
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010 1977

Enhancing Counting Bloom Filters Through
Huffman-Coded Multilayer Structures

Domenico Ficara, Member, IEEE, Andrea Di Pietro, Student Member, IEEE,
Stefano Giordano, Senior Member, IEEE, Gregorio Procissi, Member, IEEE, and Fabio Vitucci, Member, IEEE

Abstract—Bloom Filters are efficient randomized data struc-
tures for membership queries on a set with a certain known false
positive probability. Counting Bloom Filters (CBFs) allow the
same operation on dynamic sets that can be updated via insertions
and deletions with larger memory requirements. This paper first
presents a simple tight upper bound for counters overflow prob-
ability in CBFs, which is adopted in the design of more efficient
CBFs. On the basis of such theoretical achievements, we introduce
the idea of a hierarchical structure as well as the use of Huffman
code to improve standard CBFs in terms of fast access and limited
memory consumption (up to 50% of memory saving). The target
could be the implementation of the compressed data structures in
the small (but fast) local memory or “on-chip SRAM” of devices
such as network processors. As an application of our algorithms,
an anti-evasion system is finally proposed.

Index Terms—Counting Bloom Filter (CBF), evasion, hashing,
Huffman coding, multilayer structure, network processor.

I. INTRODUCTION

N OWADAYS, streamed data processing is a basic problem
in many areas related to computer applications. In partic-

ular, detecting whether an item belongs to a set is one of the
most challenging tasks, especially when the amount of data to
be processed per unit of time is very large and rapidly changes.

A Bloom Filter (BF) is a simple data structure for informa-
tion representation and query processing. It is a randomized
method based on hash functions. Thus, it allows for false posi-
tives, but the space savings often outweigh this drawback. BFs
were introduced by Burton Bloom [1] in the 1970s for data-
base applications, but recently they have received great attention
also in the networking area [2] for collaborating in overlay and
peer-to-peer networks, packet routing, and measurements. BFs
are also proposed for many distributed networking protocols.
For example, in order to share Web cache, a proxy periodically
broadcasts BFs that represent the contents of their cache. In this
situation, BFs are not only data structures, but also messages

Manuscript received March 25, 2009; revised April 04, 2010; accepted May
28, 2010; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor M.
Kodialam. Date of publication August 03, 2010; date of current version De-
cember 17, 2010. This work was supported in part by the European Project
FP7-ICT PRISM under Contract 215350.

The authors are with Dipartimento di Ingegneria dell’Informazione, Univer-
sità di Pisa, 56122 Pisa, Italy (e-mail: domenico.ficara@iet.unipi.it; andrea.dipi-
etro@iet.unipi.it; stefano.giordano@iet.unipi.it; gregorio.procissi@iet.unipi.it;
fabio.vitucci@iet.unipi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2010.2055243

being transmitted in a network. Thus, several performance pa-
rameters have to be taken into account: the probability of false
positives, memory size, number of items to be managed, and
transmission size.

BFs do not address the issues of inserting and deleting items
in the set. For example, a set may change over time, with ele-
ments being inserted and deleted. Deletion cannot be done by
simply reversing the insertion operation because of the colli-
sions created by the hash functions. In order to allow these op-
erations, Counting Bloom Filters (CBFs) have been designed
[3]. They are based on the same idea as BFs, but they use fixed
size counters (also called bins) instead of single bits of presence.
When an item is inserted, the corresponding counters are incre-
mented; deletions can then be safely done by decrementing the
counters. CBFs present the problem of counters overflow, which
has to be considered in the design.

This paper adopts a simple upper bound for the CBF overflow
probability, which is functional to the design of new efficient
solutions.

The central idea of the paper is that, by leveraging on the
bound, a novel paradigm in CBF design can be adopted.
Such a paradigm involves compression—to improve CBFs
in terms of fast access and limited memory consumption (up
to 50% of memory saving in comparison with the standard
solutions)—and the introduction of layer hierarchy in the CBF
data structure.

The target could be to take advantage of the built-in memory
hierarchy of many systems (such as network processors, NPs)
to implement compressed data structures in the small but fast
local memory or "on-chip SRAM" of such devices. As an ex-
ample of the advantages of our compressed CBFs, we propose a
compact solution to the detection of evasion attacks to intrusion
prevention systems (IPSs).

In detail, the main contributions of this paper (which is an
extended version of the work in [4]) are the following:

• the use of Huffman code in CBF, which is optimal for in-
dependent symbols (such as the bins of a CBF);

• the idea of a hierarchical multilayer structure;
• the proposal of an efficient CBF for systems with limited

memory such as NPs and programmable routers;
• the adoption of these efficient structures in the solution of

a difficult task such as recognizing evasion attacks.
This paper is organized in two main parts. First, we describe

the proposed algorithms, and then we show a brief example of
their application, which is shown in more detail in [5].

The next section presents the most important works on CBFs.
In Section III, the theoretical results at the basis of our research

1063-6692/$26.00 © 2010 IEEE

1978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010

are shown, while Section IV introduces the idea of Huffman
compression coming from the theoretical achievements previ-
ously obtained. The data structure described here represents an
intermediate step forward to the central proposal of the paper,
which is presented in Section V, in terms of algorithms, proper-
ties, and simulation results.

A comparison among our algorithms and the algorithms de-
fined in literature is performed in Section VI, by adopting NP
Intel IXP2800 as a referential hardware platform. Finally, the
application of our structures to an anti-evasion system is pro-
posed in Section VII, and Section VIII gives the conclusions of
our work.

II. BACKGROUND ON BLOOM FILTERS

A Bloom Filter represents a set of elements from a uni-
verse by using an array of bits, denoted by ,
initially all set to 0. The filter uses independent hash func-
tions with -bits-long output that indepen-
dently map each element in the universe to a random number
uniformly distributed over the range. For each element in ,
the bits are set to 1, for (a bit can be set to
1 multiple times).

To answer a query of the form “Is y in S?”, we check whether
all are set to 1. If not, is not a member of , by
construction. If all are set to 1, it is assumed that is
in , hence a BF may yield a false positive. The probability of
a false positive can be tuned by choosing the proper values
for and . It is a well-known result [3] that the minimum
is obtained for . In this configuration, all bits

are set or cleared with probability
(thus, roughly, the same number of ones and zeros are present
in the BF).

Many works about BFs have been presented, and the major
improvements are compressed BFs [6], distance-sensitive BFs
[7], dynamic BFs [8], and space-code BFs [9].

As previously stated, BFs do not allow insertion and deletion
of an item in the set. Therefore, CBFs have been introduced,
which use fixed size bins instead of single bits of pres-
ence. When an item is inserted (or deleted), the corresponding
counters are incremented (or decremented).

However, CBFs present the problem of counters overflow,
which has to be considered in the design. Although for most net-
work applications 4-bits-long counters are sufficient [2], the dis-
tribution of counters load across bins changes dramatically (ac-
cording to Poisson arrivals [3]), suggesting that 4 bits per bin is a
safe choice, and that a certain amount of compression is achiev-
able. Moreover, by using a fixed number of bits, the problem of
counters overflow in CBFs is not completely solved. It results
in a lack of adaptiveness and inaccuracy of stored information.

In order to waive these limitations and achieve better perfor-
mance, many improvements to CBFs have been done. Mitzen-
macher [6] shows that unbalancing the number of ones and zeros
in a standard BF can help achieve a good compression ratio be-
fore transmission (e.g., for Web-caching application). This way,
by keeping the same amount of bits of the uncompressed case,
it is possible to either reduce the false positive probability or use
a lower number of hash functions.

Spectral Bloom Filters (SBFs) [10] are an extension of stan-
dard BFs to multisets, allowing estimates of the multiplicities of
individual items with small error probabilities. The word “spec-
tral” means that SBFs allow only filtering of elements whose
multiplicities are within a requested spectrum (therefore they do
not preserve bins from overflow in a conclusive way). The main
goal of SBFs is the optimal counter space allocation, so they
dynamically vary the size of their counters in order to minimize
the number of necessary bits. To achieve this flexibility, SBFs
include additional slack bits among the counters and complex
index structures, which increase both memory needs and access
time as compared to standard CBFs. Finally, SBFs introduce
techniques for filter compression based on Elias code that re-
duce the transmission size of data structures but increase again
the processing load.

Dynamic count filters (DCFs) [11] are data structures de-
signed for speed and adaptiveness in a very simple way. They
do not require the use of indexes, thus obtaining a fast access
time, and permanently avoid counters overflow. DCFs consist
of two different vectors: The first one is a basic CBF with coun-
ters of fixed size, the second one is the Overflow Counter Vector,
which has a counter for each element of first vector that keeps
track of the number of overflow events. The size of counters in
the Overflow Counter Vector changes dynamically to avoid sat-
uration. This implies that, for each update, a structure rebuilding
is required. Moreover, the decision of having the same size for
all these counters (for direct access) entails that many bits are
not used. Therefore, this solution can be improved, especially in
terms of memory consumption.

The d-left CBFs (dlCBFs) [12] are simple alternatives based
on d-left hashing and fingerprints of bins. They do not rely on
the principles of Bloom Filters, but they offer the same func-
tionalities. The dlCBFs use less space, generally saving a factor
of two or more for the same fraction of false positives, and the
construction is very simple and practical, much like the orig-
inal Bloom Filter construction. Indeed, the simplicity in con-
structing and maintaining data structures is maybe the greatest
contribution of [12] as compared to previous works. Moreover,
even dlCBFs have the limitation of potential counters overflow
and the need for an additional fingerprint for each bin in the data
structure.

A successive proposal [13] advocates the use of rank indexing
to achieve compact representations of BFs and CBFs through
a hierarchical construction. The main idea of this proposal is
to implement a CBF as a hash table where a fingerprint (hash
value) for each key is stored. Even if the data structure does
not actually perform any counting operation, dynamic insertions
and deletions from the set are supported. The authors use sev-
eral layers of bitmaps to avoid the overhead associated to the
canonical pointer based implementation. While the use of mul-
tilayer bitmaps suggests a similarity with our work, its focus is
significantly different, as it does not really provide “counting”
functionalities and it cannot support multisets.

The memory utilization is the parameter that is better taken
into account in this work. As previously mentioned, there
are several cases where network bandwidth is still expensive
and transmission size becomes a fundamental parameter (e.g.,
Web cache sharing or P2P applications). Moreover, although

FICARA et al.: ENHANCING COUNTING BLOOM FILTERS THROUGH HUFFMAN-CODED MULTILAYER STRUCTURES 1979

memory appears plentiful today, there are many hardware ar-
chitectures used in network devices (e.g., network processors)
that may take advantage of using very space-efficient data
structures, in terms of both performance and costs. Indeed,
memory saving can greatly speed up a device by requiring
rare access to slower off-chip memory. Furthermore, while
ordinarily DRAM memory is cheap, fast SRAM memory and
especially on-chip SRAM continue to be comparatively scarce.
All these issues have led our research, which had the target of
an efficient and practical data structure for CBF.

III. THEORETICAL RESULTS

In this section, we present the main theoretical results on the
CBF counter overflow probability and on Huffman coding of bin
counters that will be the basis of the data structures proposed in
the rest of the paper.

The following classical result [2] on CBF gives a bound on
the overflow probability that is widely adopted to
design the bin size:

(1)

However, (1) is pretty loose. Theorem 1 presents a tighter bound
for .

Lemma 1: Let be a CBF counter value, and
. If , the function is a

monotonically decreasing function.
Proof: The probability of the event , for , is

given [2] by

The ratio between two consecutive values is

(2)

which gives the proof.
For , . is less

than 1 for . In the CBFs, the previous
condition is always satisfied since .

Theorem 1: Let be a CBF counter value, and
. If the number of hash functions is chosen

so as to minimize the probability of false positive (i.e.,
), then

Proof: By repeatedly applying (2)

(3)

The right-hand sum of (3) can be bounded as

Fig. 1. Bounds comparison for � � ����, � � ��, and � � ��� �� �. � is
the actual � �� � ��, � is the well-known (1), while � is that provided by
Theorem 1. In the smaller graph, a zoom on the contour of � � �. � is always
tighter than � .

to finally obtain

(4)

Corollary 1: Under the previous results, if

(5)

Proof: From (3), by changing the lower limit of the series
from 0 to 1, we obtain

(6)

Then, considering that , .
Lemma 1 allows to approximate and

(7)

Then, . As for the expectation of , we get

(8)

If the CBF minimizes , , which is a
very tight approximation in several cases.

It is interesting to see that, as shown in Fig. 1, the previous
bound can be much tighter than the widely used (1). For in-
stance, if , and , (1) yields

, while our bound produces
, with a gain of an order of magnitude.

Moreover, the results of this first theorem are the basis for the
following one.

Observation 1: Let be the Huffman coding of ,
the “bit-length” operator, and a CBF counter value. Then

1980 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010

Fig. 2. Huffman tree for the CBF bin counters.

Indeed, Huffman codes can be obtained by using a binary tree.
The tree is constructed from a list of nodes (symbols) whose
weights correspond to the symbol probabilities.

The whole procedure is the following.
• Let and be the two nodes with the lowest weight.
• and are aggregated into a parent node whose weight is

set to the sum of the two nodes.
• The parent node replaces and in the list.

These steps are repeated until the list contains one node only.
To perform Huffman coding of CBF bin counters, we first

construct a tree whose nodes correspond to the
possible values of the counters ; the weight of
the th node is set to . Let be the list of nodes at
step and let be the parent node to be created at this step.
Suppose we have . The
weight of the parent node created at the previous step is

.
By using the result of corollary 1, we obtain

Moreover, the previous inequality also implies that
is smaller than any of the values in the set

. Then, at step , the nodes with
the smallest weights are and , and they shall be
aggregated into the parent node . Thus

The resulting tree turns out to be completely unbalanced (i.e.,
the depth of all nodes is given by the sequence of the first
naturals) such as the one of Fig. 2. Therefore, the depth of node

is , i.e., the encoding of the value of a CBF counter is
bits long. This result, which comes in turn from the results

of Theorem I, is one of the basic principles of our structures.

IV. HUFFMAN COUNTING BLOOM FILTERS

The target of our data structures is an improvement of CBFs
by avoiding counters overflow and reducing memory needs. The
drawback, as we will see below, is a very slight increase of com-
plexity for the insertion/deletion of an element.

The first step toward the above-mentioned target (that will be
fully accomplished through the layered structure presented in
the next section) involves the use of Huffman coding in CBF.
The result is Huffman counting Bloom Filter (HCBF). In order

Fig. 3. Example of fast lookup through popcount.

to introduce this data structure, we begin by recalling spectral
Bloom Filters [10].

They use a memory-efficient structure that encodes any bin
with Elias coding. This way, bins do not have a fixed position
and, for all hash functions, we have to find the right bin it
points to by looking up a certain amount of words. Lookup im-
plies to decode a number of bins until the right one is found.
Moreover each insertion and deletion imply a potential shift of
the whole structure.

To simplify these operations, SBFs divide the entire structure
in subsegments and use a set of tables in aid to the lookup. In
addition, a certain number of empty bits (called slack bits) are
inserted to reduce shifts operations for insertions and deletions.
Elias compression scheme is a perfect choice when dealing with
large numbers, such as those of multiset membership query ap-
plications. However, for smaller values (recall that in a regular
CBF, 16 is widely considered as a high loose bound), other cod-
ings can perform better. By leveraging on Observation 1 of the
previous section, our proposal is to encode a number with

consecutive ones and a trailing zero (Fig. 2). This way, the
encoding produces bits for symbol : it is a Huffman
coding, as shown in Section III. This is a major advantage since
Huffman is the minimum redundancy coding for independent
symbols such as the bins of a CBF.

Moreover, our coding scheme allows an easy lookup since
most processors provide an instruction that counts the number
of bits set to 1 in a word (popcount). By taking advantage of
such an instruction, we do not have to decode each value we
find during lookup, but simply count the number of cleared bits
in a word. The number of cleared bits is the number of symbols
encoded in that word (see example in Fig. 3). Clearly, we still
have to perform a shift for each insertion or deletion, and we
need a table to speed up lookup, but the total size of the struc-
ture is very close to the minimum (given by the entropy of all
symbols).

A. Size

In order to simplify the operations and reduce the cost of
lookups and insertions/deletions, we group the bins in blocks
of bins (with few slack bits), and we address the blocks with
the table. The average size of the HCBF is

where is the number of slack bits kept at the end of each block.
The last part of the above formula takes into account the table
size. The table is addressed by the first bits of the hash,
and the remaining bits represent the bin index. Each entry of the

FICARA et al.: ENHANCING COUNTING BLOOM FILTERS THROUGH HUFFMAN-CODED MULTILAYER STRUCTURES 1981

Fig. 4. Example of HCBF.

table represents the starting address of the corresponding block
thus requiring less than bit.

B. Lookup

As for operation complexity, a lookup requires hash func-
tions and, for each of them, a check in the table and a search in
the corresponding block for the bin we need (see Fig. 4). Thus,
on average, bins have to be looked, and bins
will be found in a word of bits. The overall average number
of operations for a lookup is then

As shown in Section III, . Therefore, the average
number of operations for a lookup is constant and its complexity
is .

C. Insertion/Deletion

In order to insert a new element, we need to perform a lookup
and to add a “1” digit for each bin in the code. This corresponds
to shifting all the bits at the bin’s right by one position and a
table update. Thus, for all insertions, the number of operations
is

It is straightforward to see that, since even deletion requires a
lookup and a shift, the overall cost is the same as insertion. The
complexity of these operations is , as for lookup.

V. MULTILAYER COMPRESSED CBF

The drawbacks of the algorithm described in Section IV, as
well as SBF, are related to the memory wastage due to slack bits
and to the complexity of a searching based lookup (even if aided
by index tables).

In the following, the multilayer compressed counting Bloom
Filter (ML-CCBF) is presented, which is a CBF that reduces
the memory requirements and the complexity of lookup. The
idea is to explode the CBF along another dimension, hence cre-
ating a multilayer structure, where, for each encoded symbol,
a bit per layer is stored. This construction, in conjunction with
the Huffman coding defined in Section IV, provides a stack of
bitmaps , where the first layer is a standard
BF. The other layers are built and modified dynamically when
needed. The relationship between ML-CCBF and the previously
described HCBF can be expressed in a few words by saying
that ML-CCBF is somewhat the rotated version of HCBF, with

Fig. 5. ML-CCBF example. The resulting Huffman code for � is 1110.

all bits representing the Huffman-coded values of counters in
HCBF placed in ascending layers.

To the best of our knowledge, although a limited degree of
hierarchy is sometimes obtained by adding a CAM [14] or an-
other counter [11], this is the first attempt to introduce the idea
of a hierarchy of arrays in CBFs, which results in a multilayer
structure where counters may span over different levels.

Let be the number of 1’s in the bitmap
. The construction is as follows.

• keeps all the th binary digits of our Huffman-encoded
counters.

• On , the th bit belongs to the counter whose
on is .

Fig. 5 shows an example of a ML-CCBF. In the example, we
are counting a bin for symbol . The bin at layer 0 is pointed
by the hash function . The number of ones before is
computed (i.e.,) and used as an index for
layer 1. The procedure is repeated until we find a “0” digit (that
is the end of the code). Therefore, the resulting Huffman code
for the counter is 1110, which corresponds to value 3.

A. Complexity and Properties

One of the most significant advantages of our algorithm is
that it is an extension of a standard BF. Thus, the lookup is as
simple and fast as in a standard BF since we need to check only
bits at layer 0. Therefore, the lookup complexity is .

Instead, for insertions and deletions, we need to explore dif-
ferent layers in the structure. We refer to as the number of
bits in layer . The size of layer can be obtained as

The above formula provides a useful mean for dimensioning
the overall data structure. As the (binomial) distribution of coun-
ters is known, the maximum length of each layer can be esti-
mated, and the corresponding memory allocated accordingly.
Also, the formula allows to allocate the number of levels as well
by selecting the number for which the probability of overflow is
negligible. In addition, when multiset has to be supported, the
maximum cardinality for a key has to be taken into account.

Since jumping one layer up requires a on a poten-
tially large number of bits, we divide all layers in blocks of the
same bit-size and add a table for each level. When computing

1982 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010

at layer , the first bits of are
used as the index to table . Each entry of the table represents
the number of ones preceding the start of the block. Thus, if
is the number of bits in a word, the actual operation
works only on less than words. Therefore, the average
cost of a is .

Algorithms 1 and 2 show the pseudocode for insertion and
deletion procedures in a ML-CCBF. Both operations require, for
all bins, the complete lookup of multiplicity (by exploring a
certain amount of layers), a shift by one position, and the update
of the last explored table. Such an update simply consists of
an increment or a decrement on a limited number of entries.
Therefore, the average number of operations for insertion and
deletion is given by

Once again, , thus the average amount of operations
is fixed and the complexity for insertion/deletion is .

Algorithm 1 The insertion of an element in a ML-CCBF

1: for do
2:
3:
4: while do
5:
6:
7: end while
8:
9:
10:
11:
12:
13:
14: UpdateTable
15: end for

Algorithm 2 The deletion of an element in a ML-CCBF

1: for do
2:
3:
4: while do
5:
6:
7: end while
8:
9:
10:
11: UpdateTable
12: end for

A major advantage of ML-CCBF over HCBF and SBF comes
from having update and lookup operations decoupled: All inser-
tions/deletions work with higher layers or may flip some bits in

Fig. 6. Size comparison among ML-CCBF, CBF, and�� �������.

the bottom layer 0, requiring no shift nor enlargement of layer
0. This means that we can still perform lookups during data set
updates if we just take precautions (by means of mutexes) when
dealing with changes in the bottom layer (the BF).

B. Size

ML-CCBF is a multilayer transposition of the algorithm
shown in Section IV, with no need for slack bits. Hence, it
results in a lower memory requirement

is the size of the table required for layer , which needs
entries of size , thus resulting in

The average amount of required memory is then

A closed-form expression for is not
simple to obtain in a general case. However, we use the results
of Theorem 1 to compute a bound for .

If to minimize the false positive probability, then

Clearly, as updates occur, upper layers may change in size,
thus requiring some extent of overprovisioning or memory dy-
namic allocation schemes. However, those layers are designed
to be placed in memories whose sizes are not critical (as op-
posed to layer 0), and this does not affect the overall scheme
properties.

Fig. 6 shows the comparison among the sizes of ML-CCBF,
standard CBF, and the minimum amount of bits for independent
symbols , for and

(notice that is fixed regardless of ; therefore, the
probability of false positives is not minimized). The memory

FICARA et al.: ENHANCING COUNTING BLOOM FILTERS THROUGH HUFFMAN-CODED MULTILAYER STRUCTURES 1983

Fig. 7. Size comparison between CBF and ML-CCBF (for fixed and variable
number of bits � for layer 0).

saving of our method is clear as it approaches the minimum
value. Note that the optimal number of elements (i.e.,
the value that minimizes) minimizes the distance from the BF
entropy as well.

Fig. 7 instead reports, for , the curve of the struc-
ture size (in kilobytes) for various numbers of elements

between a standard CBF (constructed so as
to minimize false positives) and a ML-CCBF constructed with
a fixed layer 0 or with a variable layer 0. For the latter, has
been set as minimizing false positives (i.e.,),
while for ML-CCBFs with a fixed layer 0, has been set to

(with). Setting the size of the bottom
layer of ML-CCBF (basically the corresponding BF) as fixed is
an easy and fast way to construct the structure, but it does not
provide the best results in terms of false positives and memory
efficiency. However, the figure shows that even for (i.e.,
for twice the optimal number of elements), the size penalty for
a ML-CCBF with fixed is limited to less than 20% with re-
spect to an optimal (i.e., with variable) construction. More-
over, it is noteworthy that the difference between the two types
of construction (in terms of size) is minimal, thus showing that
the choice of (and hence of) in the scenario with a fixed
layer 0 is not critical.

VI. COMPARATIVE ANALYSIS

For the evaluation of the algorithms proposed in this paper
and the comparison to others known in literature, the network
processor Intel IXP2800 has been taken as referential hardware
architecture. NPs are platforms that offer very high packet pro-
cessing capabilities (e.g., for gigabit networks) and combine the
programmability of general-purpose processors with the high
performance typical of hardware-based solutions. The IXP2800
is designed to perform a wide range of functionalities, including
multiservice switches, routers, and broadband access devices. It
is a fully programmable network processor, characterized by a
hierarchy of processing units (an XScale core and 16 32-bit mi-
croengines MEv2) and memory devices (4 kB of local memory,
16 kB of scratchpad memory, besides external memories of the

TABLE I
NUMBER OF CLOCK CYCLES FOR OPERATIONS IN THE IXP2800

host card). The bigger the memory, the slower the access to it.
For more details about Intel IXP2800, we refer to [15].

The hierarchy of memory devices in the IXP2800 reflects the
memory architecture of many systems, which present small fast
memories and slower big ones. Therefore, although referred to
a certain hardware platform, the results of our research are very
general.

As shown in Table I, we have weighted, according to the
IXP2800 hardware reference manual [16], the operations of the
algorithms in terms of clock cycles for microengines (which are
the processors designed to handle fast data path).

In the analysis, we always considered a few clock cycles for
emptying the pipeline from all operations. Indeed, all costs re-
ported in the tables are average costs. They are not the minimal
costs (those that can be achieved when the pipeline is full and no
additional costs are paid for switching among operations). For
example, to access local memory, if pointers are all set, only one
clock cycle is needed, while the cost of setting pointers is three
clock cycles. We always conservatively estimated two clock cy-
cles penalty. In fact, generally once the pointer is set, one can
access long words (LWs) around with no extra costs (in terms of
clock cycles). This is actually a very common case, particularly
when working with ML-CCBF and HCBF, where typically LWs
to be processed are next to each other.

Each algorithm has been simulated, and its performance has
been measured in terms of memory consumption and processing
load for lookup and insertion/deletion. In simulation runs, the
total number of data elements is , , and the
number of bins for the main vector is , thus minimizing
the probability of false positives. For the algorithms that divide
data structure in subsegments, the number of blocks is .
All other parameters are set to obtain about the same probability
of false positives among the different algorithms and to be able
to manage the same number of elements. Moreover, for the
algorithms which present a hierarchical structure, we have lo-
cated each substructure in the fastest memory as possible (see
Table II).

Concerning ML-CCBF, the main BF vector and index ta-
bles are stored in local memory, while the remaining vectors
in scratchpad. A lookup only requires checking the first vector,
therefore only local memory is accessed. For insertion and dele-
tion, we still need to explore different layers in the structure, thus
both memories are accessed.

For a standard CBF, built with 4 bits for bin, the overall struc-
ture has been located in scratchpad. Therefore lookup, insertion,
and deletion require accesses to this memory.

With the data of our simulation, DCF (see Section II) does not
experiment any overflow of counters in CBF vector. Therefore,
Overflow Counter Vector is not necessary, and DCF exhibits

1984 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010

TABLE II
PERFORMANCE ALGORITHMS COMPARISON

exactly the same behavior of CBF in terms of both size and
complexity.

Regarding HCBF, we have stored the main structure in
scratchpad and the index tables in local memory. As mentioned
in Section IV, a lookup requires, for each hash function, to
check the table in local memory, to search for the corresponding
block in scratchpad for the bin we need, and to compute a
popcount. The same number of operations are required for
inserting/deleting an element, with the addition of shifting
by one position the bits in the bin to increment/decrement a
counter. Remember that HCBF is a simple alternative version
of SBF, which is a structure optimized for multiset. SBFs use,
for values greater than 2, Elias code instead of Huffman code
and several more index tables, thus resulting in higher memory
consumption and operational complexity.

Finally, the overall unique structure of dlCBF has been lo-
cated in scratchpad. A lookup requires hashes, permutations,
and accesses to scratchpad, while an insertion or a deletion
needs the same operations for locating the candidate bins, ac-
cesses to scratchpad to find the right bin, and finally, depending
on the counter value, either one incrementing (or decrementing)
operation or the insertion (removal) of a new fingerprint and its
associated counter.

As for rank-indexed hashing, the functionality it provides is
somehow different from those offered by the other CBFs. Al-
though it does support dynamic insertion or deletion of ele-
ments and it certainly provides good compression, it does not
really support counting functionalities, and it cannot keep track
of multisets. Therefore, it is not suitable for all of the applica-
tions that use CBFs. Moreover, as the lookup operation in this
data structure is equivalent to walking through a list, it cannot
be parallelized as in the case of the other solutions, where the lo-
cations specified by multiple hash functions can be accessed in-
dependently by different cores at the same time. For this reason,
we believe that a direct comparison (in terms of plain clock cy-
cles) is not fair to the other algorithms, which can be simply
sped up through parallelization.

From results in Table II, it is clear that the solutions proposed
in this paper show a significant memory saving in comparison to
standard CBF and DCF (savings of 56% for ML-CCBF and 54%
for HCBF) and also SBF. Instead, there is a memory consump-
tion increase in comparison to dlCBF (from 0.93 up to 1.22 kB).
Hovewer, our methods, inspired by dynamic approaches (e.g.,
DCF), avoid in a conclusive way the problem of counters over-
flow, thus preserving the accuracy of stored information. This
makes our data structure suitable for keeping track of multisets:
Inserting the same element several times on a CBF can rapidly

lead to overflow, especially with architectures that, like dlCBF,
put a lot of effort into reducing the size of the counters (counters
can be as small as 2 bits). With our solution, adding keys just re-
quires adding more layers and results in an increased memory
footprint.

Moreover, the introduction of a hierarchical structure allows
in ML-CCBF a remarkable decrease of clock cycles for the
lookup operation. Indeed, the main structure is stored in local
memory, thus enabling lookup by accessing local memory only.
Naturally, keeping the whole state required by ML-CCBF in
the same cache level reduces the performance boost that is pro-
vided by the structure layerization, thus negatively impacting
the overall performance: The lookup time is the same as a stan-
dard BF, and the insertion/deletion time is increased. The mem-
bership query is the most frequent operation for these data struc-
tures. Therefore, the reduction of about 83% of clock cycles for
lookup is a great outcome. It outweighs the drawback of an in-
crease of 50% of processing for inserting/deleting an element.

Performance results indeed show that ML-CCBF cannot be
the best solution when high update rates are requested. This, in-
deed, is the cost to pay for flexibility that, if on one hand guar-
antees no overflow, on the other hand requires a few extra op-
erations for inserting (and deleting) entries. Clearly, this sug-
gests the use of ML-CCBF in applications that require very fast
lookup but reasonably frequent updates (as in the next section
application)

Finally, note that our HCBF outperforms SBF in terms of
memory consumption and operational complexity. This is an ex-
pected result due to the simplicity of our method and to the use
of Huffman code (SBFs are optimized for multisets). If com-
pared to the complexity of standard algorithms, HCBF shows a
reduction of 13% for lookup and an increase of 45% for inser-
tion/deletion. The different frequency of operations allows to
claim that the tradeoff is advantageous.

VII. APPLICATIONS OF ML-CCBF

ML-CCBF can be adopted for many purposes. In this sec-
tion, we propose a possible scheme based on such a filter that
addresses the issue of evasion attacks.

A. Anti-Evasion

The recent techniques of pattern matching involve the use
of finite automata (FA) [17]–[20], hybrid schemes such as
Aho–Corasick–Boyer–Moore [21], or hardware architectures
that use field programmable gate arrays (FPGAs) or TCAMs.
Recently, BFs and CBFs have also been used for pattern
matching [22], [23].

FICARA et al.: ENHANCING COUNTING BLOOM FILTERS THROUGH HUFFMAN-CODED MULTILAYER STRUCTURES 1985

TABLE III
PERFORMANCE OF OUR SYSTEM IN TERMS OF DETECTED ATTACKS AND FALSE POSITIVES

However, some research works [24], [25] show how to evade
standard pattern matching techniques by splitting the attack
into several packets. Currently, the only way to deal with this
problem is to reassemble the overall flow and afterwards apply
standard pattern matching algorithms. However, this dramat-
ically increases requirements for security systems in terms of
both memory and processing power.

Some works try to avoid the need for flow reassembly. In [26],
a combination of parallel BFs is used; each of them "performs"
the search for a certain string length. When a packet arrives, a
complete check is performed on all the filters. If a match is de-
tected, the flow state becomes suspicious, and the flow is passed
to an analyzer for a further deterministic check.

Also, the basic idea of [27] is to split the signatures to be
searched by pattern matching into small substrings. In this way,
if a sufficiently large piece is completely inserted by an attacker
in a packet, it is easily detected. Otherwise, the attacker is forced
to use several very small or out-of-order packets, and such ab-
normal behaviors are revealed by adopting proper heuristics.

B. Using ML-CCBF for Anti-Evasion

As mentioned, BFs and CBFs provide interesting features for
pattern matching and anti-evasion. In particular, CBFs provide
the capabilities of quickly updating the set they represent and
counting the occurrences of elements. The first property can be
used to rapidly take into account each new virus definition with
no need to rebuild the overall structure. Instead, counting the
occurrences of elements allows CBF to represent the different
substrings constituting a string: The arrival of any pieces be-
longing to the string triggers a decrease of the proper bins, and
when the filter is completely reset to zero, the overall match is
detected.

ML-CCBF provides further interesting features for fast pat-
tern matching. For instance, its multilayer structure allows to
speed up a processing engine. The first layer, which is used for
the frequent lookups (all of the packets have to be checked and,
at line speed, the time budget is strict), can be put in a fast and
small memory, while the other layers, useful for string set up-
dates, can be stored in a slower memory. As most of the traffic is
benign and will be discarded by the first stage, the performance
requirements of this second layer of filters are much looser.
Therefore ,we propose an anti-evasion system that takes advan-
tage of ML-CCBF properties.

As shown in Fig. 8, it is composed of several modules. At
first, traffic flows are divided by a classifier according to trans-
port protocols and forwarded to different engines, named sub-
string detectors (SDs). Such a first division allows to balance the
load among the SDs and decrease the size of their relative filters.

Fig. 8. Scheme of our system.

Each SD performs a pattern matching on the overall content of
packets by using specific ML-CCBFs. Each filter represents the
set of substrings constituting the strings that identify the valid
attacks for that protocol. More precisely, ML-CCBFs represent
all the substrings of 3 bytes in order to also reveal the shortest
strings, which are 6 bytes long (as pointed out from the analysis
of SNORT data sets). The use of ML-CCBFs in this phase al-
lows for a fast update of a string set.

After a malicious substring is detected by one of the SDs,
a further block of ML-CCBFs is set in the so-called pattern
matching engines (PMEs) in order to determine if such an alert
actually corresponds to a real attack. More precisely, a PME sets
a filter for each string to which the detected substring belongs.
Such a CBF represents all the remaining characters: Whenever
a filter is completely reset to zero, it is assumed that the string
has been detected and the packets must be dropped in order to
nullify the attack.

However, not all the attacks can be detected in this way. For
instance, a string split in several very small packets (less than
3 bytes) is not revealed. Fortunately, packets of 1–2 bytes are
very rare in real traffic,1 except for certain applications such as
telnet and ssh, and therefore we can use their presence as an alert
and divert all the small packets to a slow path engine. In order
to face denial-of-service attacks, we can select a threshold on
the maximum number of flows to be diverted or use the queue
system proposed in [28].

The system can be improved, in terms of both functioning and
performance, by adopting a series of refinements. For instance,
deleting the most frequent substrings from the filters allows to

1As shown, for example, by data at http://netflow.internet2.edu/.

1986 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010

save memory (smaller filters) and processing load (fewer sub-
strings that generate an alert). The potential drawbacks are a
lower detection capability (since fewer substrings signal an at-
tack) and a bigger number of false positives (since filters can be
more easily reset to zero).

C. Experimental Results

For the experimental runs, a cluster of PCs that generate
traffic toward a LAN is used. One of them runs FTester, which
is a software tool capable of generating evasion attacks, while
the other ones generate background traffic. The lengths of sub-
strings in our runs are alternated in order to have both “normal”
evasion attacks (with substrings of almost 3 bytes) and attacks
with “small packets” (less than 3 bytes). A general-purpose PC
running our anti-evasion system is placed before the LAN to
protect it.

In Table III, for traces of different sizes, the number of attacks
that are generated, the percentage of real attacks we detect, and
the percentage of false positives are reported, respectively, for
“normal” and “small” attacks and their sum. These results ex-
hibit high percentages of detection, while the number of false
positives remains small. As foreseen, the technique used against
the attacks performed with “small packets” generates the largest
number of false alerts since each small packet is signaled as a
potential attack.

We want once more to remark that this example is proposed
as a reasonable use case for ML-CCBF. Therefore, the purpose
is not to present a thorough evaluation of the proposed IPS ar-
chitecture. For this reason, only a few macroscopic performance
parameters are presented, while some others (like throughput)
are not investigated, as they would depend on too many fac-
tors and implementing choices that are outside the scope of the
paper.

VIII. CONCLUSION

The target of this paper is to propose an efficient structure
for data representation in systems with limited memory such as
programmable routers and network processors.

A tighter upper bound for counter overflow probability in
counting Bloom Filters has been presented: Its specific expres-
sion and the properties that come from it allow to introduce a
novel approach to CBF design. On the basis of such a theoret-
ical achievement, the paper presents the following.

• HCBF, a first attempt to take advantage of Huffman code,
which is optimal for independent symbols, such as the bins
in CBFs. This approach represents an intermediate step to
the central proposal of the paper.

• ML-CCBF, which combines the advantages of HCBF with
the idea of a multilayer structure for CBF (in order to ex-
ploit the memory hierarchy of many systems).

A comparison among such data structures and several solu-
tions defined in literature has been performed by using Intel
IXP2800 as referential platform. The outcomes show clear
memory savings of our solutions in comparison to standard
CBFs (up to 50%) and a great reduction of the lookup time in
ML-CCBF, even with respect to the more advanced algorithms.

Finally, we have shown a possible application of our struc-
tures in network security. In particular, we adopt ML-CCBF in

a scheme that allows to detect evasion attacks in the fast data
path with no need of reassembling the flows.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[2] A. Broder and M. Mitzenmacher, “Network applications of Bloom fil-
ters: A survey,” Internet Math. vol. 1, no. 4, 2005 [Online]. Available:
http://www.internetmathematics.org/volumes/1/4/Broder.pdf

[3] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area Web cache sharing protocol,” SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4, pp. 254–265, 1998.

[4] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Multilayer com-
pressed counting Bloom filters,” in Proc. 27th IEEE INFOCOM, 2008,
pp. 311–315.

[5] G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci,
“Counting Bloom filters for pattern matching and anti-evasion at the
wire speed,” IEEE Netw., vol. 23, no. 1, pp. 30–35, Jan.–Feb. 2009.

[6] M. Mitzenmacher, “Compressed bloom filters,” in Proc. 20th ACM
PODC, New York, 2001, pp. 144–150.

[7] A. Kirsch and M. Mitzenmacher, “Distance-sensitive Bloom filters,” in
Proc. ALENEX, 2006, pp. 41–50.

[8] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network applications
of dynamic Bloom filters,” in Proc. 25th IEEE INFOCOM, 2006, vol.
1.

[9] A. Kumar, J. J. Xu, L. Li, and J. Wang, “Space-code Bloom filter for ef-
ficient traffic flow measurement,” in Proc. ACM IMC, New York, 2003,
pp. 167–172.

[10] S. Cohen and Y. Matias, “Spectral Bloom filters,” in Proc. ACM
SIGMOD, New York, 2003, pp. 241–252.

[11] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-
Pey, “Dynamic count filters,” SIGMOD Rec., vol. 35, no. 1, pp. 26–32,
2006.

[12] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting Bloom filters,” in Proc. 4th
Ann. Eur. Symp. Algor., 2006, vol. LNCS 4168, pp. 684–695.

[13] N. Hua, H. Zhao, B. Lin, and J. Xu, “Rank-indexed hashing: A compact
construction of Bloom filters and variants,” in Proc. IEEE ICNP, 2008,
pp. 73–82.

[14] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended Bloom filter: An aid to network pro-
cessing,” in Proc. ACM SIGCOMM, New York, 2005, pp. 181–192.

[15] E. J. Johnson and A. R. Kunze, IXP2400/2800 Programming: The
Complete Microengine Coding Guide. Santa Clara, CA: Intel Press,
2003.

[16] “Intel IXP2800 Hardware Reference Manual,” Intel, 2004.
[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-

gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in Proc. ACM SIGCOMM, pp. 339–350.

[18] M. Becchi and P. Crowley, “An improved algorithm to accelerate reg-
ular expression evaluation,” in Proc. ANCS, 2007, pp. 145–154.

[19] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” in IEEE Symp. Security Privacy, May 2008, pp.
187–201.

[20] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, A. DiPietro, and G. An-
tichi, “An improved DFA for fast regular expression matching,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, 2008.

[21] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of snort,”
discex, vol. 01, p. 0367, 2001.

[22] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lock-
wood, “Deep packet inspection using parallel Bloom filters,” IEEE
Micro, vol. 24, no. 1, pp. 52–61, Jan.–Feb. 2004.

[23] M. Nourani and P. Katta, “Bloom filter accelerator for string matching,”
in Proc. 16th ICCCN, 2007, pp. 185–190.

[24] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of
service: Eluding network intrusion detection,” Secure Networks, Inc.,
Calgary, AB, Canada, T2R-0Y6, Tech. Rep., 1998.

[25] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics,” in
Proc. 10th. USENIX SSYM, Berkeley, CA, 2001, p. 9.

[26] N. S. Artan and H. J. Chao, “Multi-packet signature detection using
prefix Bloom filters,” in Proc. IEEE GLOBECOM, 2005, vol. 3, pp.
1811–1816.

FICARA et al.: ENHANCING COUNTING BLOOM FILTERS THROUGH HUFFMAN-CODED MULTILAYER STRUCTURES 1987

[27] G. Varghese, J. A. Fingerhut, and F. Bonomi, “Detecting evasion
attacks at high speeds without reassembly,” SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 327–338, 2006.

[28] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in Proc. ACM ANCS, , pp. 155–164.

Domenico Ficara (M’10) received the Ph.D. degree
in information engineering from the Department of
Information Engineering, University of Pisa, Pisa,
Italy.

During his Ph.D. studies, he collaborated with
Cisco Systems, San Jose, CA, on deep packet
inspection research and development projects. His
main research interests are deep packet inspection
and network topology discovery techniques.

Andrea Di Pietro (S’10) received the Master’s de-
gree in telecommunication engineering from the Uni-
versity of Pisa, Pisa, Italy, in April 2007. He is cur-
rently pursuing the Ph.D. degree with the NetGroup
of the University of Pisa.

From May 2007 to December 2008, he was a Re-
search Assistant with the NetGroup of the University
of Pisa. His research interests are in network tomog-
raphy and network performance measurement.

Stefano Giordano (SM’10) received the Master’s
degree in electronics engineering and the Ph.D. de-
gree in information engineering from the University
of Pisa, Pisa, Italy, in 1990 and 1994, respectively.

He is an Associate Professor with the Department
of Information Engineering, University of Pisa,
where he is responsible for the telecommunication
networks laboratories. His research interests are
telecommunication networks analysis and design,
simulation of communication networks and multi-
media communications.

Dr. Giordano is Secretary of the Communication Systems Integration and
Modeling (CSIM) Technical Committee. He is Associate Editor of the Interna-
tional Journal on Communication Systems and of the Journal of Communication
Software and Systems technically cosponsored by the IEEE Communication So-
ciety. He is member of the Editorial Board of the IEEE Communication Surveys
and Tutorials. He is one of the referees of the European Union, the National
Science Foundation, and the Italian MIUR and MAP Ministries.

Gregorio Procissi (M’10) received the graduate
degree in telecommunication engineering and the
Ph.D. degree in information engineering from the
University of Pisa, Pisa, Italy, in 1997 and 2002,
respectively.

From 2000 to 2001, he was a Visiting Scholar
with the Computer Science Department, University
of California, Los Angeles. In September 2002, he
became a Researcher with Consorzio Nazionale
Inter-Universitario per le Telecomunicazioni (CNIT)
in the Research Unit of Pisa. Since 2005, he has

been an Assistant Professor with the Department of Information Engineering,
University of Pisa. His research interests are measurements and performance
evaluation of IP networks.

Fabio Vitucci (M’09) received the Master’s degree
in telecommunication engineering and the Ph.D. de-
gree in information engineering from the University
of Pisa, Pisa, Italy, in October 2004 and June 2008,
respectively.

He currently conducts research with the Depart-
ment of Information Engineering, University of Pisa,
in the areas of packet classification, pattern matching,
and network processors.

