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Abstract

This paper presents a technique for learning hidden Markov model (HMM) state sequences from phonemes, that combined with

modified discrete cosine transform (MDCT), is useful for speech synthesis. Mel-cepstral spectral parameters, currently adopted

in the conventional methods as features for HMM acoustic modeling, do not ensure direct speech waveforms reconstruction. In

contrast to these approaches, we use an analysis/synthesis technique based on MDCT that guarantees a perfect reconstruction of the

signal frame feature vectors and allows for a 50% overlap between frames without increasing the data rate. Experimental results

show that the spectrograms achieved with the suggested technique behave very closely to the original spectrograms, and the quality

of synthesized speech is conveniently evaluated using the well known Itakura-Saito measure.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Hidden Markov model (HMM) statistical parametric speech synthesis has proven to be a particularly flexible and

robust framework to generate synthetic speech with various speaking styles and emotional expression1,2. Thanks to

the ability in representing not only the phoneme sequences but also various contexts of the linguistic specification,

HMM-based speech synthesis has recently been a major topic in speech research systems3,4,5,6,7.

In conventional techniques based on the source-filter model assumption, phonetic and prosodic information are

assumed to be conveyed primarily by the spectral envelope, fundamental frequency (F0), and the duration of individual

phones8. However although these efforts have produced good performances, there are still limitations in this approach.

In particular the modeling of F0 is difficult due to the discontinuity nature of F0 caused by the voice and unvoiced

speech regions9. Moreover the spectral envelope defines a non-invertible transform so that the speech signal cannot

be perfectly reconstructed from the feature sequence10,11.

In this paper a novel HMM statistical parametric speech synthesis approach, based on learning HMM state se-

quences from phonemes and the modified discrete cosine transform (MDCT), which guarantees the perfect recon-
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struction of speech signal given the feature sequence and overcomes the main lacks of Mel-cepstral analysis/synthesis

technique, is proposed.

2. Speech vector sequence generation

2.1. MDCT feature vector

Let us represent the sampled signal S as a sequence of T + 1 blocks of D samples:

S = [sT
1 , sT

2 , . . . , sT
T+1]T ∈ R(T + 1)D×1 , (1)

where

st ∈ RD×1 (2)

is the single block of length D.

In signal sampling with overlap, a sequence of frames

X = [xT
1 , xT

2 , . . . , xT
T ]T ∈ RT (2D)×1 , (3)

is obtained, where

xt =

(
xL

t
xR

t

)
=

(
st

st+1

)
∈ R2D×1, t = 1, . . . ,T (4)

is the single frame corresponding to a window of length 2D.

The sequences S , X, and the overlap regions are depicted in Fig. 1. As you can see the blocks xt and xt+1 overlap

for a length D, and the following condition holds:

xR
t = xL

t+1. (5)
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Fig. 1. The sequences S , X, and the overlap regions between different blocks.

The usually adopted model for speech parametrization is the source-filter model which leads to the extraction of

parameters (features) such as linear predictive coding (LPC), Mel-frequency cepstral coefficients (MFCCs), perceptual

linear prediction (PLP) coefficients, etc. Among these, MFCCs are demonstrated the most successful due to their

particular robustness to the environment and flexibility12. MFCC feature extraction corresponds to a transform F
such that

ôt = Fxt (6)

where the vector ôt represents the so-called feature vector belonging to an appropriate subspace.

The main problem in speech synthesis is that, given the vector ôt from transcription, the frame signal xt cannot

be derived univocally from (6) because the transform F is not invertible. In order to face this problem we use an

analysis/synthesis technique based on the MDCT that ensures a perfect reconstruction of the signal from feature

vectors and allows for a 50% overlap between blocks without increasing the data rate.
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Denoting with A = (A1A2) ∈ RD×2D the matrix that represents the MDCT13, and with ot the MDCT feature vector,

it results

ot = Axt = A
(

st

st+1

)
= (A1A2)

(
st

st+1

)
= A1st + A2st+1 (7)

where A1 , A2 ∈ RD×D. In matrix form we have

O = WS (8)

with

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 · · · · · · 0

0 A1 A2 · · · 0
...
...
. . .
. . .
...

0 · · · · · · A1 A2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ RT D×(T+1)D (9)

and

O = [oT
1 , oT

2 , . . . , oT
T ]T ∈ RT D×1 (10)

is the MDCT feature vector corresponding to the signal S .

2.2. Learning HMM state sequences and maximum likelihood estimation

The speech synthesis algorithm we propose determines the sequence X of the synthetic signal, given the sequence

O of features corresponding to the transcription (or sequence of phonemes) H to be synthesized.

In an HMM modeling we need to derive first the state sequence that generates the sequence O. To this end let

P(O,Q/λ) = πθ0
T∏

t=1

aθt−1θt bθt (ot) (11)

be the joint pdf of O and Q, given the model λ, where

Q = {θ1, θ2, . . . , θT } = {(q1, i1), (q2, i2), . . . , (qT , iT )}, (12)

being θt = (qt, it) the substate associated to the Gaussian mixture it of the state qt at the time instant t, that is

bθt (ot) = (2π)−D/2
∣∣∣Uθt ∣∣∣−1/2 · exp

{
−1

2
(ot − μθt )TU−1

θt
(ot − μθt )

}
(13)

with μθt ∈ RD×1, Uθt ∈ RD×D. πθ0 is the initial-state probability, and aθt−1θt is the state-transition probability.

Since H = {h1, h2, . . .} is a sequence of phonemes, we restrict the mathematical formulation to a single phoneme h
alone. Given the phoneme h the sequences O and Q are chosen in such a way the joint pdf

P(O,Q/λ) = P(O/Q, λ)P(Q/λ), (14)

which represents the likelihood of the set χ = {O,Q}, is maximum. The sequence Q is obtained during learning phase

as the one that satisfies max P(Q/λ). At the end of training to a given h corresponds a set {Q1,Q2, . . .} of substate

sequences, thus we choose Q as the one that satisfies

Q = Qbest = arg max
i

P(Qi/λ). (15)

Having derived Q, the sequence O is given by the maximum of the likelihood log P(O/Q, λ) which can be written as

L(O) = log P(O/Q, λ) =
T∑

t=1

log bθt (ot). (16)

After some manipulations we have

L(O) = −1

2
OTU−1O + OTU−1M + k (17)



1592   Giorgio Biagetti et al.  /  Procedia Computer Science   96  ( 2016 )  1589 – 1596 

MDCT 
MDCT 

Feature
Extraction

Speech 
Database

MDCT Learning
HMMsMDCT Text 

Analysis
labels

speech
signal

MDCT Sequences of
Substates

MDCT 
Best 

Sequence QMDCT
Phoneme

h
Overlap-
and-addMDCT 

Best 
Sequence O

O*Qbest

X

{Q1, Q2 , … }

synthesized
speechSYNTHESIS STAGE

LEARNING STAGE

Fig. 2. Block diagram of the MDCT-based speech synthesis system.

where

U−1 = diag
[
U−1

q1,it , U−1
q2,it , . . . , U−1

qT ,it

]
∈ RT D×T D, M =

[
μT

q1,it , μ
T
q2,it , . . . , μ

T
qT ,it

]T ∈ RT D×1 (18)

and

k = k′ + k′′, (19)

being

k′ =
T∑

t=1

log (2π)−D/2
∣∣∣Uθt ∣∣∣−1/2

, k′′ = μT
qt ,it U

−1
qt ,itμqt ,it . (20)

The sequence O can be derived as the one that maximizes (17).

Having achieved the optimum sequence Qbest of substates for a given phoneme h, to such a sequence corresponds

a set {O1,O2, . . . } of feature sequences and a set of likelihood values {L(O1),L(O2), . . . }. In order to maximise the

joint pdf (14), the sequence O∗ = {O1,O2, . . . } such that L(O∗) = max{L(O1),L(O2), . . . } is chosen.

Finally, once the optimum sequence of feature vectors O∗ is obtained, the sequence X of synthesized signal frames

is derived by the overlap-and-add synthesis process.

An overview of the speech synthesis algorithm is shown in Fig. 2. The block diagram shows the two fundamental

steps of the proposed approach: the learning stage, that is the off-line stage, and the synthesis stage, that is the on-line

stage. The first step extracts from the input database (audio and text sources) the MDCT features and derives throw

an HMM modeling the substates for all input sequences of phonemes; the second step, given an input text and on

the basis of the classified sequences of substates, determines the best sequence of states Qbest and the corresponding

best sequence of features O∗ for every input phoneme. At the end, the overlap-and-add synthesis process returns the

synthesized speech of the input text.
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Fig. 3. Spectrograms of the Italian vowels |a|, |e|, |i|, |o|, |u| for the: (a) original signal, (b) signal synthesized by our technique, and (c) signal

synthesized by diphones technique.
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3. Experimental results

3.1. Acoustic model training

The first stage in the experiments we carried out to validate the proposed synthesis approach, was training the

HMM acoustic model.

The material adopted for training was based on a 22 hours audio recording of a female speaker extracted from an

Italian audiobook. The feature vector has been derived by applying the MDCT to the 2D = 20 ms signal frame xt, 50%

overlapped with the successive frame. With a sampling rate of 8 kHz, a frame length of 80 samples (corresponding to

the overlap length) is obtained.

The training was conducted with the Baum-Welch algorithm that performs an EM estimation of the audio modeling

parameters.

To determine the most probable state sequences, we used the same training material and the Baum-Welch algorithm

for the audio/text alignment at the HMM states level. In such a way, once the most probable state sequence for a given

transcription is derived, the matrices in (18) can be computed.

3.2. Vowel synthesis

To validate the proposed speech synthesis technique the above scheme was used to synthesize the five Italian

vowels, once the best substate sequences are given.

For comparison the same phonemes were synthesized using the “eSpeak” software14 and the MBROLA (it-4)

female recording audio extracted from ITC-irst data base15. MBROLA is an diphone-based algorithm16 for speech

synthesis. The MBROLA project web page provides diphone databases for a large number of spoken languages.

“eSpeak” is a compact open source software speech synthesizer that can be used as a front-end to MBROLA diphone

voices.

Figure 3 reports the spectrograms of the five Italian vowels |a|, |e|, |i|, |o|, |u|, as achieved by a 20 ms, 50% overlapped

window. The first spectrogram in each figure depicts the behavior of the original audio signal, while the second and

third spectrograms are related to the signal synthesized with our approach and the diphone (i.e. the second half of one

phone plus the first half of the following) technique , respectively. As you can see, the spectrograms achieved with

the suggested technique behave very closely to the original spectrograms. Diphones instead give spectrograms that

are quite different from those expected.

3.3. Word synthesis

To further validate the proposed technique several Italian words have been synthesized.

Figure 4 reports the spectrograms of the three Italian word topo (| t o p o |), casa (| k a z a |), Alice (| a l i Ùe |),
as achieved by a 20 ms, 50% overlapped window. The first spectrogram in each figure depicts the behavior of the

original audio signal, while the second spectrogram is related to the signal synthesized with this approach. As you

can see, the spectrograms achieved with the suggested technique behave very closely to the original spectrograms.

In addition Table 1 shows for the same three words topo (| t o p o |), casa (| k a z a |), Alice (| a l i Ùe |), and for the

additional two voce (| v o Ùe |) and troppo (| t r o p p o |), the Itakura-Saito measure (ISM)17,18 both for the synthesized

words and a population of observations extracted from the original database adopted for training, with respect to the

most likely (the target) realizations of such words. As you can see, the values of ISM for the three synthesized words

are inside the ranges achieved for the population of original words, thus confirming the quality of synthesized speech.

4. Conclusion

This paper has derived a new HMM-based framework for speech synthesis. This framework combines an MDCT

representation that guarantees a perfect reconstruction of the signal from feature vectors, a technique for learning

HMM state sequences from phonemes. In the paper the rigorous mathematical apparatus, which the technique is

founded on, has been reported together with some experimental results showing the validity of the approach.
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Fig. 4. Spectrograms of the Italian words topo (| t o p o |), casa (| k a z a |), Alice (| a l i Ùe |) for the: (a) original signal, (b) signal synthesized by

our technique.

Table 1. Itakura-Saito measure for a population of observations and the synthesized Italian words.

Word Original Words Synthesized Word

min max

| t o p o | 4.2371 18.1802 7.1187

| k a z a | 4.5560 31.8218 14.7179

| a l i Ùe | 8.8605 28.5589 11.1542

| v o Ùe | 10.2970 27.6711 20.8455

| t r o p p o | 1.2301 23.8528 5.2783

| t E r r a | 7.5787 21.3814 16.5928
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