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a b s t r a c t 

The Generalized Error Distribution (G.E.D.) is a very flexible family of symmetric density distributions, which are 

characterized by their shape parameter p linked to the L p -norm estimators. In fact, under this errors assumption 

in the regression model the G.E.D. parameter p coincides with the p exponent of the L p -norm . In this paper, we 

examine the use of L p -norm estimators in the framework of non-linear regression models assuming the G.E.D. as 

the errors distribution. More precisely, we introduce an exponential regression (Markovi ć, & Borozan, 2015) and 

a new algorithm Lp med consisting of two iterative procedures, one internal to estimate the regression parameters 

and another external for estimating p (the p exponent of the L p -norm ) based on two kurtosis indexes of the 

residuals distribution. In order to show the good results of the proposed method, an efficiency comparison of 

the new method, Lp med , with other two well-known approaches as the maximum likelihood (Agrò, 1995) and 

the Money et al. (1982) method is performed. Our combined method shows better results asymptotically and, 

especially in presence of leptokurtic data, for the p parameter estimation. Finally an application on the Equitable 

and Sustainable Well-being (B.E.S) in the Italian context confirms the good properties of the proposed method. 
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. Introduction 

A central problem in regression analysis is the presence of errors in

he detection of phenomena. 

In this framework the assumption related to the form of the error

istribution is very important and it is not necessarily Gaussian [36] .

he approach of this paper highlights that, given the infinite ways of

he accidental errors distribution; the assumption of normality is too

estrictive and leads to less efficient estimates. The theoretical scheme

f the Generalized Error Distributions (G.E.D.) represents an important

eneralization of the hypothesis of normality: indeed, by using this fam-

ly of density functions, it is possible to describe unlimited symmetrical

r asymmetrical forms of the accidental errors distribution [6] . 

This scheme constitutes an important generalization with respect to

lassical statistical theory based on the hypothesis of Gaussian normal-

ty. It could indeed be of great interest, where possible, to revisit the

lassical inferential procedures by placing the probabilistic assumption

f normality of order p which has the great advantage of being less re-

trictive than the Gaussian one for describing various accidental errors

istributions with symmetrical forms (or, in certain cases, asymmetri-

al). 
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In this perspective, the simulation studies and the applications per-

ormed in this paper are based on the generalization of the classical

ypothesis of residual distribution normality. 

As it is well known under the Gaussian hypothesis, the maximum

ikelihood estimators of the regression parameters are equivalent to the

east squares estimators [20] . 

Similarly, the hypothesis of regression model assuming the G.E.D.

esiduals distribution (generalization of the classical hypothesis of the

aussian normality) guarantees the identity between the maximum like-

ihood estimators and the L p -norm estimators (with p ≠ 2). 

The objective of this generalization can be aimed at obtaining good

stimates of the location (e.g. mean, median, etc.) and scale parame-

ers (e.g. simple deviation from the median, variance, etc.) from a sam-

le of measurements affected by accidental errors [32] , or it can be to

etermine the most suitable distributional assumption to describe the

egression model sample data. 

The aim is to guarantee to parameters estimators some optimality

roperties, when the response variable is affected by not Gaussian ran-

om errors. 

This problem has received a great deal of attention from statisticians

nd from various scientists who have considered the inductive approach

o solving knowledge problems, and who have unanimously agreed that

he best solution is to seek the exact distribution of the accidental errors,

n order to limit theirs influence on the observed data [10] . 
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2 
This paper is structured as follows: after a brief introduction regard-

ng the family of curves that is known as Generalized Error Distribution

also called Exponential Power Function or E.P.F), we consider the lin-

ar and non-linear regression models and the L p -norm estimators. 

Thus, we introduce Lp med , a combined algorithm consisting of two

terative procedures for estimating the L p -norm exponent p and the re-

ression parameters. Moreover a comparative simulation study with two

ther procedures in order to prove empirically some important proper-

ies is performed. 

In this paper a particular exponential regression model employed in

any different areas such as biology, finance, sustainability, medicine,

s investigated [29] . 

For all the three considered methods ([ 1 , 33 ] and the combined

ethod Lp med ) a Montecarlo simulation plan is carried out to estimate

oth the regression coefficients and the p parameter. Finally, to further

est its validity, the new method is applied to a selection of indicators

oncerning the Italian “Equitable and Sustainable Well-being ” named

B.E.S. ” (Benessere Equo & Sostenibile) considered in the drafting of

he D.E.F. (Economics and Finance Document). 

In particular, a regression model containing four analyzed and pre-

icted indicators defined by the M.E.F. (Ministry of Economics and Fi-

ance) in [12] is offered. 

. Generalized error distribution: some parameterizations 

Starting from a partial modification of Gauss’s law basic hypotheses,

he mathematician Subbotin has formalized a law of errors’ distribution,

hich is more flexible than Gaussian to describe most of the phenomena

bservable and applicable to the field of sustainability. 

He considered the following axioms: 

1. The probability of an error depends only on the size of the error itself

and can be expressed by a function 𝜙( 𝑧 − 𝑥 1 ) = 𝑓 ( 𝜀 ) having the first
derivative continues in general (as Gauss); 

2. The most probable value z of an amount of which direct measure-

ments are known, x 1 , does not depend on the unit of measurement

used (according to Schiaparelli’s axiom). 

Subbotin [39] obtained the general formulation of the error distri-

ution as follows: 

 ( 𝜀 ) = 

𝑚ℎ 

2Γ(1∕ 𝑚 ) 
𝑒𝑥𝑝 

{
− ℎ 𝑚 |𝜀 |𝑚 } (1)

here Γ ( 𝜆) is the complete Gamma function defined by the following

ntegral: 

( 𝜆) = 

∞∫
0 
𝑡 𝜆−1 𝑒 − 𝑡 𝑑𝑡 

For particular values of h, m and ɛ , all the Generalized Error Distri-

utions are precisely identified. 

The Subbotin’s formulation defines the G.E.D. [21] starting from the

ollowing frequency distribution: 

 𝑠 ( 𝑥 ) = 𝑎 𝑒 − 𝑏 |𝑥 − 𝑐 |𝑝 (2)

With a being the constant, b is the scale parameter, c is the centrality

arameter, p shape parameter, assuming b > 0 and p > 1. After a few steps

n the integrals we get: 

 = 

1 
2 

( 𝑏 ) 
1 
𝑝 

Γ
(
1 + 

1 
𝑝 

)
After obtaining the constant a , it is possible with a similar proce-

ure to get a general formula of the moments of order k as a function of

arameter p . 

𝑘 = 𝐸 |𝑥 − 𝑐 |𝑘 = 𝑏 
− 𝑘 
𝑝 

Γ
(
𝑘 +1 
𝑝 

)
Γ
(
1 
𝑝 

) (3)
This relation shows an interesting characteristic of the frequency dis-

ribution considered. 

In fact, it is easy to verify that the relationships between centered

oments of the same order are invariant with respect to the centrality

nd dispersion parameters and only depend on the shape parameter p . 

From the previous formula, it is possible to obtain the theoretical

elation relating to generalized kurtosis: 

𝑘 = 

𝜇2 𝑘 

𝜇𝑘 
2 = 

Γ
(
1 
𝑝 

)
Γ
(
2 𝑘 +1 
𝑝 

)
[
Γ
(
𝑘 +1 
𝑝 

)]2 (4)

If k = 2 we obtain the Pearson classic kurtosis index of norm 2: 

2 = 

𝜇4 
𝜇2 

2 = 

Γ
(
1 
𝑝 

)
Γ
(
5 
𝑝 

)
[
Γ
(
3 
𝑝 

)]2 (5)

If k = 1 we obtain the mean square deviation 𝜎2 = 

√
𝜇2 and the av-

rage simple deviation 𝜎1 = 𝜇1 which inverted provide the tails’ length

ndex introduced by Geary [15] also defined as the expected absolute

alue divided by the standard deviation and called norm one kurtosis. 

 = 

𝜇1 √
𝜇2 

= 

Γ
(
2 
𝑝 

)
√ 

Γ
(
1 
𝑝 

)
Γ
(
3 
𝑝 

) (6)

Finally, if we put k = p in (3) we get: 

𝑝 = 𝑏 −1 
Γ
(
1 + 

1 
𝑝 

)
Γ
(
1 
𝑝 

) = 

1 
𝑏𝑝 

The centered moment of p- th order is given by: 

𝑝 
√
𝜇𝑝 = 

[ +∞∫
−∞

|||𝑥 − 𝜇𝑝 
|||𝑝 𝑓 ( 𝑥 ) 𝑑𝑥 

] 1 
𝑝 

= 𝜎𝑝 

This is also the p- th power of 𝜎p , the scale parameter of order p , which

s the index of conditional variability. The value of b is obtained from

he last two relations considered and the value of c is assumed equal to

p : 

 = 

1 
𝑝𝜎

𝑝 
𝑝 

and 𝑐 = 𝜇𝑝 

Therefore (2) can be written as follows: 

 𝑠 ( 𝑥 ) = 

1 

2 𝑝 
1 
𝑝 Γ

(
1 + 

1 
𝑝 

)
𝜎𝑝 

𝑒 
− |𝑥 − 𝜇𝑝 |𝑝 

𝑝𝜎
𝑝 
𝑝 (7) 

Where 𝜇𝑝 = 𝐸( 𝑥 ) is the location parameter, 𝜎𝑝 = [ 𝐸( |𝑥 − 𝜇𝑝 |𝑝 ) ] 1 𝑝 is
he scale parameter p > 0 is the shape parameter and Γ as in (1) . The
7) represents, in a more evident way than the (2) , the family of the

eneralized Error Distributions and in correspondence to each value of

 provides particular errors distributions which in any case maintain the

haracteristic of symmetry. The (7) can be obtained furthermore from

he (1) if it occurs in the latter 𝑚 = 𝑝, 𝜀 = 𝑥 − 𝜇𝑝 , ℎ = 1∕( 𝜎𝑝 𝑝 
1 
𝑝 ) . 

The p parameter can be interpreted as a structure parameter char-

cterizing each particular errors distribution and becomes decisive for

istinguishing the particular mechanisms that determine them. These

istributions therefore take infinite shapes with p varying from 0 to ∞
ith respect to kurtosis, length of the tails and curvature. 

In particular, if we use Pearson’s kurtosis 𝛽2 index to distinguish the

ifferent obtained distributions we note that: 

(a) With 0 < p < 1 we obtain double exponential distributions with

characteristic cuspidate shapes, showing very long tails with

𝛽 > 6; 
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Fig. 1. Alternative G.E.D. distributions for different values of the shape param- 

eter p . 

w  

r  

a  

u

 

o  

s  

c  

h  

l  

t  

t  

s

 

o  

m  

t

 

p  

d

𝑓

W

i  

F  

v  

a

𝑚

w

𝜈

 

t  

fl  

𝜆  

d  

t  

b  

o  

𝜆  

i

m  

G

(b) With p = 1, we have the first Laplace’s law or double exponential

distribution: 

𝑓 1 ( 𝑥 ) = 

(
2 𝜎1 

)−1 exp (− 

||𝑥 − 𝜇1 ||∕ 𝜎1 )
here 𝜎1 is the simple average deviation ed 𝜇1 is the median. It is also

uspidate with long tails and 𝛽2 = 6 ; 

a) With 1 < p < 2 leptokurtic distributions are obtained (with shapes

that have increasingly higher values in the tails as p varies from 2 to

1). These curves have a curvature around the maximum, long tails

and 3 < 𝛽2 < 6; 

b) With p = 2 we get the second Laplace law or normal Gaussian distri-

bution: 

𝑓 2 ( 𝑥 ) = 

(√
2 𝜋𝜎2 

)−1 
exp 

(
− 

||𝑥 − 𝜇2 ||2 ∕2 𝜎2 2 )
where 𝜎2 2 is the variance and 𝜇2 is the arithmetic mean). It is mesokurtic

ith 𝛽2 = 3 ; 

a) With p > 2 we obtain distributions with values thickened around the

central one. These curves are platikurtic with short tails and kurtosis

and 𝛽2 < 3; 

b) Finally, with p →∞we have the rectangular or uniform distribution:

𝑓 3 ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 
𝑏 − 𝑎 

𝑎 ≤ 𝑥 ≤ 𝑏 

0 othe rwise 

It has no tails, parameters a and b are equal to 𝑎 = 𝜇 − 𝜎𝑝 ; 𝑏 = 𝜇 +
𝑝 where 𝜇 is the location parameter and 𝜎p the enhanced deviation of

rder p and 𝛽2 → 1.8. 

Ultimately, as the parameter p varies continuously from 0 to ∞,

7) assumes different characteristic shapes that vary from a degenerate

orm at the value p = 0, to a rectangular distribution when p tends to

nfinity. The dispersion parameter 𝜎p is also of considerable importance.

In fact, each errors distribution obtained in correspondence with a

ertain value of p can take different forms that are variable from the

egenerate case of a single ordinate for 𝜎p = 0 to a uniform diffuse

istribution for 𝜎p → ∞. 

Furthermore, it is possible to obtain from (7) also the family of the

tandardized Generalized Error Distributions by placing 𝑧 = ( 𝑥 − 𝜇𝑝 )∕ 𝜎𝑝 ,
hich is given by: 

 𝑝 = 

(
2 𝑝 

√
𝑝 Γ( 1 + 1∕ 𝑝 ) 

)−1 exp (− |𝑧 |𝑝 ∕ 𝑝 ) (8) 

Using the Nadarajah [34] notation, we obtain the probability den-

ity function for the Generalized Error Distribution that is characterized

y three main parameters to be estimated [31] called location parame-

er ( 𝜇p ), scale parameter ( 𝜎p ) and shape parameter ( p ), which changing

llows us to consider infinite type of symmetrical distributions ( Fig. 1 ).

herefore, the probability density function (pdf) is the following: 

 

(
𝑥 |𝜇𝑝 , 𝜎𝑝 , 𝑝 ) = 

𝑝 

2 𝜎𝑝 
Γ
( 

1 
𝑝 

) −1 
exp 

{ 

− 

|||||
𝑥 − 𝜇𝑝 

𝜎𝑝 

|||||
𝑝 
} 

(9)

here 𝜇𝑝 ∈ ( −∞, +∞) , 𝜎p is positive therefore 𝜎𝑝 ∈ ( 0 , +∞) and also p ,
hich is a measure of fatness of tails is 𝑝 ∈ ( 0 , +∞) and x ∈ R. [44] . 

To integrate to one, the pdf needs to be specified as: 

 ( 𝑦 |𝑚, 𝜃, 𝑝 ) = 

𝑝 

2 𝜃
Γ
( 

1 
𝑝 

) −1 
𝑒𝑥𝑝 

( 

− 

||||𝑦 − 𝑚 

𝜃

||||𝑝 
) 

(10)

Note that x, 𝜇p and 𝜎p are respectively replaced by y, m , and 𝜃, simply

ecause 𝜇p and 𝜎p are typically used to label the location parameter and

he scale parameter of a random variable and x the explanatory variables

n regression models. For the symmetric case, the mode m is the same

s the mean. This is, however, not the case for the asymmetric G.E.D.

df 

Theodossiou [40] , Savva & Theodossiou [37] considered the follow-

ng asymmetric pdf 

 ( 𝑦 |𝑚, 𝜃, 𝜆, 𝑝 ) = 

𝑝 

2 𝜃
1− 1 

𝑝 Γ
( 1 
𝑘 

)−1 
𝑒𝑥𝑝 

( 

− 

1 
𝑝 

|||| 𝑦 − 𝑚 

( 1 + 𝑠𝑖𝑔𝑛 ( 𝑥 − 𝑚 ) 𝜆) 𝜃
||||𝑝 
) 

(11a)
here m is the mode of the random variable y, 𝜃 is a scaling constant

elated to the standard deviation of y , 𝜆 is a skewness parameter, k is

 kurtosis parameter, sign is the sign function taking the value of -1 for

 < 0 and 1 for u > 0. 

The generalization (10) allows us to modify the classical hypothesis

f residual distribution’s normality usually employed in linear regres-

ion: if, for the classical hypothesis, the maximum likelihood estimators

oincide with the least squares estimators, even for this more general

ypothesis it is possible to identify a relationship between maximum

ikelihood estimators and the so-called L p -norm estimators [43] . In par-

icular this is true for values of p ≠ 2, while assuming p = 2 we obtain

he Gaussian distribution, so the L p -norm estimators are equal to least

quares estimators (L 2 ) [5] . 

Therefore, this generalization can be aimed to obtain good estimates

f the location and scale parameters also from a sample whose measure-

ents are affected by accidental errors, or it can be used to determine

he most appropriate type of distribution to describe the data [14] . 

The last parameterization we propose in this paragraph concerns the

robability density function for non-centered Skewed G.E.D. and can be

efined as follows [40] : 

 

(
𝑧 |𝜇𝑝 ; 𝜎𝑝 ; 𝜆𝑝 ; 𝑝 ) = 

𝑝𝑒𝑥𝑝 

( 

− 

1 
𝑝 

|||| 𝑧 − 𝜇𝑝 + 𝑚 
𝜈𝜎𝑝 

(
1+ 𝜆𝑝 𝑠𝑖𝑔𝑛 

(
𝑧 − 𝜇𝑝 + 𝑚 

)) ||||𝑝 
) 

2 𝜈𝜎𝑝 Γ
(
1 
𝑝 

) (11b) 

here z ∈ R, 𝜇p is the location parameter, 𝜎p is the scale parameter, 𝜆p 

s the skewness parameter, p is the shape parameter, while Γ is as in (1) .

unction sign is the sign function which assumes value of -1 for negative

alues of its argument and 1 for positive ones. Moreover, m is defined

s follow: 

 = 

2 
2 
𝑝 𝜈𝜎𝑝 𝜆𝑝 Γ

(
1 
2 + 

1 
𝑝 

)
√
𝜋

, 

hile 𝜈: 

= 

𝜋
(
1 + 3 𝜆2 𝑝 

)
Γ
(
3 
𝑝 

)
− 16 

1 
𝑝 𝜆2 𝑝 Γ

(
1 
2 + 

1 
𝑝 

)
Γ
(
1 
𝑝 

)
𝜋Γ

(
1 
𝑝 

) . 

The shape parameter p controls the tails and the peak of the distribu-

ion; a small value of p means that the tails of the distribution become

at, with the center becoming largely peaked. The skewness parameter

p ranges between [ − 1, 1]; in the case of negative skewness ( 𝜆p < 0) the

ensity function is skewed to the left and vice versa for ( 𝜆p > 0). Also

he Skewed G.E.D. (S.G.E.D.) ( 11b ) is a very special case of other distri-

utions. For example, supposing 𝜆𝑝 = 0 (allowing p to change) we can
btain a wide family of non-skewed distributions. In particular, when

𝑝 = 0 we have the G.E.D.; 𝜆𝑝 = 0 and 𝑝 = 1 means Laplace distribution;

f 𝜆𝑝 = 0 and 𝑝 = 2 we have Gaussian distribution; 𝜆𝑝 = 0 and 𝑝 = ∞
eans the Uniform distribution and 𝜆𝑝 = 2 and 𝑝 = 2 is the skewed
aussian. 
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However empirical evidence suggests the use of the univariate and

ultivariate Skewed G.E.D. in the context of financial market data espe-

ially to debate on volatility forecasting under non-normality hypothesis

or asset returns. In particular the S.G.E.D. represents a suitable choice

o model the empirical distribution of log-returns of financial asset for

olatility prediction purposes [ 4 , 8 , 11 ]. 

. L p -norm estimators and G.E.D. moments derivation 

This study deals with the construction of an adaptive estimation pro-

edure for linear and non-linear regression models. In this context, the

p-norm estimation methods are investigated for different values of p

ver a range of error distribution with varying kurtosis. 

Considering the problem of regressing Y on X we assume a sample

f n observed data ( x i , y i ) where y i is the dependent variable and x i the

ector of k independent nonrandom predictors. 

The general regression model is: 

 𝑖 = 𝑔 ( 𝑥 𝑖 , 𝜃) + 𝜀 𝑖 

here g is a derivable function, 𝜃 = ( 𝜃0 , 𝜃1 , … ., 𝜃𝑘 ) is the unknown real
arameter vector to be estimated, and ɛ i are the random, independent

nd identically errors distributed according to a G.E.D., with location

arameter 𝜇𝑝 = 0 and 𝜎p constant scale parameter. A common choice

n order to obtain the L p -norm estimators of the unknown parameter

ector 𝜃 is to minimize the p- th power of the absolute deviations of the

bserved points from the regression function: 

 ( 𝜃) = 

𝑛 ∑
𝑖 =1 

[
𝑦 𝑖 − 𝑔 

(
𝑥 𝑖 , 𝜃

)]𝑝 
, with 𝑝 ≥ 1 

Under the regular assumptions, the log-likelihood related to the sam-

le is given by: 

 

(
𝜃, 𝜎𝑝 , 𝑝 

)
= − 𝑛𝑙𝑜𝑔 

[
2 𝑝 

1 ∕ 𝑝 𝜎𝑝 Γ( 1 + 1∕ 𝑝 ) 
]

− 

[(
𝑝 𝜎𝑝 

)1 ∕ 𝑝 𝑛 ∑
𝑖 =1 

|𝑦 𝑖 − 𝑔 
(
𝑥 𝑖 , 𝜃

)|𝑝 ]
where we consider z = y i and 𝜇𝑝 = 𝑔 ( x i , 𝜃). When p is known it is easy

o calculate the first partial derivatives with respect to 𝜃 to get the fol-

owing system composed by n nonlinear equations and k + 1 variables: 

𝜕𝐿 

𝜕 𝜃𝑖 
= 

𝑛 ∑
𝑖 =1 

|𝑦 𝑖 − 𝑔 
(
𝑥 𝑖 , 𝜃

) |𝑝 −1 𝑠𝑖𝑔𝑛 (𝑦 𝑖 − 𝑔 
(
𝑥 𝑖 , 𝜃

)) 𝜕𝑔 

𝜕 𝜃𝑖 
= 0 

System solutions provide the maximum likelihood estimators for the

egression parameter. The same equation are obtained by minimizing

he sum of the p -th power of the absolute deviations of the observed

oints from the regression function, by applying the L p -norm estimators: 

𝑛 

𝑖 =1 
|𝑦 𝑖 − 𝑔 

(
𝑥 𝑖 , 𝜃

) |𝑝 = min , with 𝑝 ≥ 1 

hen the order p is specified, all the terms in the log-likelihood function,

xcept for the last part containing the vector 𝜃, are constants. 

This result shows that the optimal exponent p is equal to the shape

arameter of a G.E.D. assumed as underlying error distribution and it is

ery useful in connecting the L p -norm estimators to the G.E.D. Therefore,

aximum likelihood estimators are equivalent to L p -norm estimators,

ither for the value of p = 2 or for any other value p ≠ 2 [18] . 

However, if p is unknown, there are two important issues to solve: the

stimation of a suitable exponent p based on the sample data [ 33 , 35 , 38 ]

nd the choice of the minimization algorithm to obtain the regression

arameter estimation [31] . 

The moment’s derivation which appears in the continuation of this

aragraph [13] is very useful to underline their relations with the other

.E.D. parameters. 

Assuming to consider a random variable X which follows a G.E.D.

ith the probability density function specified above and with shape
arameter p > 0, it is possible to affirm [41] that the Moment Generation

unction (m.g.f.) for a G.E.D. is given by: 

 ( 𝑡 ) = 𝑐 1 

∞

∫
−∞

𝑒 tx 𝑒 − 𝑐 2 |𝑥 |𝑝 dx , − ∞ < 𝑡 < +∞

here: 

 1 = 𝑝 

[ 
𝜗 2 1+ 

1 
𝑝 Γ( 1∕𝑝 ) 

] −1 
and 𝑐 2 = ( 2 𝜗 𝑝 ) −1 

Moreover, in order to simplify the notation, we considered the

alue: 

 = 2 −2∕ 𝑝 
⎡ ⎢ ⎢ ⎢ ⎣ 
Γ
(
1 
𝑝 

)
Γ
(
3 
𝑝 

)⎤ ⎥ ⎥ ⎥ ⎦ 
1 
2 

It is existing for any t when p > 1 and fail to exist when 0 < p < 1.

hen 𝑝 = 1 , the m.g.f. exists for the interval ( − 

√
2 , 

√
2 ) . 

Now, supposing to have a random variable X which follows a G.E.D.

ith shape parameter p > 1, we consider the related standardized vari-

ble 𝑍 = 

𝑋− 𝜇𝑝 
𝜎𝑝 

. 

So, if the pdf of the G.E.D. is defined as before, the standardized

ariable shows the following pdf, already obtained in another way in

8) : 

 𝑝 ( 𝑧 ) = 

𝑝 

2Γ
(
1 ∕ 𝑝 

) exp 
{
− |𝑧 |𝑝 }

From this relationship we can easily define the k -th moment of Z

iven by: 

 

(
𝑍 

𝑘 
)
= 

1 + ( −1 ) 𝑘 

2Γ
(
1 ∕ 𝑝 

) Γ
( 

𝑘 + 1 
𝑝 

) 

Therefore, the n -th moment of the variable X can be obtained as

ollows: 

 ( 𝑋 

𝑛 ) = 𝐸 

[(
𝜇𝑝 − 𝜎𝑝 𝑍 

)𝑛 ] = 

 

𝑛 ∑
𝑘 =0 

( 

𝑛 

𝑘 

) 

𝜇𝑛 − 𝑘 𝑝 𝜎𝑘 𝑝 𝐸 

[
𝑍 

𝑘 
]
= 

 

𝜇𝑛 𝑝 
∑𝑛 
𝑘 =0 

( 

𝑛 

𝑘 

) (
𝜎𝑝 ∕ 𝜇𝑝 

)𝑘 {
1 + ( −1 ) 𝑘 

}
Γ
(
𝑘 +1 
𝑝 

)
2Γ

(
1 ∕ 𝑝 

)
While the first four moments of the variable X can be determined

s: 

 [ 𝑋 ] = 𝜇𝑝 

 

[
𝑋 

2 ] = 𝜇2 𝑝 + 

𝜎2 𝑝 Γ
(
3 
𝑝 

)
Γ
(
1 
𝑝 

)

 

[
𝑋 

3 ] = 𝜇3 𝑝 + 

3 𝜇𝑝 𝜎2 𝑝 Γ
(
3 
𝑝 

)
Γ
(
1 
𝑝 

)
nd: 

 

[
𝑋 

4 ] = 𝜇4 𝑝 + 

6 𝜇2 𝑝 𝜎
2 
𝑝 Γ

(
3 
𝑝 

)
Γ
(
1 
𝑝 

) + 

𝜎4 𝑝 Γ
(
5 
𝑝 

)
Γ
(
1 
𝑝 

)
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Table 1 

Values of 𝛽2 and I for different theoretical values of p . 

p 𝛽2 I p 𝛽2 I p 𝛽2 I 

0.5 25.2000 0.5477 3.7 2.2406 0.8377 6.9 1.9546 0.8558 

0.8 8.5651 0.6639 4.0 2.1884 0.8409 7.2 1.9440 0.8565 

1.0 6.0000 0.7071 4.2 2.1558 0.8427 7.4 1.9376 0.8569 

1.2 4.7434 0.7369 4.4 2.1327 0.8443 7.6 1.9316 0.8573 

1.4 4.0178 0.7589 4.6 2.1009 0.8458 7.8 1.9260 0.8577 

1.6 3.5537 0.7753 4.8 2.0887 0.8471 8.0 1.9208 0.8581 

1.8 3.2323 0.7877 5.0 2.0701 0.8483 8.2 1.9159 0.8584 

2.0 3.0000 0.7978 5.2 2.0454 0.8499 8.4 1.9113 0.8587 

2.2 2.8247 0.8060 5.4 2.0309 0.8508 8.6 1.9069 0.8590 

2.4 2.6884 0.8128 5.6 2.0177 0.8517 8.8 1.9028 0.8593 

2.6 2.5797 0.8184 5.8 2.0056 0.8525 9.0 1.8990 0.8595 

2.8 2.4914 0.8232 6.0 1.9945 0.8532 9.2 1.8953 0.8597 

3.0 2.4184 0.8273 6.2 1.9844 0.8539 9.4 1.8936 0.8599 

3.2 2.3571 0.8308 6.4 1.9750 0.8545 9.6 1.8903 0.8601 

3.4 2.3082 0.8339 6.6 1.9664 0.8550 9.8 1.8871 0.8603 

3.6 2.2606 0.8365 6.8 1.9584 0.8556 10.0 1.8841 0.8605 

𝐸

𝐸

=

=

 

a

𝐸

𝐸

𝐸
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p  
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p
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𝑝

𝑝

Now, starting from the following relationship: 

 

[(
𝑋 − 𝜇𝑝 

)𝑛 ] = 𝜎𝑛 𝑝 
{
1 + ( −1 ) 𝑘 

}
∞∫
𝜇𝑝 

( 

𝑋 − 𝜇𝑝 

𝜎𝑝 

) 𝑛 pexp 
{ 

− 

( 

𝑋− 𝜇𝑝 
𝜎𝑝 

) 𝑝 } 

2 𝜎𝑝 Γ
(
1 ∕ 𝑝 

) 𝑑𝑥 (12) 

The n -th central moment can be derived as follows: 

 

[(
𝑋 − 𝜇𝑝 

)𝑛 ] = 

𝑝𝜎𝑛 𝑝 
{
1 + ( −1 ) 𝑘 

}
2Γ

(
1 ∕ 𝑝 

) ∞∫
0 
𝑧 𝑛 exp ( − 𝑧 𝑝 ) 𝑑𝑧 = 

 

𝜎𝑛 𝑝 
{
1 + ( −1 ) 𝑘 

}
2Γ

(
1 ∕ 𝑝 

) ∞∫
0 
𝑦 ( 𝑛 +1 ) ∕ ( 𝑝 −1 ) exp ( − 𝑦 ) 𝑑𝑦 = 

 

𝜎𝑛 𝑝 
{
1 + ( −1 ) 𝑘 

}
2Γ

(
1 ∕ 𝑝 

) Γ
(
𝑛 + 1 ∕ 𝑝 

)
So, from the (12) we can obtain the first four central moments that

re: 

 

[(
𝑋 − 𝜇𝑝 

)]
= 0 

 

[(
𝑋 − 𝜇𝑝 

)2 ] = 

𝜎2 𝑝 Γ
(
3 
𝑝 

)
Γ
(
1 
𝑝 

)
 

[(
𝑋 − 𝜇𝑝 

)3 ] = 0 

 

[(
𝑋 − 𝜇𝑝 

)4 ] = 

𝜎4 𝑝 Γ
(
5 
𝑝 

)
Γ
(
1 
𝑝 

)
The kurtosis itself plays a fundamental role in the combined esti-

ation method we are presenting in the next section. In particular, the

rst four central moments have very nice properties from an algebraic

oint of view ( [25] and [26] ) and the kurtosis has important statistical

pplications especially, but not limited to financial data [23] . 

However, for the G.E.D. the skewness is zero because this distribu-

ion is symmetric (for the derivation for the asymmetric case see the

kewed G.E.D. defined in the previous paragraph) and the kurtosis that

e call 𝛽k is referred to k -th order. As we said before the so-called “Gen-

ralized Kurtosis ” can be defined as in (4) . 

Indeed, replacing p = 2 in (4) we obtain the Pearson kurtosis index

hat we call 𝛽2 [2] , already defined in (5) . In the end, for k = 1 in (4) ,

onsidering the square-root of the 𝛽k reciprocal, we obtain the Geary

ndex (6) , which measure the length of the tails. 
. The combined method based on the kurtosis indexes: Lp med 

Mineo [30] proposed an algorithm to estimate the shape parameter

ased on the errors distribution. This procedure is implemented by start-

ng from a particular kurtosis index, called Generalized Kurtosis, whose

ormula is defined as (4) . 

However, some algorithms proposed in literature do not take into

ccount all the properties of the p parameter conditioning the estimates

f the shape parameter only to the kurtosis index 𝛽2 as in (5) . For ex-

mple Sposito et al. [38] suggested the following relation to estimate

 : 

 sp = 

6 
𝛽2 2 

, for 1 ≤ 𝑝 < 2 

We observe that the tails’ distribution should also be taken into con-

ideration as determinant factor for the shape parameter estimation, so

e propose to consider the Geary index I , defined as (6) . 

For this reason we suggest to combine the Eqs. (5 ) and ( 6 ) jointly for

he p estimation even if their behaviour differs according to the values

ssumed by p ( Table 1 ). 

The idea of combining estimators from two kurtosis indexes comes

rom the fact that the former (6) better approximates the value of the

heoretical p for samples with many observations on the distribution

ails, while the latter (5) is more suitable for the p estimation in samples

ith many values located around their centrality parameter. 

In particular, these indexes essentially show two different aspects of

he same phenomenon and for this reason, their common use is strongly

ndicated in order to get a combined estimator resuming both charac-

eristics highlighted, because considering only the 𝛽2 index to estimate

 could be too restrictive, and the same we could say for the Geary

ndex I . 

In general, therefore for p → ∞, the Geary index reaches the value

f 0.866 while 𝛽2 goes to 1.8. 

For p → 0 we have that I → 0 and 𝛽2 → ∞. Finally the definition

ange is as follows, I 𝜖 [0; 0.866] and 𝛽2 𝜖 [1.8, + ∞]. In order to prove

t, remembering that as soon as p → ∞, the G.E.D. p.d.f. converges to

he uniform distribution, we can write: 

lim 

 →∞
1 
𝑝 
Γ
( 

1 
𝑝 

) 

= lim 

𝑝 →∞
Γ
( 

1 + 

1 
𝑝 

) 

= Γ( 1 ) = 1 

lim 

 →∞
𝑒 
− 
|||| 𝑥 − 𝜇𝑝 𝜎𝑝 

||||𝑝 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 𝑓𝑜𝑟 
|||| 𝑥 − 𝜇𝑝 𝜎𝑝 

|||| > 1 
1 𝑓𝑜𝑟 

|||| 𝑥 − 𝜇𝑝 𝜎𝑝 

|||| ≤ 1 
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Fig. 2. Indexes I and 𝛽2 for different values of shape parameter 

p . 
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nd: 

lim 

 →∞
𝑓 ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 𝑓𝑜𝑟 
|||| 𝑥 − 𝜇𝑝 𝜎𝑝 

|||| > 1 
1 

2 𝜎𝑝 
𝑓𝑜𝑟 

|||| 𝑥 − 𝜇𝑝 𝜎𝑝 

|||| ≤ 1 

Since the k -th absolute moment is: 

 [ |||𝑥 − 𝜇𝑝 
|||] 𝑘 = 

1 
( 𝑘 + 1 ) 

𝜎𝑝 ∶ 

 

[|||𝑥 − 𝜇𝑝 
|||] = 

1 
2 
𝜎𝑝 

 [ |||𝑥 − 𝜇𝑝 
|||] 2 = 

1 
3 
𝜎2 𝑝 

Hence: 

 = 

𝐸 

[|||𝑥 − 𝜇𝑝 
|||]

𝜎𝑝 
= 

√
3 
2 

= 0 . 866 

2 = 

𝐸 [ |||𝑥 − 𝜇𝑝 
|||] 4 

𝜎4 𝑝 
= 

9 
5 
= 1 . 8 

We can also note that the Geary index is less sensitive to changes in p

n comparison to the Pearson index. For example, for p increasing from

 to 6, it is possible to read from Table 1 that while 𝛽2 decreases from

.00 to 1.99459, the I index increases only from 0.79788 to 0.85324. 

In particular, the behaviour of 𝛽2 and I is opposite respect to the

ariation of p : if, in fact, with increasing p the Pearson kurtosis index

ecreases, the Geary index I increases, ( Fig. 2 ). 

This difference in sensitivity (and therefore also the greater “stabil-

ty ” of the index I ) can largely be interpreted through the estimators of

oth indexes. Indeed, we have that: 

2̂ = 

𝑛 
∑
𝑖 ( 𝜀 𝑖 − 𝜀̄ ) 4 [ ∑

𝑖 ( 𝜀 𝑖 − 𝜀̄ ) 2 
]2 

 ̂= 

∑
𝑖 
||𝜀 𝑖 − 𝜀̄ ||√

𝑛 
√ ∑

𝑖 |𝜀 𝑖 − 𝜀̄ |2 
We can note that the estimator 𝛽2 , due to the presence of the fourth

oment is more influenced by the fluctuations of the extreme values on

he tails, whereas the estimator 𝐼 is more strongly affected by the errors

n the values around the mean. 

One of the problems in using these estimators is that both the sam-

le values of 𝛽2 and I are unbiased for small samples. In order to avoid

hese problems, we employed some changes by considering some cor-

ection factors. Gonin and Money [19] introduced a correction factor
hat depends on the sample size n . Obviously, this correction becomes

ess relevant increasing the sample size n . Calculating the estimators,

t is immediate to identify Pearson’s Kurtosis as a ratio of the previous

stimators: 

2̂ = 

𝜇4 

𝜇2 
2 (13)

here: 

2̂ 
2 = 

1 
𝑛 − 1 

𝑛 ∑
𝑖 =1 

( 𝜀 𝑖 − 𝜀̄ ) 2 

4̂ = 

(
𝑛 2 − 2 𝑛 + 3 

)
( 𝑛 − 1 ) ( 𝑛 − 2 ) ( 𝑛 − 3 ) 

𝑛 ∑
𝑖 =1 

( 𝜀 𝑖 − 𝜀̄ ) 4 − 

3 ( 𝑛 − 1 ) ( 2 𝑛 − 3 ) 
𝑛 ( 𝑛 − 2 ) ( 𝑛 − 3 ) 

𝜇2 
2 

Where ɛ i is the i -th residual of the estimated model and 𝜀̄ is the av-

rage of them. For Geary’s index we decided to modify the estimator by

dding a correction factor for the second moment, leaving the absolute

rst moment unchanged [22] . 

Therefore, the estimator of I becomes: 

 ̂= 

∑
𝑖 
||𝜀 𝑖 − 𝜀̄ ||√ ∑
𝑖 |𝜀 𝑖 − 𝜀̄ |2 

√
𝑛 − 1 
𝑛 

(14)

An useful algorithm that jointly uses both analyzed kurtosis indexes

or the shape parameter estimation can be introduced after considering

he following simple exponential regression model [29] : 

 𝑖 = 𝜃2 ⋅ 𝑒 
𝜃1 𝑥 𝑖 + 𝜀 𝑖 (15)

We apply the maximum likelihood method (since, in the hypothe-

is of p -known, it provides the Lp -norm estimators for the considered

xponential regression model) and, in this scenario, we calculate the

og-likelihood function: 

𝐿 

(
𝜃1 , 𝜃2 , 𝜎𝑝 , 𝑝 

)
= 

= − nlog 
[
2 𝑝 1∕𝑝 𝜎𝑝 Γ( 1 + 1∕ 𝑝 ) 

]
− 

[ (
𝑝𝜎𝑝 𝑝 

)−1 ∑|𝑦 𝑖 − 𝜃2 𝑒 
𝜃1 𝑥 𝑖 |𝑝 ]

Assuming that initially the value of p is known, the partial deriva-

ives of the log-likelihood function can be calculated respect to 𝜃1 , 𝜃2 , 𝜎p 

etting these derivatives equal to zero in order to solve the minimum

roblem. Indeed, we obtain in that context the following first order con-

itions: 

𝜕𝐿 

𝜕 𝜃1 
= 

∑|||𝑦 𝑖 − 𝜃2 𝑒 
𝜃1 𝑥 𝑖 |||𝑝 −1 (𝜃2 𝑥 𝑖 𝑒 𝜃1 𝑥 𝑖 ) 𝑠𝑖𝑔𝑛 (𝑦 𝑖 − 𝜃2 𝑒 

𝜃1 𝑥 𝑖 
)
= 0 

𝜕𝐿 

𝜕 𝜃2 
= 

∑|||𝑦 𝑖 − 𝜃2 𝑒 
𝜃1 𝑥 𝑖 |||𝑝 −1 (𝑒 𝜃1 𝑥 𝑖 ) 𝑠𝑖𝑔𝑛 (𝑦 𝑖 − 𝜃2 𝑒 

𝜃1 𝑥 𝑖 
)
= 0 

𝜕𝐿 

𝜕 𝜎𝑝 
= 

( 

𝑛 

𝑝 

) 

− 

( 

1 
𝜎
𝑝 +1 
𝑝 

) (∑|||𝑦 𝑖 − 𝜃2 𝑒 
𝜃1 𝑥 𝑖 |||𝑝 ) = 0 
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Solving the partial derivative of the log-likelihood with respect to

p , we obtain S p estimator of 𝜎p : 

 𝑝 = 

[ ∑||𝑦 𝑖 − 𝜃2 𝑒 
𝜃1 𝑥 𝑖 ||𝑝 

𝑛 

] 

1 
𝑝 

On the other hand, if we assume that the value of p is unknown, we

ave to use an algorithm to compute its value. Considering the literature

n this topic, we have selected two methods: the Agrò method ( Lp + ) and

he Money et al method ( Lp gm 

) and in the follow we report the equations

sed by the cited authors to get their p estimators. 

The maximum likelihood equation to estimate p , proposed by Agrò

1] considered in the simulation study appearing in the next paragraph

nd indicated with 𝑝 + is shown below: 

𝜕𝐿 

𝜕 𝑝 + 
= 

(
𝑛 ∕ 𝑝 2 

)[
log ( 𝑝 ) − 1 + 𝑧𝑑 ( 1 + 1∕ 𝑝 ) 

]
+ 

(
1∕ 𝑝 2 𝜎𝑝 

𝑝 

)[∑|||𝑦 𝑖 − 𝜃2 𝑒 𝜃1 𝑥 𝑖 |||𝑝 
− 𝑝 

∑|||𝑦 𝑖 − 𝜃2 𝑒 𝜃1 𝑥 𝑖 |||𝑝 log |||𝑦 𝑖 − 𝜃2 𝑒 𝜃1 𝑥 𝑖 ||| + 𝑝 ∑|||𝑦 𝑖 − 𝜃2 𝑒 𝜃1 𝑥 𝑖 |||𝑝 log (𝜎𝑝 )] = 0 
(16) 

where zd(1 + 1/p) indicates the digamma function or the derivative log-

rithm of the Gamma function. 

However, as regards to the estimate of p, indicated with p gm 

, obtained

y Money et al. [33] on the basis of an extensive simulation study they

arried out, the following formula is given: 

 gm 

= 

9 
𝛽2 2 

+ 1 , for 1 ≤ 𝑝 < ∞ (17) 

Finally considering the empirical and theoretical values of the Geary

6) and the Pearson (5) indexes, we obtain the p med estimator proposed

n this paper. We combine the two following nonlinear Eqs. (18) and

19) that give us two preliminary estimates: 

 

(
𝑝 1 

)
− 𝐼 = 0 (18)

𝛽2 
(
𝑝 2 

)
− 𝛽2 = 0 (19)

 = λ𝑝 1 + ( 1 − λ) 𝑝 2 

Where the quantity I ( p 1 ) is defined as (6) and 𝐼 is defined as (14) .

oreover, the quantity 𝛽2 ( p 2 ) is defined as (5) and 𝛽2 is defined as (13) .

Firstly the values of p 1 and p 2 are estimated from the former and the

atter nonlinear equations. The last identity constitutes the final p med ,

ntended as the simple mean of p 1 and p 2 . So, we obtain: 

 𝑚𝑒𝑑 = 0 . 5 𝑝 1 + 0 . 5 𝑝 2 (20)

The weighting factor 𝜆 is set arbitrarily equal to 0.5 (so in our model

= 0.5) because the logic of the model is that the characteristics of both

urtosis indexes are considered of equal importance. Indeed, we sup-

ose that the characteristics of p 1 , deriving from Geary’s index (which

etter approximates the value of the theoretical p for samples with many

bservations on the distribution’s tails) and the characteristics of p 2 , de-

iving from Pearson’s kurtosis (more suitable for the estimation of p in

amples with many observations located around their central value.) are

imilarly important. 

However, in the absence of a priori information, 𝜆= 0.5 seems to be

he right decision, even if arbitrary, because it seems to be the more

ogical one. The proposed algorithm is based on a two steps alternating

rocedure that firstly estimates the 𝜃1 , 𝜃2 , 𝜎p parameters using the L p -

orm estimators and secondly estimates p with p med in the following

ay: 

tep 0 : We set initially 𝑖 = 0 and 𝑝 𝑜 = 2 ; 
tep 1 : We estimate the values of 𝜃1 , 𝜃2 , 𝜎p using the L p -norm estima-

tors, calling these estimates 𝜃1 i , 𝜃2 i , S pi ; 

tep 2 : We compute the residuals 𝜀 𝑖 = 𝑦 𝑖 − 𝜃2 𝑖 ⋅ 𝑒 
𝜃1 𝑖 𝑥 𝑖 , their average 𝜀̄

and insert these quantities in the nonlinear Eqs. (18) and (19) ; 

tep 3 : We compute p and p from the equations showed above. 
1 2 
tep 4 : We compute p med (20) as the average of p 1 and p 2 obtaining 𝑝 𝑖 +1 ,

new estimate of p ; 

tep 5 : We compare the last estimate of p obtained from the procedure

( 𝑝 𝑖 +1 ) with the previous p and if |𝑝 𝑖 +1 − 𝑝 𝑖 | > 0 , 01 we set 𝑖 = 𝑖 + 1
starting again from the step 1 until step 4; otherwise; 

tep 6 : We stop the algorithm assuming the values 𝜃1 i , 𝜃2 i , S pi as the L p -

norm estimates of the parameters 𝜃1 , 𝜃2 , 𝜎p and the value 𝑝 =
𝑝 𝑚𝑒𝑑 as combined estimation of the exponent p. 

. The simulation study and the results 

The performance of the above method was experimented by a Monte-

arlo simulation study to evaluate the unbiasedness and the asymptotic

ehaviour of the new estimation procedure for the exponential regres-

ion model (15) . 

Since the proposed method is of empirical nature because of the ab-

ence of prior information on the theoretical distribution of p 1 and p 2 , it

eems to show asymptotically very nice properties like asymptotic nor-

ality and a decreasing variance with increasing size n . 

Starting from the simple exponential regression model showed in

he previous section we have simulated 1000 samples of size n = 50,

00, 200 and 500 generated from a Generalized Error Distribution with

ix theoretical values (theoretical populations) of the shape parameter

 (1.2, 1.5, 2.0, 2.5, 3.0, 3.5) [9] . 

The n -pairs of values ( x i , ɛ i ) were generated to get the y i . The samples

 𝑖 = ( 𝑥 1 , 𝑥 2 , … ., 𝑥 𝑛 ) where generated from a uniform distribution (0.5,

.5). 

In the model (15) we fixed the parameters 𝜃′1 = 0 . 5 , 𝜃′2 = 1 and 𝜎𝑝 = 1
s theoretical values to be estimated with empirical frequency distribu-

ions. Obviously, we have indicated with 𝜃1 , 𝜃2 and S p the values of the

ample estimates. The constants calculated on the sample estimates (for

ll the values of n ) were mean and variance to evaluate their unbiased-

ess, different efficiency and asymptotic behaviour. The results of the

imulation study are in the Table 2 showed below: 

From the experimental results reported in Table 2 we can observe

hat, for any p , the parameter estimates of 𝜃′1 , 𝜃
′
2 and 𝜎p are biased for

 = 50 . Their variance decrease for increasing values of n . 

This is true for all the parameters and for all the theoretical values

f p and depends on the nonlinearity of the model that yields the unbi-

sedness of the estimates only for middle-large sample sizes (see n = 200

nd n = 500). 

As it is possible to note in Table 2 , p med shows a decreasing variance

hen the sample size increases too. Moreover, also its expected value is

loser to its theoretical value in increasing of the sample size n , showing

verall, as said before, interesting asymptotic properties. However, in

rder to show the better results of the proposed method, an efficiency

omparison is needed. 

Indeed, in the Tables 3 , 4 , 5 and 6 the Mean Square Error is calculated

or three different methods to estimate the exponent p : the first proposed

y Money et al. [33] ( Lp gm 

), the second ( Lp + ) proposed by Agrò [1] and

he last based on the combined algorithm we are proposing ( Lp med ). 

The Table 3 shows the results for small samples size n = 50. In this

ase the method proposed by Money et al. [33] performs better than

thers especially when the theoretical value of p is equal to 2 (i.e. in the

aussian normality situation). 

However, for small samples the combined method based on kurtosis

ndexes ( Lp med ) performs better than the one based on the maximum

ikelihood (16) for all the theoretical values of p we consider. Almost

he same results obtained for sample size equal to n = 100, are showed

n the Table 4 below. 

In this case in presence of an actual leptokurtic distribution (when

 < p < 2), the Lp med method allows us to obtain better results for this

amples size respect to both the other methods. 

The most important result is related to the asymptotic behaviour

f the p estimates in the cases n = 200 and n = 500 ( Table 5 and 6 ). The

ethods Lp + and Lp med seem to show a possible asymptotic convergence
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Table 2 

Results of simulation study with 1000 samples of size n = 50, 100, 200 and 500 generated from a G.E.D., with different 

supposed values of p ( Lp med method). 

p E [ 𝜃1 ] V [ 𝜃1 ] E [ 𝜃2 ] V [ 𝜃2 ] E [ S p ] V [ S p ] E [ p 1 ] V [ p 1 ] E [ p 2 ] V [ p 2 ] E [ p med ] V [ p med ] 

n = 50 

1.2 0.463 0.130 1.095 0.182 1.097 0.102 1.305 0.537 1.547 0.220 1.426 0.278 

1.5 0.477 0.126 1.082 0.168 1.031 0.913 1.627 0.366 1.904 0.581 1.765 0.473 

2.0 0.486 0.113 1.064 0.148 0.985 0.789 2.196 0.972 2.526 1.075 2.361 1.023 

2.5 0.479 0.093 1.073 0.127 0.978 0.069 2.664 1.507 3.195 1.901 2.929 1.704 

3.0 0.481 0.072 1.055 0.109 0.969 0.057 2.928 1.593 3.676 2.439 3.302 2.016 

3.5 0.519 0.069 1.046 0.098 0.976 0.050 3.734 1.635 4.197 2.785 3.965 2.058 

n = 100 

1.2 0.483 0.070 1.056 0.112 1.043 0.062 1.251 0.186 1.403 0.086 1.327 0.151 

1.5 0.479 0.066 1.049 0.101 1.017 0.058 1.561 0.242 1.697 0.187 1.629 0.274 

2.0 0.480 0.054 1.042 0.087 1.187 0.048 2.115 0.362 2.290 0.363 2.202 0.362 

2.5 0.479 0.487 1.036 0.098 0.959 0.041 2.539 0.586 2.771 0.556 2.655 0.771 

3.0 0.486 0.413 1.048 0.086 0.975 0.036 3.152 1.255 3.382 1.028 3.267 1.141 

3.5 0.485 0.038 1.044 0.068 0.942 0.031 3.457 1.739 3.979 1.401 3.718 1.570 

n = 200 

1.2 0.491 0.041 1.019 0.073 1.023 0.038 1.228 0.101 1.309 0.042 1.268 0.108 

1.5 0.492 0.036 1.015 0.066 1.018 0.028 1.525 0.148 1.594 0.074 1.559 0.161 

2.0 0.489 0.024 1.026 0.058 1.011 0.022 2.065 0.240 2.146 0.143 2.105 0.192 

2.5 0.510 0.021 0.994 0.049 0.969 0.018 2.563 0.402 2.646 0.296 2.604 0.349 

3.0 0.507 0.019 1.018 0.037 0.975 0.014 3.148 0.875 3.224 0.473 3.186 0.674 

3.5 0.509 0.017 1.022 0.032 0.964 0.010 3.571 1.434 3.684 0.668 3.627 1.051 

n = 500 

1.2 0.498 0.038 1.008 0.047 1.011 0.025 1.208 0.064 1.209 0.032 1.208 0.048 

1.5 0.496 0.033 0.997 0.034 1.008 0.021 1.485 0.046 1.514 0.059 1.499 0.059 

2.0 0.497 0.022 1.008 0.026 1.007 0.019 2.055 0.130 2.063 0.110 2.059 0.121 

2.5 0.503 0.019 0.098 0.022 0.998 0.013 2.473 0.302 2.555 0.166 2.514 0.219 

3.0 0.502 0.017 1.005 0.016 0.995 0.011 3.042 0.785 3.137 0.313 3.089 0.589 

3.5 0.501 0.016 1.013 0.012 0.993 0.008 3.501 1.304 3.651 0.496 3.576 0.846 

Table 3 

Expected value, variance and Mean Square Error of shape parameter p with sample size n = 50 
according to Money ( Lp gm ), Agrò ( Lp + 

) and combined ( Lp med ) methods. 

p 1.2 1.5 2.0 2.5 3.0 3.5 

n = 50 

E [ p gm ] 1.5467 1.8388 2.1884 2.7145 2.7593 2.9266 

V [ p gm ] 0.2103 0.3762 0.7445 0.8135 1.0966 1.3845 

MSE [ p gm ] 0.3346 0.4688 1.2265 1.3589 1.5503 1.9547 

𝐸[ 𝑝 + ] 1.6816 1.9458 2.4819 2.9446 3.4478 3.9522 

𝑉 [ 𝑝 + ] 0.3477 0.4248 1.4501 1.8854 1.9669 2.3443 

𝑀𝑆𝐸[ 𝑝 + ] 0.5776 0.6439 1.9882 2.0255 2.1354 2.4453 

E [ p med ] 1.4268 1.7946 2.2692 2.7372 3.1987 3.8669 

V [ p med ] 0.1843 0.3488 0.8103 1.0235 1.0437 1.5687 

MSE [ p med ] 0.2295 0.4166 1.3245 1.3859 1.4366 1.6335 

Table 4 

Expected value, variance and Mean Square Error of shape parameter p with sample size n = 100 
according to Money ( Lp gm ), Agrò ( Lp + 

) and combined ( Lp med ) methods. 

p 1.2 1.5 2.0 2.5 3.0 3.5 

n = 100 

E [ p gm ] 1.4366 1.7728 2.0948 2.3342 2.4766 2.8469 

V [ p gm ] 0.0708 0.1175 0.1464 0.2257 0.3584 0.5397 

MSE [ p gm ] 0.1301 0.1684 0.1845 0.2846 0.4706 0.7865 

𝐸[ 𝑝 + ] 1.3876 1.7345 2.2055 2.6165 3.1066 3.5951 

𝑉 [ 𝑝 + ] 0.0398 0.0891 0.2489 0.4561 0.6234 0.8789 

𝑀𝑆𝐸[ 𝑝 + ] 0.0865 0.1425 0.2768 0.4968 0.7582 0.9845 

E [ p med ] 1.3273 1.6292 2.1268 2.5889 3.1343 3.5736 

V [ p med ] 0.0579 0.1205 0.1942 0.3453 0.5708 0.8122 

MSE [ p med ] 0.0693 0.1369 0.2137 0.3912 0.7261 0.8906 

t  

b  

p

 

t

 

b  

d  

l  

s

o a Normal distribution, whilst the Lp gm 

method shows an increasing

iasedness even when the sample size increases (see the cases p = 3 and

 = 3.5). 

Looking at the simulation results it seems reasonable to distinguish

wo cases for n = 200 and n = 500 . 
When 1.2 ≤ p < 2 the Lp med algorithm here proposed give us the

est performance respect to the other methods. The case of p ≥ 2 is well

ealt using either Lp + or Lp med . In fact, as it is well known, the maximum

ikelihood method generally achieves the best results when the sample

ize is higher. 
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Table 5 

Expected value, variance and Mean Square Error of shape parameter p with sample size n = 200 
according to Money ( Lp gm ), Agrò ( Lp + 

) and combined ( Lp med ) methods. 

p 1.2 1.5 2.0 2.5 3.0 3.5 

n = 200 

E [ p gm ] 1.5078 1.6955 2.0472 2.3377 2.6108 2.9154 

V [ p gm ] 0.0248 0.0507 0.0775 0.1189 0.1814 0.2067 

MSE [ p gm ] 0.1141 0.1065 0.0910 0.1488 0.3478 0.7028 

𝐸[ 𝑝 + ] 1.2757 1.6304 2.0743 2.5277 2.9449 3.3867 

𝑉 [ 𝑝 + ] 0.0495 0.0276 0.0724 0.1344 0.3165 0.4552 

𝑀𝑆𝐸[ 𝑝 + ] 0.0948 0.0806 0.0954 0.1458 0.4421 0.5187 

E [ p med ] 1.2585 1.5694 2.0605 2.5689 3.0504 3.5338 

V [ p med ] 0.0382 0.0439 0.0759 0.1749 0.3987 0.5844 

MSE [ p med ] 0.0618 0.0683 0.0944 0.2168 0.4787 0.5643 

Table 6 

Expected value, variance and Mean Square Error of shape parameter p with sample size n = 500 
according to Money ( Lp gm ), Agrò ( Lp + 

) and combined ( Lp med ) methods. 

p 1.2 1.5 2.0 2.5 3.0 3.5 

n = 500 

E [ p gm ] 1.2406 1.5337 2.0103 2.5189 2.8933 3.1207 

V [ p gm ] 0.0156 0.0268 0.0169 0.0118 0.0467 0.0645 

MSE [ p gm ] 0.0239 0.0436 0.0278 0.0467 0.1656 0.2934 

𝐸[ 𝑝 + ] 1.2279 1.5209 2.0096 2.5109 2.9754 3.4856 

𝑉 [ 𝑝 + ] 0.0123 0.0234 0.0147 0.0145 0.1546 0.1578 

𝑀𝑆𝐸[ 𝑝 + ] 0.0202 0.0345 0.0229 0.0411 0.1821 0.2127 

E [ p med ] 1.2194 1.5148 2.0045 2.5236 3.0433 3.5298 

V [ p med ] 0.0086 0.0251 0.0142 0.0298 0.1758 0.1704 

MSE [ p med ] 0.0168 0.0303 0.0218 0.0767 0.2123 0.2678 
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. Application to Italian well-being data 

In order to show the application of the proposed method, we consider

ata from Italian National Statistical Institute (ISTAT) on Italian equi-

able and sustainable well-being. The awareness about the relevance

f sustainable and equitable well-being (in Italian "Benessere Equo e

ostenibile", BES) indicators in terms of economic and financial plan-

ing has reached its pick recently with the declaration by the Italian

overnment to monitor the progress of some BES indicators considered

elevant within the annual D.E.F. (Economics and Finance Document). 

In particular, the Government together with the Committee for BES

ndicators, have enforced the monitoring of 12 indicators included in

he dimensions of the BES [12] . 

Specifically, these are: 

1. Available average income adjusted per capita; 

2. Index of inequality of disposable income; 

3. Index of absolute poverty; 

4. Life expectancy in good health at birth; 

5. Excess weight; 

6. Early exit from the education and training system; 

7. Rate of non-participation in the work, with relative breakdown

by gender; 

8. Ratio between the employment rate of women aged 25-49 with

preschoolers and women without children; 

9. Predatory crime index; 

10. Index of efficiency of civil justice; 

11. CO 2 emissions and other altering climate gases; 

12. Index of illegal construction. 

However, for the transitional phase 4 indicators have been selected

rom the 12 mentioned. 

The selected indicators are: 

1. Available average income adjusted per capita; 

2. Index of inequality of disposable income; 

3. Rate of non-participation in the work, with relative breakdown by

gender; 
4. Emissions of CO 2 and other altering climate gases. 

In this section we want to study the impact of the 4 indicators in-

luded in the Italian DEF on the GDP growth rate of the Italian regions

nd on Italy as a country. In order to achieve this aim we run a pooled

inear regression on Italian BES data from 2013 up to 2018 ( Table 7 )

y using first the Ordinary Least Squares (O.L.S.) and, then, Lp-norm

stimators with two different methods. 

In particular, we estimate the shape parameter first considering the

p min algorithm [16] and then with the Lp med procedure introduced in

his paper based on (20) . Hence, we estimate the following linear re-

ression model: 

 i , t = β0 + β1 X 1i , t + β2 X 2i , t + β3 X 3i , t + β4 X 4i , t + ε i , t (21)

here Y i, t is the " GDP growth ", X 1 i, t is the " Net average available income ",

 2 i, t is the “Index of available income inequality ”, X 3 i, t 

s the " Work non participation rate " and X 4 i, t is the " In-

ex of overall environmental conditions ". 

Results are showed in the Table 8 below. 

In terms of statistical significance, for all the introduced specifica-

ions we obtain the same results: net average available income, work

on-participation rare and environmental condition affect regional GDP

hanges. Income inequality, instead, do not. Nevertheless, for evaluating

he regional well-being, income inequality is one of the most important

ndicators to take into account. This means, in other words, that moni-

oring this variable is still more important on the light of these results.

owever, from statistical point of view several differences across models

ould be highlighted. 

Firstly, the estimates of p are far from 2, indicating that OLS esti-

ation probably is not the best choice. Instead, according to Lp-norm

stimation with Lp min method the value of p is equal to 1.62, while for

he proposed Lp med even it is less than 2, namely 1.48. Standard error

ssociated to estimate regression parameters are then lowered for the

p-norm estimation with Lp med with respect to the other models. This

eans in a certain sense that estimates are more accurate with Lp-norm

nd, specifically, with Lp med . To provide further results, we compared

or all the three methods the p -th power of residuals ( Table 9 ). 
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Table 7 

Descriptive statistics of data. 

Variables Mean St. Dev. Min Max 

GDP growth rate -0.0041268 0.199193 -0.0709512 0.0880617 

Net average available income 17814.93 3492.195 11989.11 24623.2 

Index of available income inequality 5.1730043 1.257491 3.6 10 

Poverty risk 18.68783 9.94999 5.4 42.3 

Life expectancy 82.42957 0.6963531 80.4 83.8 

Overweight 44.65043 4.485403 35.7 53.4 

Early exit from the education system 14.32 4.368291 6.7 25.4 

Work non-participation rate 20.5887 10.72943 4.8 43 

Woman employment ratio 79.23913 6.677938 62.4 95.4 

Predatory crime index 96.48783 8.726257 76.8 113.2 

Justice efficiency index 421.4252 228.6827 102.3 974 

Index of overall environmental conditions 104.3165 7.259355 89.4 121.2 

Index of illegal constructions 21.72609 20.4907 1.3 71.1 

Table 8 

Estimates from different pooled regressions. 

Coefficients L 2 estimates Lp min estimates Lp med estimates 

𝛽0 -1.736e − 01 ∗ ∗ ∗ (5.139673e − 02 ) -1.928e − 01 ∗ ∗ ∗ (5.029461e − 02 ) -2.068e − 01 ∗ ∗ ∗ (4.95823e − 02 ) 

𝛽1 4.494e − 06 ∗ (1.804327e − 06 ) 6.836e − 06 ∗ (1.765637e − 06 ) 7.349e − 06 ∗ (1.724633e − 06 ) 

𝛽2 -3.296e − 03 (2.536642e − 03 ) -3.707e − 03 (2.482248e − 03 ) -4.148e − 03 (2.447298e − 03 ) 

𝛽3 1.830e − 03 ∗ ∗ (6.862519e − 04 ) 2.324e − 03 ∗ ∗ (6.715365e − 04 ) 2.583e-03 ∗ (6.587729e-04) 

𝛽4 6.596e − 04 ∗ (3.337399e − 04 ) 4.855e − 04 ∗ (3.265835e − 04 ) 4.041e − 04 ∗ (3.190983e − 04 ) 

p 2 1.62 1.48 

Note: ∗ is significant for 90%, ∗ ∗ for 95% and ∗ ∗ ∗ for 99%. Standard errors are reported in parentheses. 

Fig. 3. Q-Q Plot of pooled OLS residuals. 

Table 9 

Sum of p -th power residuals. 

Measure Pooled OLS estimates Lp min estimates Lp med estimates 

𝑁 ∑
𝑖 =1 
𝑒 
𝑝 
𝑖 0.04185381 0.04007809 0.03830237 
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Table 9 clearly shows the over-performance of the Lp med algorithm

espect to the alternatives. 

In conclusions, residuals Q-Q plots are showed for all the three meth-

ds ( Figs. 3 , 4 , 5 ). 

Hence empirically Lp med algorithm leads to more accurate estimates

han Lp min and Least Squares. 

. Final remarks 

The Generalized Error Distribution is a very flexible family of dis-

ributions, where, by changing the value of the shape parameter p , it is

ossible to obtain several symmetric distributions. 
The L p -norm estimators can be derived assuming that the residuals of

he regression model follow a G.E.D. and for p = 2 the L p -norm procedure

ives exactly the same estimators of the Least Squares, while for p ≠ 2 the

 p -norm estimators coincides with the maximum likelihood estimators

hen the p parameter is specified. 

However, usually the value of the shape parameter needs to be es-

imated and, as a result, we have introduced a method called Lp med 

hich seems to show some advantages compared to those used by pre-

ious literature [ 1 , 33 ] especially for medium-large samples and in pres-

nce of leptokurtic data, mainly because it considers more carefully the

ails of the distribution by the joint computation of two G.E.D. kurtosis

ndexes. 

This paper analyzes the computation of G.E.D. distribution moments

oo. Moreover, we also obtain, through the proposed algorithm, the es-

imated value of the regression parameters for a particular nonlinear

xponential model. 

Indeed, several papers [ 3 , 7 , 17 , 24 , 27 , 28 , 42 ] suggest the rejection

f the normality assumption in data analysis and some of them under-

ine the improvements achieved by using alternative and more flexible
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Fig. 4. Q-Q Plot of Lp min residuals. 

Fig. 5. Q-Q Plot Lp med residuals. 
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istributional assumptions as these we have studied and analyzed in this

aper. Very often, in order to minimize the p- th power considering the

p -norm estimation rule, we have to find the value of p according to

he distribution of the data contained in the sample. Among the most

ommon approaches, in this paper we have proposed the combined use

f two kurtosis indexes in order to obtain a robust p estimation as the

haracteristics of the samples change. 

Looking at the simulation results the Lp med findings show very good

symptotic properties for the parameters estimation and a very evalu-

ble performance in terms of mean squared error of the exponent p es-

ecially in the case of leptokurtic residual distributions. 

Finally a real data application about Italian Equitable and Sustain-

ble Well-being (Benessere Equo e Sostenibile, B.E.S.) confirms the good

erformance of the proposed estimation method. 

For all these reasons this method could be suggested for future re-

earch applied on both social sciences and financial theories. 
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