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Highlights

• We address the Generalized Bin Packing Problem with bin-dependent item profits.

• This problem arises in the last-mile urban parcel delivery service.

• We provide a Mixed Integer Formulation of the problem and efficient heuristics.

• A last-mile logistics case of an international courier is given.
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Abstract

In this paper we present a new problem arising at a tactical level of setting a last-mile parcel delivery

service in a city by considering different Transportation Companies (TC), which differ in cost and service

quality. The courier must decide which TCs to select for the service in order to minimize the total cost and

maximize the total service quality. We show that the problem can be modeled as a new packing problem,

the Generalized Bin Packing Problem with bin-dependent item profits (GBPPI), where the items are the

parcels to deliver and the bins are the TCs. The aim of the GBPPI is to select the appropriate fleet

from TCs and determine the optimal assignment of parcels to vehicles such that the overall net cost is

minimized. This cost takes into account both transportation costs and service quality. We provide a Mixed

Integer Programming formulation of the problem, which is the starting point for the development of efficient

heuristics that can address the GBPPI for instances involving up to 1000 items. Extensive computational

tests show the accuracy of the proposed methods. Finally, we present a last-mile logistics case study of an

international courier which addresses this problem.

Keywords: logistics, Generalized Bin Packing Problem, parcel delivery, last-mile logistics.

1. Introduction

The transportation services market is estimated to be worth approximately 3 trillion euros worldwide

with a gross value added (GVA) of 600 billion in the EU-28 at basic prices, corresponding approximately

to 5% of the total GVA [16]. In the past decade, new challenges emerged thanks to an increased awareness

of stakeholders and companies to a more general vision of the transportation sustainability taking into

account economic, environmental and social aspects. In particular, last-mile delivery raised as one of the

more complex, challenging, and innovating topic. In more detail, the explosion of e-commerce and the need

of a global vision of the sustainability of the last-mile brought researchers and practitioners to define new
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business and operational models. These models must fulfill the increasing demand and the high standards

in terms of quality of service required by e-commerce and traditional companies and flexibility asked by end

users. In this paper we consider a crucial aspect in the management of last-mile logistics operations, i.e.

the planning of the fleet used in a given urban area to deliver the parcels. More precisely, we address the

tactical problem of setting a last-mile parcel delivery service in a city by considering different transportation

companies, which differ in cost and service quality. We also show how this problem can be modeled as a

packing problem, namely the Generalized Bin Packing Problem with bin-dependent item profits (GBPPI).

Packing problems deal with the assignment of items to bins. In the tactical problem presented here, the

item model the parcels while the bins represent the vehicles of the TCs available for the deliveries.

The contribution of this paper is twofold. The first contribution refers to the packing problems literature.

In details, the introduction of the bin-dependent item profits provides a more flexible packing problem

(GBPPI) that enables to tackle the majority of real-world performance indicators and to address problems

with mixed objective functions. The mixed objective function consists of two terms with opposite signs:

1) the total cost of the bins used to be minimized; and 2) the total bin-dependent profit of the selected

items to be maximized. Although the introduction of bin-dependent item profits might seem an irrelevant

development of the original Generalized Bin Packing Problem (GBPP), we show that this modification in

the problem setting revolutionizes the methodologies. It is known from the literature that small changes in

the objective function do not alter problem complexity [43]. However, we show that this is not the case for

the GBPPI. This unexpected behavior can be noticed in at least two circumstances. First, as we show in

Section 5.3, if a commercial solver is used to address both the GBPP and the GBPPI, the percentage gap

significantly increases with the same computational time on instances with the same number and typology

of items and bins. Second, all the more so, classical heuristic approaches of packing problems, such as the

Best Fit and Next Fit decreasing procedures, fail when the profit becomes bin-dependent. To overcome

these issues, after providing an integer-programming we propose efficient methodologies which take bin

dependency of profits into account.

The second contribution of the paper is to use the GBPPI to address a real case study arising in last-mile

logistics which involves an international courier. Every day, the courier has to serve its customers. Even

if the customers can both ask for pick-ups and deliveries, we can relax this scenario. In fact 85% of the

operations of a courier are deliveries [40]. Therefore, we can just take into account the effects of deliveries.

In order to perform the service, the courier uses a set of transportation companies (TCs) which fulfill

parcel deliveries using their own fleet. The courier must decide each day which TCs to select for the

service in order to minimize the total cost and maximize the total service quality. That decision must

be taken in a short time (approximately 10 minutes after all parcels to deliver become known) to ensure

a prompt assignment of parcels to vehicles and, therefore, an efficient service. Minimizing the total cost

and maximizing the total service quality are conflictual objectives. Existing models for last-mile logistics
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only partially consider conflictual objectives while addressing the selection of different TCs [38, 39]. The

introduction of bin-dependent item profits allows the use of the GBPPI in last-mile logistics [13, 42].

The remainder of this paper is organized as follows: in Section 2, we introduce the problem and review

important literature on packing problems on which the GBPPI is based. In Section 3, the GBPPI model

is described, and in Section 4 heuristics for addressing the GBPPI are introduced. Instance sets and

computational results are given in Section 5. In more detail, we compare the GBPPI with the classical

GBPP, showing how the introduction of the bin dependency of the profits makes our problem much difficult

to solve. Then, we show the accuracy and the effectiveness of our metaheuristics and finally we show how

using the GBPPI to solve the problem faced by an international courier of choosing the mix of delivery

options/sub-contractors can bring to a reduction of its operational costs, with a clear benefit for the company.

Conclusions are provided in Section 6.

2. Problem setting and literature review

The operations concerning the very last leg of the supply chain, the so-called last-mile logistics, have

emerged as one of the most problematic ones to manage, optimize, actuate, and control. These operations,

in fact, face significant fulfillment constraints, higher social, environmental and economic costs, and the

complexity to maintain their economies of scale and expected service levels. In the recent years, following

the enormous increase of the e-commerce and the relative growth of parcel deliveries (and returns) in our

cities, last-mile challenges have become more and more complex, and many researchers have focused on

finding solutions at various levels.

The most important innovations in this area generally share the vision of reducing as much as possible

the negative externalities while maintaining the process sustainability in terms of costs and quality. For

example, new collaborative business models exploiting crowd-tasking [46] or synchro-modality [15, 19] have

appeared, accompanied by a steadily increasing use of self-service technologies, such as parcel lockers, or

greener solutions, such as electric vehicles and bicycles [45, 41]. Moreover, it has also been shown that a

more appropriate modeling of the customers’ behavior and more adequate pricing schemes for the service

time-constraints may help in de-stressing the so-called Attended Home Deliveries, in which the parcel must

be delivered within a precise time window in order to find the customer at home [44, 30].

While at an operational level the optimization of last-mile logistics reduces to deal with vehicle routing

and scheduling problems (generally complicated by the presence of multiple depots, products, and distri-

bution echelons or by hard loading constraints [47, 7, 29]), the tactical planning is instead fundamental to

evaluate the options (e.g., the various transportation tenders) and allocate the right resources (vehicles,

operators, products) to the right place (depots, facilities, distribution centers) for the day-by-day opera-

tions [2, 23]. In the last decade, there have been interesting developments in the packing literature so that,
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in addition to their classical uses at the operational level, packing problems have gradually appeared as tools

for modeling strategic and tactical decisions taken in the transportation and supply chain sectors [13, 38].

This has led, for instance, to new problems, such as the Variable Size and Cost Bin Packing Problem [12],

the Multi-handler Knapsack Problem under Uncertainty [39], and the Generalized Bin Packing Problem

(GBPP) [4]. The problem studied in this paper is indeed a generalization of the GBPP and it is used to

provide decision support at a tactical level for last-mile logistics.

Packing problems look for an optimal assignment of items to a set of bins able to accommodate them.

In the GBPPI, bins are characterized by their capacity and cost of use, and are classified by type, i. e.,

bins of the same bin type have the same capacity and cost. The items can be compulsory (i.e., mandatory

to load) or non-compulsory, and are characterized by weight and profit. The item profits depend on the

bin types. The aim of the GBPPI is to load compulsory items and profitable non-compulsory items into

appropriate bins in order to minimize net cost. This is given by the difference between the total cost of the

bins used and the total profit accruing from the loading of the items. As already discussed in Section 1, the

GBPPI naturally arises in last-mile-logistics optimization, where a courier responsible for parcel delivery

faces a tactical problem involving the following decisions: 1) select a number of TCs, 2) select a number of

vehicles from the fleet of the chosen TCs, and 3) assign parcels to the chosen vehicles. In the GBPPI, the

TCs are modeled by the bin types and vehicles by the bins. This implies that cost and capacity for bins

of the same type represent the transportation cost and the maximum weight for each vehicle of the fleet

of a particular TC. Moreover, each TC has a limited fleet with a maximum number of available vehicles.

Parcels are represented by items. Therefore the weight of an item models the weight of a parcel, while its

profit takes into account the economic value for the courier due to delivery and the gain due to the service

quality of TCs. The courier knows service quality based on feedback from consignees. This feedback takes

into account a number of factors including punctuality, integrity of parcels at the delivery, and courtesy.

Compulsory items represent priority parcels which have to be consigned in the current delivery, while non-

compulsory items are those parcels which delivery can be procrastinated. Finally, the courier might cope

with municipality traffic limitations on the maximum number of circulating vehicles.

The GBPPI is an evolution of bin packing problems which we briefly recall here. The oldest problem is

the Bin Packing Problem (BPP), which consists of a set of items to be loaded into bins of equal size such

that the number of bins used is minimum [32, 10, 9]. The Variable Sized Bin Packing Problem (VSBPP)

is a generalization of the BPP, which was proposed in the 1980s by Friesen and Langston [18], and involves

the introduction of bin types. Monaci [33] and Haouari and Serairi [21] studied exact algorithms, whereas

heuristic approaches were adopted in [20, 22, 28]. A more interesting variant where there is no correlation

between the volume and the cost of the bins is discussed in [12] for the deterministic form and in [13] for

the stochastic one.

The Generalized Bin Packing Problem (GBPP) is a generalization of previous bin packing problems,
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involving the introduction of item profits as well as compulsory and non-compulsory items. Heuristics, and

exact and approximate algorithms can be found in [4, 6]. Online and stochastic variants were discussed

in [5, 36]. Finally, approximation issues were studied in [3].

The analysis of the literature shows how all problems studied have costs and profits associated to just

one of the two sets: usually costs to bins and profits to items. Actually, to the best of our knowledge, no

study considers a dependency of the profits from both items and bins. This feature prevents the use of

classical heuristics, namely the Best Fit and Next Fit Decreasing heuristics, to address the GBPPI.

3. The GBPPI model

In this section, we propose a model for the GBPPI. We define the following:

• I: set of items

• n = |I|: number of items

• IC ⊆ I: set of compulsory items

• INC ⊆ I: set of non-compulsory items. Clearly, IC and INC are a partition of set I, i.e., IC∪INC = I
and IC ∩ INC = ∅

• J : set of bins

• m = |J |: number of bins

• T : set of bin types

• σ : J −→ T : indicator function, where given bin j ∈ J , reveals its type t ∈ T , i.e., σ(j) = t iff bin

j ∈ J belongs to type t ∈ T
• pit: profit generated by item i ∈ I when accommodated into a bin of type t ∈ T
• wi: volume of item i ∈ I
• Ct: cost of a bin of type t ∈ T
• Wt: capacity of a bin of type t ∈ T
• Lt: minimum number of bins to be used of type t ∈ T
• Ut: maximum number of bins to be used of type t ∈ T
• U ≤∑t∈T Ut: maximum number of bins to be used

• S ⊆ J : set of bins used in a solution of the GBPPI

• Wres(b) : b ∈ S: residual volume of a bin for a solution of the GBPPI. This is given by the capacity

of bin b minus the sum of the volumes of the items loaded in b.

An optimal solution of an instance of GBPPI must satisfy the following requirements:

• The overall cost given by the difference between the cost of the bins used and the profits incurred by

the loaded items is minimized.

• All compulsory items must be accommodated into some bins.
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• The sum of the volumes of the items loaded into a bin cannot exceed the capacity of that bin.

In order to provide a model for the GBPPI, we need to introduce the following binary variables:

xij =





1 if item i ∈ I is accommodated into bin j ∈ J

0 otherwise
(1)

yj =





1 if bin j ∈ J is used

0 otherwise
(2)

A model for the GBPPI can then be formulated as follows:

min
∑

j∈J
Cσ(j)yj −

∑

j∈J

∑

i∈I
pi σ(j)xij (3)

s. t.
∑

i∈I
wixij ≤Wσ(j)yj j ∈ J (4)

∑

j∈J
xij = 1 i ∈ IC (5)

∑

j∈J
xij ≤ 1 i ∈ INC (6)

∑

j∈J :σ(j)=t

yj ≤ Ut t ∈ T (7)

∑

j∈J:σ(j)=t

yj ≥ Lt t ∈ T (8)

∑

j∈J
yj ≤ U (9)

yj ∈ {0, 1} j ∈ J (10)

xij ∈ {0, 1} i ∈ I, j ∈ J (11)

The objective function (3) ensures that the solution minimizes the total net cost, given by the cost due to

the bin used minus the profit obtained from the loading of the items into the bins. Constraints (4) are the

so-called capacity constraints that ensure that the sum of the volumes of the items loaded into a bin does not

exceed the bin capacity. Constraints (5) ensure that all compulsory items are loaded, whereas constraints

(6) state that non-compulsory items may or may not be accommodated. Constraints (7)–(9) are bin usage

constraints. Finally, constraints (10)–(11) force the variables involved to be binary.

We point out that the presence of bin usage constraints (7)–(9) and a limited number m of bins might

lead to infeasible solutions. As shown in [4], in order to ensure that the problem is feasible, a dummy bin

with a large capacity and high cost is added to the problem.
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Model (3)–(11) inherits all the variables and constraints from the model for the GBPP described in [4]

except for the objective function. Although the change in the objective function due to the introduction

of bin-dependent item profits might seem trivial at first glance, in 5.3 we present a detailed comparison

between the GBPP and the GBPPI and show that the latter is harder to solve. Moreover, as we show in

Section 4, the introduction of bin-dependent item profits implies a relevant generalization of the constructive

heuristics used to tackle both problems.

4. Heuristics

In this section, we present efficient heuristics for addressing the GBPPI. As mentioned in the introduction

and will be shown in 5.3, the use of commercial solvers is not sufficient to efficiently address the problem, in

particular if fast solutions with a computational time of at most 10 minutes are required (i.e., the average

time for reaching decisions at the operational level). For this reason, we developed a series of heuristics

useful for addressing the GBPPI. The common principle of our heuristics is to address problems where the

sign of the objective function can be either positive, null, or negative. In previous bin-packing problems the

goal was to minimize a single objective: the number of bins used, the wasted space, etc. This implied an

objective function which is always non-negative. Vice versa, in generalized bin packing problems like the

the GBPP or the GBPPI, we deal with an objective function which terms can have different signs. In fact,

minimizing the net cost implies the optimization of two contributes: the minimization of the costs (which

signs are non negative) and the maximization of the profits (which signs are non positive). As it will be

shown in this section, our heuristics take this broadening of the objective function into account. Thus, they

are also suitable to address those problems with a mixed target in the objective function. The proposed

heuristics are:

• one constructive heuristic named Best profitable (BP)

• one constructive heuristic named Best Assignment (BA),

• one metaheuristic named Greedy Adaptive Search Procedure (GASP) [17],

• a parallel matheuristic named Model-Based Matheuristic (MBM).

These heuristics provide a flexible trade-off between quality of solution and computational time, in light of

the imposed maximum computational time of 10 minutes.

4.1. The constructive heuristics

The proposed constructive heuristics are a variant of Best Fit Decreasing (BFD) introduced by John-

son et al. [27] to address BPP. As already discussed, this generalization is necessary to address GBPPI and

problems with a mixed objective function. Our constructive heuristics are called Best profitable (BP)

and Best Assignment (BA), and operate with a list of available bins SBL and one of sorted items SIL.
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The major variant implemented in order to address the GBPPI is the broadening of the definition of the best

bin. Let S ⊆ J be the set of bins used in a solution of a bin packing problem, and let Wres(b) be the residual

volume of bin b ∈ S. In previous versions of the bin-packing problem, the best bin for an item was defined

as the one that can accommodate the item such that the residual space is minimized. In GBPPI, instead

of considering the minimum residual space, we compute a figure of merit consisting of a weighted sum that

takes into account both item profit and bin volume. Again, this choice is motivated by the fact that in the

GBPPI, we need to consider two factors. In classical bin packing problems the aim is to minimize residual

space in order to reduce the number of bins used or the cost of bin usage. The adoption of this approach in

the GBPPI does not always guarantee effective outcomes because item profits in such cases rely heavily on

bins. Our weighted figure of merit, defined as α · pi σ(j) − (1− α) ·Wres(j), simultaneously addresses these

two loading policies. The term pi σ(j) maximizes item profit, whereas the term Wres(j) minimizes residual

space. α ∈ [0, 1] is a coefficient that is varied during the execution of GASP (cf. Section 4.2), and allows

both loading policies to be spanned.

A further generalization is that this definition of the best bin is applied to a subset of N � |SIL|
items, rather than a single item. When we consider item i in list SIL, we take into account the sublist

SIL′ = {i, i + 1, . . . , i + N − 1}. For each item, we compute the best bin; at the end of this process,

we select the best item i∗ ∈ SIL′ and the best bin b that maximizes the aforementioned figure of merit.

Our computational experience confirmed that this “medium-term” memory improves the performance of

the heuristics. The behavioral difference between BP and BA heuristics can be observed when we cannot

load item i ∈ SIL into any of the already bins used in S. In this case, we try to select a new bin where to

accommodate item i. The BP heuristic considers item i with the remaining succeeding items in SIL, and

selects the bin that minimizes the difference between bin cost and the sum of profits from items that can

be loaded into that bin. If this difference is positive and item i is non-compulsory, then item i is discarded

because it is not convenient to open a new bin. Similarly, the BA heuristic selects the bin that maximizes

profit for item i. Both heuristics perform a post-optimization procedure consisting of two parts. In the first

part, for each bin b ∈ S contributing to the solution, we try to perform, if possible, the best swap with a

bin b′ ∈ J \ S that has not been used. Clearly, the swap is possible if the items loaded into bin b can also

be accommodated into bin b′, and the difference between the cost of bin b and the sum of the profits of

the items loaded in it is greater than the difference between the cost of bin b′ and the sum of the profits of

the same items loaded into bin b′. Furthermore, in the second part of the post-optimization procedure, we

remove bins from the solution that are not profitable and do not contain compulsory items. It is clear that

the solutions provided by the BP and BA heuristics depend on the two parameters α and N . As we show

in Section 4.2, the values of these parameters are varied using the GASP procedure, which employs BP

and BA as sub-heuristics. In contrast to classical bin packing heuristics such as the Best Fit Decreasing,

we wish to point out that the ordering of items for the BP and BA is something outside the algorithmic
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framework. In fact, in Section 4.2 we show that GASP will be responsible to sort the items before using any

constructive heuristics. Otherwise, if the BP and BA are used as stand-alone heuristics, many sortings of

items are possible due to the presence of multiple and bin-dependent attributes. This behavior can also be

observed in GBPP, where Baldi et al. [4] studied different sortings for constructive heuristics. According to

their study and to the knapsack-problem heuristics [32], the best performance on average can be obtained

sorting the items by non-increasing profit over weight ratios and then by non-increasing weight.

4.2. The GASP

Greedy Adaptive Search Procedure (GASP) algorithms consist of a multi-start procedure to find a good

initial solution and of a loop where, at each iteration, a new solution is generated by means of a simpler

heuristic. In our GASP for GBPPI, we employ the Best profitable and Best Assignment heuristics,

which were already described in Subsection 4.1.

Moreover, we try to improve the solution performing a steepest descent local search where the neighbor-

hood consists of “1 to 1 swaps”. We perform the swaps each time an improving solution is found. A swap

consists in unloading one item, say i1, to create sufficient room to accommodate an unloaded item i2. The

swap is only performed if it is possible and profitable.

At each iteration of the main loop, we try to generate a different and improved solution by varying the

order of the items in the list SIL. This is performed by associating a score with each item. A score update

procedure randomly assigns a different score value to each item.

Finally, a long-term reinitialization procedure is executed each time a solution does not improve in

consecutive iterations. Its purpose is to explore a different area of the feasible set by changing parameters

α and N of the constructive heuristics. The proposed method incorporates some ideas from [35]. The

pseudo-code of our GASP is proposed in Algorithm 1.

The algorithm presented in this section satisfies the terminology of the term GASP, namely Greedy

Adaptive Search Procedure. It is a greedy algorithm because it is based on the BP and BA procedures

that can be classified as greedy algorithms. It is also an adaptive-search algorithm because the long-term

reinitialization procedure is helpful to explore new regions of the solution space.

The GASP metaheuristic can be easily parallelized. Let P be the set of available threads in a parallel

computation. It is enough to execute one GASP metaheuristic for each thread p ∈ P and with a different

seed for the random-number generator. Let BP (p) be the final best solution provided by the GASP executed

by thread p ∈ P, then the overall best solution BS will be

BS = min
p∈P

BS(p).

10
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1: IS: initial solution provided by the multi-start initialization procedure

2: BS: best solution

3: BS := IS

4: numConsecutive: number of consecutive non-improving solutions

5: numConsecutive := 0

6: while time limit has not been reached do

7: sort the items

8: perform either the BP or the BA constructive heuristic

9: store the resulting solution as CS

10: if CS < BS then

11: BS := CS

12: perform “1 to 1” swaps

13: numConsecutive := 0

14: else

15: numConsecutive := numConsecutive+ 1

16: end if

17: score update procedure

18: if numConsecutive = MAXCONSECUTIV E then

19: long-term reinitialization procedure

20: numConsecutive := 0

21: end if

22: end while
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4.2.1. Multi-start initialization

The purpose of our multi-start initialization procedure is twofold: to feed the main loop of GASP

with a good initial solution, and automatically calibrate the parameters used by the constructive heuristics.

As already discussed when introducing the constructive heuristics, in contrast to the classical bin packing

problem the concept of best bin does not merely depend on the residual volume. The introduction of bin-

dependent item profits makes it impossible to define the best bin just in terms of residual volume. In fact,

the following factors should be taken into account: 1) the residual volume itself, 2) the item profit, and 3)

the bin type. The multi-start initialization is an auto-calibrating procedure where the Best profitable

heuristcs is executed a number of times, each time varying the parameter N within a given range. The value

of N providing the best solution is used in the following part of the heuristic.

4.2.2. Score update

Item scores are randomly extracted from a discrete uniform distribution. The motivation for this choice

is that working with integer values rather than real values implies a faster resolution of the sorting procedure.

We prefer to distribute the item scores in a range proportional to the number of items, and then use integer

scores rather than concentrating the scores with real values within a smaller range.

4.3. The Model-Based Matheuristic

We present here a parallel matheuristic for the GBPPI, where a set of computer threads P run simulta-

neously. It consists of a loop, where at each iteration each thread solves a subproblem using model (3)–(11).

The resolution of subproblems with model (3)–(11) allows us to take into account two targets at the same

time, namely the minimization of the cost and the maximization of the profits. Thus, this matheuristic is

suitable to address problems with a similar structure.

In each subproblem, a small set of bins is randomly selected from the incumbent solution and the set

of available bins. Then, we solve model (3)–(11) using these bins, the items loaded into the bins in the

incumbent solution, and the items that have not been loaded in the incumbent solution. In order to further

improve the given solution, we merge couples of partial solutions that do not have any bins and items in

common. The best solution is updated if the new solution is an improvement over the incumbent one. This

process continues until an overall time limit is reached.

According to the taxonomy of parallel methods proposed by Crainic and Toulouse [8], this approach can

be classified as 1C/RS/MPSS, where the following hold:

• 1C: One Control, i.e., one master thread controls all the remaining threads.

• RS: Rigid Synchronization, i.e., at each iteration, we wait for all threads to complete their computa-

tions.
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• MPSS: Multiple points same strategy, i.e., each thread solves a different subproblem, but using the

same strategy.

We chose to use this kind of parallelism because it can easily be implemented in our matheuristic. As we

show in the next section, although the matheuristic can be exploited without parallel computation, this

approach is strongly recommended when GBPPI is employed as a subproblem of a larger problem, and

significantly improves the performance of the matheuristic. The main steps of the MBM matheuristic are

shown in Algorithm 2.

Algorithm 2 The MBM matheuristic
1: P: set of threads

2: IS: initial solution provided to the MBM metaheuristic

3: BS: best solution

4: BS := IS

5: while time limit has not been reached do

6: for all p ∈ P do

7: randomly select a subset b(p) of bins from the set of bins S making up solution BS.

8: solve a GBPPI subproblem with a solver with a time limit of 1 s, the bins b(p) plus selected available

bins, the items loaded into bins b(p), and the items not loaded in solution BS.

9: end for

10: merge partial solutions provided by each thread and store the new current solution in CS.

11: if CS < BS then

12: BS := CS

13: end if

14: end while

The initial solution can be any feasible solution. However, for better results it is important to start with

a good solution. In our computational tests we used the solution found by the GASP as initial solution of

the MBM.

5. Computational results

In this section we analyze different computational aspects of the GBPPI. First, we compare the GBPPI

with the classical GBPP, showing how the introduction of the bin dependency of the profits makes our

problem much difficult to solve. Then, we show the accuracy and the effectiveness of our metaheuristics.

Finally, we show how using the GBPPI to solve the problem faced by an international courier of choosing

the mix of delivery options/sub-contractors can bring to a reduction of the operational costs, with a clear

benefit for the company.
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5.1. Test environment

We extended the original instances for the GBPP [4] by introducing bin dependency in the item profits.

Table 1 lists the features of these instances in terms of items and bin types.

FEATURES VALUES

# of items 25

50

100

200

500

Item volume I1: [1, 100]

I2: [20, 100]

I3: [50, 100]

Bin types A: 100, 120, 150

B: 60, 80, 100, 120, 150

Table 1: Instance features.

Ten instances were generated for each combination of features in Table 1, for a total of 300 instances. For

each instance, the minimum and the maximum number of available bins for bin type t ∈ T is respectively

set to

Lt = 0, ∀ t ∈ T

Ut =
⌈∑

i∈I wi
Wt

⌉
, ∀ t ∈ T .

The aforementioned 300 basic instances are then used to generate four classes of instances, numbered from

0 to 3, differing for the presence of compulsory items and the profit of the not compulsory ones. Class 0

considers the special case in which all the items as compulsory, and thus the items have no profit associated

to them. In classes 1 and 2 all the items are non compulsory and an item profit pi of item i ∈ I is given by

pi ∈ dU(0.5, 3)wie class 1

pi ∈ dU(0.5, 4)wie class 2

respectively, where U denotes uniform distribution.

Finally, Class 3 is a 500-item class, with 60 instances selected from classes 0–2 with 0%, 25%, 50%, 75%,

and 100% of compulsory items.
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Given the item profit (for the instances of classes from 1 to 3), the bin-dependant profit pi t is generated

as

pi t = pi + θt

with

θt = max
l∈L

{
0.4CminCmax

Wt
ϑ

}
. (12)

Like in [39], ϑ can either be extracted from a uniform distribution U(0, 1) or from a Gumbel distribution

G(0, 1). Values in (12) ensure that profit values approximate realistic settings. Cmin and Cmax are the

extremes of the uniform distribution and of the truncated Gumbel distribution. This is done to avoid

unrealistic values. For the sake of brevity, we refer to instances of GBPPI with item profits extracted from

a Gumbel distribution according to (12) as Gumbel instances, and instances of GBPPI with item profits

extracted from a uniform distribution according to (12) as uniform instances. GBPPI instances are also

available on line [34].

Computational resources were provided by hpc@polito [24], on a system with Opteron 2.3 GHz pro-

cessors and 124 GB of RAM. The matheuristic was implemented in C++, with eight threads. We used the

commercial solver CPLEX 12.6 [1] to solve each subproblem and for the comparison between the GBPP

and the GBPPI (see 5.3). Notice that, to avoid simmetry issues, the following constaints can be added to

model (3)–(11):

yj ≤ yj+1 ∀j ∈ J : σ(j) = σ(j + 1). (13)

5.2. Calibration

We select the 20% of the instances and run the algorithm within a range of parameters. The values

yielding the best performance are then selected.

At each iteration of the GASP scores are randomly extracted in the range [0, 4n] from a uniform and

discrete distribution, where n is the number of items.

We set the maximum number of iterations of GASP to 2000 and the maximum number of consecutive

non-improving solutions to 200.

The matheuristic randomly selects from a uniform discrete distribution min(4, k − 1) bins from the

incumbent solution, where k is the number of bins in the incumbent solution. This number is relatively

small because greater values would cause the solver to take more time for the resolution of each subproblem.

Moreover, small values of the available bins allow an easier merging of the subproblems. For the same

reasons we added 3 extra available bins for each bin type in addition to the selected bins. Furthermore, we

used the following time limits: 1s for each subproblem solved with the solver, and 120s for the matheuristic

in total.
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5.3. Comparison between the GBPP and the GBPPI

We compare here the classical version of the GBPP versus the new GBPPI. It is important to design a

heuristic that is accurate and fast at the same time, in order to be able to exploit the benefits of the GBPPI

in a city logistics setting, as discussed in Section 1.

To make the comparison, we selected 30 instances of the GBPP along with the corresponding Gumbel

and uniform instances of the GBPPI, as explained in the text. Thus, the number of instances in this

instance set is 90. The number of items range from 25 to 500. We solved each instance with the solver, eight

threads and a time limit of six hours. Furthermore, we monitored the percentage gap provided by the solver

after one minute, 10 minutes, one hour, and six hours of computation. The results of these initial tests are

summarized in Table 2, where we show the gaps in mean percentage between test instances, grouped by the

number of items and type of instances. In particular, C denotes the original instances of GBPP, G stands

for the Gumbel instances of GBPPI, and U represents the uniform instances of GBPPI.

ITEMS PROBLEM 1 MINUTE 10 MINUTES 1 HOUR 6 HOURS

C 0.34 0.00 0.00 0.00

25 G 0.00 0.00 0.00 0.00

U 2.29 0.43 0.43 0.00

C 0.55 0.38 0.32 0.29

50 G 3.53 2.12 1.41 0.87

U 2.92 1.60 1.17 0.86

C 1.25 0.83 0.67 0.52

100 G 4.37 3.31 2.71 2.13

U 4.86 3.75 3.18 2.43

C 3.49 1.02 0.71 0.62

200 G 11.35 8.40 4.72 3.75

U 9.31 5.02 3.71 3.50

C *** 1.43 1.40 0.43

500 G *** 38.19 5.54 2.50

U *** 20.57 5.52 2.72

Table 2: Comparisons between the classical GBPP and the new GBPPI.

From Table 2, we can see that the gaps provided by the solver for the GBPPI instances (both Gumbel

and uniform) are clearly higher than those of the original GBPP. For example, the gap in mean percentage

of the 500-item-GBPP instances is 0.43%, whereas the gap in mean percentage of the corresponding GBPPI
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instances is 2.50% for the Gumbel instances and 2.72% for the uniform instances. This suggests that the

introduction of the dependence of item profits on bins involves greater computational effort.

It is worth remarking on the trend in gaps with respect to the range of the minutes. This interval is

crucial in city-logistics settings, where decisions need to be made quickly [37]. It was not possible to report

the percentage gaps for the 500-item instances after one minute of computation because the solver was

unable to determine an initial solution (i.e., the percentage gap was arbitrarily large). The percentage gaps

provided by the solver after 10 minutes for the GBPPI instances were acceptable for the 25-item instances

only. As the number of items increased to 50, the gaps increased to 2.12% for Gumbel instances and to

1.60% for uniform instances. The percentage gaps tended to increase as the number of items increased.

This trend became considerably more evident for the 500-item instances, with the GBPP instances having

a mean percentage gap of 1.43 and the GBPPI having gaps of 38.19% and 20.57%, respectively, for the

Gumbel and uniform instances. These gaps were clearly prohibitive. Moreover, for some instances the solver

was unable to find an initial solution after 10 minutes of computation. All these considerations indicate

that the solver alone is not appropriate to address GBPPI in a city-logistics environment where decisions

are made quickly and the number of items is greater than 500.

In Table 3, we list the percentage gaps between the algorithms proposed in this paper and the percentage

gap of the best (minimum) between the Best profitable (BP) and Best Assignment (BA) constructive

heuristic with respect to the solver the best solution found by the solver with a time limit of 1 hour. The

results are reported according to the type of instance (Gumbel and uniform) and the number of items (from

25 to 500). This means that both algorithms are used and the best solution is kept. The reason for this

choice is twofold: 1) these constructive heuristics are simple and to execute each of them does not impact

on the overall computational time, and 2) the BP and BA algorithms do not dominate each other. Over

the 600 instances, in 225 instances (about one third) the BP was better than the BA. For the remaining

instances, the BA provided a better result.

The best constructive heuristic was compared to the solver with one thread only because the execution of

BP and the BA heuristic does not require parallelism. The computational time of the constructive heuristic

was practically zero, but this immediate execution was paid for in terms of the highest percentage gaps.

In fact, the overall is quite high, with a mean gap greater than 12%. This remarks again the difficulty

given by the introduction of the bin dependency of the items’ profits. In fact both the BP and BA extends

quite known concepts in the packing literature that normally gives gaps less than 1% [12, 4]. Actually, as

already noticed in multi-dimensional packing problems [38, 11], the presence of multiple ordering options

deteriorates the performances of traditional concepts. This, in conjunction with a profit scheme linking the

sets of bins and items, make the best and next fit concepts to have bad performances.

Results in Table 3 become more significant if we compare the proposed constructive heuristics with those

constructive heuristics designed for previous bin-packing problems. The most effective constructive heuristic
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ITEMS GUMBEL UNIFORM

25 13.07 14.28

50 15.05 14.06

100 14.76 12.56

200 13.77 11.86

500 9.98 8.24

OVERALL 13.32 12.20

Table 3: Percentage gaps of the constructive algorithms with the bin dependent profits generated according to the Gumbel and

Uniform distributions.

is the Best Fit Decreasing (BFD) [6]. We used the instances presented in this section to compare the BP

and BA with the BFD. As already discussed in Section 4.1, the main innovations for the new constructive

methods are the introduction of a memory for the candidate items to be accommodated and a mixed figure

of merit for selecting the best bin. In Table 4, we report the percentage gap of the best constructive function

with the classical BFD, namely

100 · BFD −min(BP,BA)
|BFD| .

ITEMS GUMBEL UNIFORM

25 40.55 42.01

50 44.76 42.56

100 41.74 41.31

200 37.87 35.88

500 33.38 32.33

OVERALL 39.66 38.82

Table 4: Comparison between the BFD and the proposed constructive algorithms.

These results show that while the BFD is still useful for the GBPP, it has to be replaces with better

constructive heuristics when addressing the GBPPI because, as already discussed, the introduction of bin-

dependent item problems does not change the solution set but strongly modifies the nature of the problem.
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5.4. Computational results of the heuristic methods

In Table 5, we list the percentage gaps between the algorithms proposed in this paper and the best

solution found by the solver in one hour. The results are reported according to the type of instance (Gumbel

and uniform), the number of items (from 25 to 200), and the number of threads (one and eight). We also

wanted to estimate the benefits of a parallel computation in comparison with a single-thread approach. The

columns in Table 5 describe the following: col. 1) is the type of distribution for item profits; col. 2) shows

the number of items; col. 3) shows the percentage gap in the best constructive heuristic with respect to the

solver with one thread; cols. 4) – 5) are the percentage gaps of GASP and the MBM with one thread with

respect to the solver with one thread; and cols. 6) – 7) are the percentage gaps of GASP and the MBM

with eight threads with respect to the solver with eight threads. The best constructive heuristic was given

by the minimum of the Best profitable and Best Assignment heuristics.

DISTRIBUTION ITEMS CONSTR.
1 THREAD 8 THREADS

GASP MBM GASP MBM

GUMBEL 25 13.07 0.97 0.10 0.86 0.02

50 15.05 3.94 0.16 2.69 0.14

100 14.76 5.69 0.39 4.66 0.31

200 13.77 6.89 0.12 4.56 -0.02

500 9.98 2.99 -1.95 1.03 -2.94

OVERALL 13.32 4.10 -0.24 2.76 -0.50

UNIFORM 25 14.28 1.03 0.05 0.97 0.04

50 14.06 3.71 0.24 2.89 0.17

100 12.56 5.93 0.41 4.52 0.39

200 11.86 7.24 0.19 5.01 0.16

500 8.24 2.44 -2.19 1.04 -2.97

OVERALL 12.20 4.07 -0.26 2.89 -0.44

OVERALL 12.76 4.08 -0.25 2.82 -0.47

Table 5: Percentage gaps in the proposed algorithms reported according to item profit distribution (column 1), number of

items (column 2), and parallelism (columns 4–7).

In column 3 we report the results of the constructive heuristics. Although this value was high, the Best

profitable and Best Assignment heuristics found their utility in the execution of GASP and MBM,

which yielded much lower percentage gaps. Moreover, from Table 5 we can also observe the benefits of

introducing parallelism. The percentage gap of GASP was almost halved when switching from one to eight

threads. This gap reduced from 4.08% to 2.82%, which is a considerably improved result if we consider that
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the computational time of GASP was approximately 1 second. The percentage gaps of the MBM were

satisfactory. Again, parallelism improved quality of solution. In fact, gaps reduced from -0.25% to -0.47%

when the number of threads increased from 1 to 8.

Table 6 presents the average computational times of the last best solution found by the MBM. The

columns in Table 6 indicate the following: col. 1) represents the type of distribution for the item profits,

col. 2) shows the number of items, cols. 3) and 4) list the average computational times needed to find the

best solution for the MBM with one and eight threads, respectively.

DISTRIBUTION ITEMS 1 THREAD 8 THREADS

GUMBEL 25 2.94 2.48

50 31.16 13.56

100 64.97 47.30

200 92.88 70.87

500 99.03 104.50

OVERALL 58.20 47.74

UNIFORM 25 5.74 1.84

50 29.00 14.31

100 57.25 45.05

200 93.70 74.67

500 99.03 109.43

OVERALL 56.94 49.06

OVERALL 57.57 48.40

Table 6: Best computational times for the MBM reported according to item profit distribution (column 1), number of items

(column 2), and parallelism (columns 3–4).

The analysis of Table 6 reveals that the average time tended to increase in line with instance size.

Moreover, the overall average time was approximately one minute.

Finally, we compared the MBM with the branch-and-price by Baldi et al. [6] on the same instances as

the classical GBPP. We computed the percentage gaps of the MBM with respect to the branch-and-price

results. The results are presented in Table 7 according to the number of items. In particular, columns 2, 4,

6, and 8 indicate the percentage gaps of the branch-and-price with respect to its best lower bound computed

at the root node (cf. [6] for further details). Columns 3, 5, 7, and 9 present the percentage gaps of the MBM

with respect to the best objective function provided by the branch-and-price. The instances in Class 3 were

defined for 500 items only. The overall percentage gap of the MBM compared to the branch-and-price was

approximately 0.22%. Nevertheless, we observed that for 34 instances, better results were found than those
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provided by the branch-and-price in Baldi et al. [6], and within a considerably smaller computational time.

The time limit of the branch-and-price was one hour, while that of the MBM was two minutes. Moreover,

for a third of the instances of GBPP, the Model-Based Matheuristic could find the same results generated

by the branch-and-price.

ITEMS
CLASS 0 CLASS 1 CLASS 2 CLASS 3 1

BEP MHEUR BEP MHEUR BEP MHEUR BEP MHEUR

25 0.00 0.01 0.00 0.02 0.00 0.00 N/A N/A

50 0.00 0.19 0.00 0.14 0.01 0.12 N/A N/A

100 0.02 0.32 0.03 0.26 0.01 0.15 N/A N/A

200 0.06 0.33 0.02 0.37 0.03 0.28 N/A N/A

500 0.12 0.38 0.12 0.34 0.11 0.26 0.57 0.59

OVERALL 0.04 0.25 0.03 0.23 0.03 0.16 0.57 0.59

Table 7: Comparisons between the branch and price and the MBM. Columns 2, 4, 6, and 8 show the percentage gap of the

branch and price with respect to the best lower bound. Columns 3, 5, 7, and 9 show the percentage gap of the MBM with

respect to the best objective function provided by the branch and price.
1 The instances in Class 3 were defined for 500 items only.

5.5. Smart City case study

As described in Section 1, the case study refers to the planning of parcel deliveries of an international

courier. In this case study, we compare our MBM solutions with those of the courier based on its business

policy. We analyzed 30 instances (i.e., 30 competitive tenders) with 1,000 daily parcel deliveries (i.e., the

items), 10 TCs (i.e., the bin types), and up to 100 trucks (i.e., the bins) per TC, available in an urban

distribution area.

In Table 8, we present the percentage gaps of our MBM compared to the business policy and the solver

(this time with a time limit of two hours) over the 30 competitive tenders. Our MBM always finds better

results than those provided by the business policy and the solver.

A more interesting outcome results from the analysis of the instances from an economic and managerial

point of view. The size of each instance is representative of the daily parcels of a parcel delivery company

in a medium-sized city. If we compare the solution with one based on expert opinion (tactical decisions

based on expert opinion and day-to-day decisions optimized by means of specific optimization tools), the

assignments given by GBPPI achieve a constant reduction of the overall cost by between 3 and 4%. In

terms of the economic impact of costs, this amounts to 120,000–180,000 euros for a medium-sized city (the

interval depends on different scenarios of annual numbers of parcels). Moreover, this economic impact will
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Instance 1 -4.10 -1.22 Instance 16 -3.19 -1.47

Instance 2 -3.54 -0.98 Instance 17 -3.14 -1.04

Instance 3 -3.89 -1.21 Instance 18 -3.17 -1.15

Instance 4 -3.85 -1.86 Instance 19 -3.18 -0.69

Instance 5 -3.80 -1.95 Instance 20 -3.70 -1.28

Instance 6 -3.79 -1.12 Instance 21 -3.05 -2.15

Instance 7 -3.82 -1.35 Instance 22 -3.05 -0.91

Instance 8 -3.56 -1.18 Instance 23 -2.80 -2.25

Instance 9 -3.84 -1.05 Instance 24 -3.14 -2.57

Instance 10 -4.24 -0.92 Instance 25 -3.12 -2.57

Instance 11 -3.45 -1.66 Instance 26 -2.88 -2.29

Instance 12 -2.90 -0.52 Instance 27 -2.86 -2.62

Instance 13 -3.24 -1.49 Instance 28 -3.10 -2.04

Instance 14 -3.22 -1.27 Instance 29 -3.07 -1.83

Instance 15 -3.33 -0.26 Instance 30 -2.89 -0.79

OVERALL -3.36 -1.46

Table 8: Percentage gaps of the MBM compared with the business policy and the solver. Columns 1 and 4 present the instance

number of the case study, columns 2 and 5 the percentage gaps of the business policy compared to the MBM, and columns 3

and 6 the percentage gaps of the solver compared to the MBM.
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increase in the near future, due to the increase in B2C flows resulting from e-commerce, mass customization,

and decentralized production [25, 26].

6. Conclusions

In this paper, we introduced a new packing problem named Generalized Bin Packing Problem with

bin-dependent item profits (GBPPI). We have shown that GBPPI can be applied at both tactical and

operational levels. At the tactical level, GBPPI models cross-country and multi-modal transportation

settings. At an operational level, GBPPI describes the problem of a courier selecting the appropriate

number and type of vehicles from a set of available transportation companies. We have also demonstrated

that the introduction of bin-dependent item profits is not trivial in terms of problem resolution. We presented

a number of heuristics to efficiently address the problem within limited computational time. We have also

presented extensive computational results and a case study of a well-known international courier operating

in northern Italy.

GBPPI can also be a starting point for future research. In fact, GBPPI can be exploited as a subproblem

in the resolution of the stochastic variant of GBPP, namely Stochastic Generalized Bin Packing Problem.

Stochastic problems are affected by uncertainty. The Progressive Hedging Algorithm is an iterative technique

for addressing these problems [14, 31]. At each iteration, random variables describing uncertain attributes

are fixed to particular values. In this way, each iteration of the Progressive Hedging Algorithm applied to

Stochastic Generalized Bin Packing Problem implies the solution of a deterministic GBPPI subproblem.

This solution may successfully be performed through the heuristics proposed in this article.
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