” that wrap services, providing

them with the appropriate cryptographic capabilities. Se-

curity boxes are pre-designed, but interchangeable at run

time. Our approach, in contrast, lacks dynamic planning.

However, in our case the orchestrator is synthesized at run

time and is able to cryptographically arrange secure service

composition.

VIII. CONCLUSIONS

In this paper we have exploited and extended the tool

presented in [4] in order to automatically synthesize func-

tional and secure BPMN orcehstrators. Indeed, we have

extended the tool PaMoChSA2012 with a mapping function

that allows to map BPMN processes into Crypto-CCS ones

and back. In this way, we also associate cryptographic

primitives to BPMN processes as a secret specified by

the user. Furthermore, exploiting theory about quantitative

security, we are able to provide a method for ranking

different orchestrator in order to help the user to select the

optimal one for reaching their goal.

REFERENCES

[1] Introduction to omg’s unified modeling language. [Online].
Available: http://www.omg.org/gettingstarted/what\ is\ uml.
htm

[2] Business process model and notation (bpmn). [Online].
Available: http://www.omg.org/spec/BPMN/2.0/PDF/

[3] F. Martinelli, “Analysis of security protocols as open sys-
tems,” TCS, vol. 290, no. 1, pp. 1057–1106, 2003.

[4] V. Ciancia, J. A. Martin, F. Martinelli, I. Matteucci, M. Petroc-
chi, and E. Pimentel, “A tool for the synthesis of crypto-
graphic orchestrators,” in Model Driven Security Workshop,
MDSEC, ACM, Ed., 2012.

[5] S. Bistarelli, Semirings for Soft Constraint Solving and Pro-
gramming, ser. LNCS. SpringerVerlag, 2004, vol. 2962.

463

Figure 7. The BPMN specification of the compound system orchestrated by the synthesized orchestrator.

[6] “PaMoChSA 2012,” http://www.iit.cnr.it/staff/vincenzo.
ciancia/tools.html.

[7] Xquery 3.0: An xml query language. [Online]. Available:
www.w3.org/TR/xquery-30/

[8] R. Milner, Communication and concurrency. Prentice-Hall,
1989.

[9] F. Martinelli, M. Petrocchi, and A. Vaccarelli, “Automated
analysis of some security mechanisms of SCEP,” in ISC.
Springer, 2002, pp. 414–427.

[10] V. Ciancia, F. Martinelli, I. Matteucci, and C. Morisset,
“Quantitative evaluation of enforcement strategies,” Istituto
di Informatica e Telematica - Consiglio Nazionale delle
Ricerche, Tech. Rep. TR-04-13, 2013.

[11] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel,
“Securebpmn: modeling and enforcing access control
requirements in business processes,” in Proceedings of
the 17th ACM symposium on Access Control Models
and Technologies, ser. SACMAT ’12. New York, NY,
USA: ACM, 2012, pp. 123–126. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295160

[12] D. Prandi, P. Quaglia, and N. Zannone, “Formal analysis of
bpmn via a translation into cows,” in Proceedings of the
10th international conference on Coordination models and
languages, ser. COORDINATION’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 249–263. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788954.1788970

[13] W. Arsac, L. Compagna, G. Pellegrino, and S. E. Ponta,
“Security validation of business processes via model-
checking,” in Proceedings of the Third international
conference on Engineering secure software and systems, ser.
ESSoS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
29–42. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1946341.1946345

[14] F. Martinelli and I. Matteucci, “A framework for automatic
generation of security controller,” STVR, 2010.

[15] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of
discrete controllers for timed systems,” in STACS, ser. LNCS,
vol. 900. Springer, 2005, pp. 229–242.

[16] J. A. Martı́n, F. Martinelli, and E. Pimentel, “Synthesis of
secure adaptors,” J. Log. Algebr. Program., vol. 81, no. 2, pp.
99–126, 2012.

[17] J. A. Martı́n and E. Pimentel, “Contracts for security adapta-
tion,” J. Log. Algebr. Program., vol. 80, no. 3-5, pp. 154–179,
2011.

[18] Y. Chevalier, M. A. Mekki, and M. Rusinowitch, “Auto-
matic composition of services with security policies,” in
SERVICES’08 - Part I. IEEE, 2008, pp. 529–537.

[19] L. Viganò, “Automated security protocol analysis with the
AVISPA tool,” ENTCS, vol. 155, pp. 69–86, 2006.

[20] J. Li, M. Yarvis, and P. Reiher, “Securing distributed adapta-
tion,” Computer Networks, vol. 38, no. 3, 2002.

464

