
Electronic Notes in Theoretical Computer Science 68 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 26 pages

On Modeling Coordination via Asynchronous
Communication and Enhanced Matching

Antonio Brogi 1

Dipartimento di Informatica,
Università di Pisa

Pisa, Italy

Jean-Marie Jacquet 2

Institute of Informatics
University of Namur
Namur, Belgium

Isabelle Linden 3

Institute of Informatics
University of Namur
Namur, Belgium

Abstract

The paper proposes a theoretical study of a coordination language embodying
Linda’s asynchronous communication primitive with a refined matching mechanism
based on pairs composed of attribute names associated with their values. Com-
putations in this language are described by means of an operational semantics,
reporting the whole traces of executions. The non-compositionality of this intuitive
operational semantics motivates the design of a compositional and fully abstract
denotational semantics, which is then exploited for studying program equivalence
in this setting.

1 Introduction

Modern computer systems consist of large numbers of software components
that interact one another. The process of software construction is more and

1 Email: brogi@di.unipi.it
2 Email: jmj@info.fundp.ac.be
3 Email: ili@info.fundp.ac.be

c©2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

A. Brogi et al

more centered on the composition of generic existing packages to construct
complex systems. Moreover, the rapid expansion of computer networks is high-
lighting the need for integrating and coordinating hetereogeneous components,
which rely on different computational models and are physically distributed
on the net.

Carrero and Gelernter [4] first pointed out the relevance of defining coordi-
nation models and languages for combining separate computational activities
into asynchronous ensembles and for supporting communication among them.
Linda [3] was the first coordination language, presented as a set of inter-agent
communication primitives which can be virtually added to any programming
language.

The interest for coordination models and languages is rapidly growing, and
several coordination-based systems are under development or already available
[5]. The study of models and languages for coordinating separate activities of
software components is therefore of primary importance in this scenario. The
scope of this paper is to contribute to setting the theoretical foundations of
the growing field of coordination languages.

In this paper we will consider a simple language LΨ that embodies the es-
sential features of coordination languages based on generative communication
à la Linda [3]. The language includes Linda’s out, in, and rd primitives for
adding, deleting and checking the presence of a tuple in a shared dataspace.
Furthermore, the matching mechanism of Linda is extended to allow tuples to
be added with partial information and selected on partial information. Fol-
lowing the concurrency tradition, the language also includes sequential and
parallel composition operators, as well as a choice operator in the style of
CCS [8].

We will first describe the operational semantics of the language in the
SOS style [10]. We will consider as observable behaviour of programs, for
all possible computations, the sequences of states generated by computations.
Each such state is composed of the contents of the shared dataspace and of
the values assigned to variables. We will then define a denotational semantics
and study the properties of compositionality and full abstraction with respect
to the operational model of the language.

The definition of the denotational model is inspired by the denotational
models for nonuniform concurrent languages proposed by Horita, de Bakker
and Rutten in [7]. However, whereas in [7] the state of the computation is
represented by the values of individual variables and is changed by assigning
variables, in our setting the state of the computation is represented both
by the content of the shared dataspace, which is changed by out and in

primitives, and by the values of communication variables, which are affected
by the out, in, and rd primitives. In both cases the meaning of a process
needs to represent the possible interactions between the process itself and the
environment. Simply recording the initial and final states of computation
sequences does not provide a compositional description of processes. We will

2

A. Brogi et al

therefore employ sequences of states which contain gaps between steps to
represent possible interactions with the environment.

This paper is also an extension of previous work published as [1]. How-
ever, the usual Linda matching mechanism was employed in that paper. As
will be appreciated by the reader, the introduction of a refined matching mech-
anisms leads to the introduction of communication variables modified by the
communication primitives which open new technical problems.

The denotational model of the language is defined in a compositional way.
First the denotation of atomic agents (viz., communication actions) is given.
Then the denotation of sequential, parallel and choice compositions of agents is
defined by means of homomorphic operations on the denotations of agents. As
the denotational semantics preserves the observational equivalence of agents,
we have that denotationally equivalent programs are indistinguishable, that
is, they exhibit the same observable operational behaviour in any possible con-
text. We then show that the obtained denotational model is also fully abstract
with respect to the operational model of the language. Intuitively speaking,
this means that operationally indistinguishable programs are equivalent in the
chosen denotational semantics.

The properties of compositionality and full abstraction of the denotational
semantics establish firm foundations for reasoning about programs and pro-
gram transformations. Let A be an agent which is part of a larger system, or
context, denoted by C[A]. Suppose that A′ is an alternative, possibly more
efficient, version of A obtained for instance by applying some program trans-
formation technique to A. If A′ is denotationally equivalent to A, that is if
D(A) = D(A′), then the property of compositionality ensures that the substi-
tution of A′ for A does not affect the observable behavior of the whole system,
that is O(C[A]) = O(C[A′]). While compositionality ensures that any pair
of denotationally equivalent agents can be substituted one another without
affecting the observational behavior of a system, full abstraction establishes
that only denotationally equivalent programs satisfy such a property.

The paper is organized as follows. The language LΨ is introduced in Sec-
tion 2, where syntax and operational semantics of the language are presented.
A fully abstract denotational semantics for LΨ is defined in Section 3, while
Section 4 contains some concluding remarks.

2 The LΨ language

2.1 Syntax

We shall consider a simple language LΨ embodying the basic Linda’s out,
in, and rd primitives, for putting a tuple on a shared space, getting it and
checking its presence, respectively. LΨ also includes sequential and parallel
composition operators as well as a choice operator in the style of CCS [8].
However, for simplicity purposes, only finite processes are treated here, under

3

A. Brogi et al

the observation that infinite processes can be handled by extending the results
of this paper in the classical way, exemplified, for instance, in [7].

Special care is taken for the matching mechanism. We shall extend it so
that tuples may specify partial information only. Technically, this leads to the
introduction of Ψ-terms, defined as follows.

Definition 2.1 Let Scvar be a denumerably infinite set of communication
variables and Sf a denumerably infinite set of functor names, each one coupled
to an arity. Such an association is typically written as f/n where f is the
functor name and n is its associated arity. Assume that the sets Scvar and
Sf are disjoint.

As usual, functors of arity 0 are called constants. Their set is subsequently
denoted as Sconst .

Definition 2.2 A Ψ-term is a construct of the form

f(item1 = value1 , · · · , itemm = valuem)

where

• f/n is a functor such that m ≤ n
• the itemi ’s are distinct constants

• value i denotes an integer, a string of characters, a Ψ-term or a communica-
tion variable

• any communication variable appears at most once in the Ψ-term.

A Ψ-term is said to be closed if it contains no communication variable. The
sets of Ψ-terms is subsequently referred to as Spterm. The set of closed Ψ-
terms is denoted as Scpterm in the following.

Matching will lead us subsequently to compare two Ψ-terms. To that end,
we introduce the notion of correspondence.

Definition 2.3 Let Ψ1 = f(t1 = v1, · · · , tn = vn) and Ψ2 = f ′(t′1 =
v′1, · · · , t′m = v′m) be two Ψ-terms. We say that Ψ1 corresponds to Ψ2 iff

(i) f and f ′ are identical functors with same arities;

(ii) for any i such that vi is an integer or a string of characters, if ti = t
′
j then

vi = v
′
j;

(iii) for any i such that vi is a Ψ-term, if ti = t
′
j then vi corresponds to v

′
j.

Note that, when Ψ2 is closed, the correspondence of Ψ1 with respect to Ψ2

amounts to the existence of a set of values for the communication variables of
Ψ1 such that the two Ψ-terms become identical. When this is the case, this
set of values for communication variables is subsequently denoted by Ψ1
Ψ2.

Definition 2.4 We shall denote by Sbind the set of all the possibly partial
bindings of values to variables, namely the set of all the functions θ of the

4

A. Brogi et al

form

θ : Scvar → (N ∪ Sstring ∪ Scpterm ∪ {⊥})
where N represents the set of integers, Sstring the set of string of characters
and ⊥ a special value indicating an undefined value. By abuse of notation,
we shall denote by ⊥ the binding which consists of leaving all the variables
undefined.

A partial order can be defined on the set Sbind in the following way.

Definition 2.5 For any pair θ, ϕ of elements of Sbind , define θ〈ϕ iff, for any
variable x, one has θ(x) =⊥ whenever ϕ(x) =⊥.

Moreover composition can be defined on Sbind as follows.

Definition 2.6 For any θ, ϕ of elements of Sbind , define θϕ as the following
function of Scvar → (N ∪ Sstring ∪ Scpterm ∪ {⊥}): for any variable x,

θµ(x) =

µ(x) si µ(x) �=⊥
θ(x) si µ(x) =⊥

We are now in a position to define the language LΨ. According to the phi-
losophy of coordination languages, the LΨ language foccusses on interaction
and communication. Other languages have to be used to specify the compu-
tations. Moreover, a means must be provided to interface the two aspects: in-
teractions/communications and computations. This is subsequently achieved
by communication variables used both in the communication primitives and
the language used to code the computations. Hence, we shall subsequently
assume the existence of a set of instructions Sinstr of some programming lan-
guage. These instructions can be of any kind and of any paradigm (functional,
imperative, logic, object-oriented); the only constraint is that they cannot di-
rectly interact with the shared space and cannot modify values assigned to
variables.

The language LΨ is formally defined by the following grammar.

Definition 2.7 Let Ψ be a Ψ-term, Ψc be a closed Ψ-term and I denotes
an instruction of Sinstr . The language LΨ is the set of agents A defined by
the following grammar. On the point of terminology, the constructs c are
subsequently called communication actions.

c ::= tell(ψc) | nask(ψ) | ask(ψ) | get(ψ) | I
A ::= c | A ; A | A || A | A + A

2.2 Operational semantics

2.2.1 Configurations.

LΨ computations may be modelled by the following transition system written
in Plotkin’s style. Following intuition, most of configurations consist of an

5

A. Brogi et al

agent to be solved together with a description of the contents of the shared
space and of the bindings of the communication variables.

To easily express termination, we shall introduce particular configurations
composed of a special terminating symbol E together with a shared space
and a binding for communication variables. For uniformity purposes, we shall
abuse language and qualify E as an agent. However, to meet the intuition, we
shall always rewrite agents of the form (E ; A), (E || A), and (A || E) as A.
This is technically achieved by defining the extended set of agents as follows.
In particular, simplifications are operated by imposing a bimonoid structure.

Definition 2.8 Define the extended set of agents Seagent by the following
grammar

Ae ::=E | c | A ; A | A || A | A + A

Moreover, we shall subsequently assert that the structure (Seagent, E, ; , ||)
is a bimonoid and simplify elements of LΨ accordingly.

Definition 2.9 Define Sstore as the set of finite multisets of closed Ψ-terms.
Moreover, define the set of situations Ssit as the set Sbind × Sstore.

Definition 2.10 Define the set of configurations Sconf as Seagent × Ssit.
Configurations are denoted as 〈A | (θ, σ)〉, where A is an (extended) agent
and (θ, σ) is a situation.

2.2.2 Transition rules.

The transition rules defining the operational semantics of the language are
reported in Figure 1. They are based on the consideration of two points.

On the one hand, instructions of Sinstr may consult and use the values of
communication variables. However, it is possible that their actual execution
depends on these values. For instance, printing variables without values may
be impossible as is the division by a variable whose value is 0. The predicate
executable is introduced to model the possible non execution of instructions.
For any I ∈ Sinstr and any θ ∈ Sbind , executable(I, θ) is true iff I can be
executed on θ. Note that, in view of the coordination philosophy, the execution
of I cannot depend on the contents of the shared space since it cannot access
to it. Moreover, the result of the execution cannot modify the contents of this
shared space and of the bindings reported by θ. Hence, the execution of any
instruction is of no consequence for our semantics.

On the other hand, in order to keep the communication between agents
in a pure form through the shared space and thus in order to avoid a side
communication of agents by means of communication variables, we impose
that agents obtained by parallel composition are formed from components
which do not share communication variables. The following V ar function
helps to grasp this idea technically.

Definition 2.11 Define the function V ar : Lψ → P(Scvar) inductively as
follows:

6

A. Brogi et al

V ar(tell(Ψc))= ∅
V ar(nask(Ψ))= ∅

V ar(I)= ∅
V ar(ask(Ψ))= {v : v variable appearing in Ψ}
V ar(get(Ψ))= {v : v variable appearing in Ψ}
V ar(A;B)=V ar(A) ∪ V ar(B)

V ar(A+B)=V ar(A) ∪ V ar(B)

V ar(A || B)=

∅ if V ar(A) ∩ V ar(B) �= ∅
V ar(A) ∪ V ar(B) if V ar(A) ∩ V ar(B) = ∅.

Rule (T) states that an atomic agent tell(Ψc) can be executed in any
situation (θ, σ), and that its execution results in adding the closed Ψ-term
Ψc to the store σ. Rule (A) states that an atomic agent ask(Ψ) can be
executed in a situation (θ, σ) provided that the store σ contains a Ψ-term Ψc

that corresponds to Ψ. In that case, new values may be computed for the
communication variables, which results in updating the binding θ to θµ. Rule
(G) is similar except that Ψc is removed from the store. Rule (N) is dual:
it succeeds if such a corresponding Ψ-term cannot be found on the current
store. Note that no update results from its execution. Rule (I) specifies that
an instruction I is computed if it is executable and, in this case, without
affecting the current situation. Finally, rules (S), (P), and (C) describe
the operational meaning of sequential, parallel and choice operators in the
standard way [8].

2.2.3 Observables.

A reasonable notion of observables consists of reporting, for all possible com-
putations, the sequence of situations the computations produce. It is defined
subsequently as the semantics Oh to stress this notion of history of situation.
Another reasonable notion of observable would consists in focusing on the
results of the computations only. It is however considered to be outside the
scope of this paper and will be studied in future work.

We will use the following notation to represent sequences of elements and
their concatenation. Given a set A, the set of finite sequences of elements of A
is denoted by A<ω. The concatenation of two sequences q1 and q2 is denoted
by q1.q2. Also if S1 and S2 are two sets of (finite) sequences we put:

S1.S2 = {q1.q2 | q1 ∈ S1 ∧ q2 ∈ S2}.

7

A. Brogi et al

(T) 〈tell(Ψc) | (θ, σ)〉 −→ 〈E | (θ, σ ∪ {Ψc}〉

(A)
Ψ
Ψc = µ

〈ask(Ψ) | (θ, σ ∪ {Ψc})〉 −→ 〈E | (θµ, σ ∪ {Ψc})〉

(N)
� ∃Ψc : Ψc ∈ σ,Ψ corresponds to Ψc

〈nask(Ψ) | (θ, σ)〉 −→ 〈E | (θ, σ)〉

(G)
Ψ
Ψc = µ

〈get(Ψ) | (θ, σ ∪ {Ψc})〉 −→ 〈E | (θµ, σ)〉

(I)
executable(I, θ)

〈I | (θ, σ)〉 −→ 〈E | (θ, σ)〉

(S)
〈A | (θ, σ)〉 −→ 〈A′ | (θ′, σ′)〉

〈A ; B | (θ, σ)〉 −→ 〈A′ ; B | (θ′, σ′)〉

(P)

〈A | (θ, σ)〉 −→ 〈A′ | (θ′, σ′)〉
V ar(A) ∩ V ar(B) = ∅

〈A || B | (θ, σ)〉 −→ 〈A′ || B | (θ′, σ′)〉
〈B || A | (θ, σ)〉 −→ 〈B || A′ | (θ′σ′)〉

(C)

〈A | (θ, σ)〉 −→ 〈A′ | (θ′, σ′)〉
〈A + B | (θ, σ)〉 −→ 〈A′ | (θ′, σ′)〉
〈B + A | (θ, σ)〉 −→ 〈A′ | (θ′, σ′)〉

Fig. 1. The transition rules.

Definition 2.12

(i) Let δ+ and δ− be two fresh symbols denoting respectively success and
failure. Define the set of histories Shist as the set of finite sequences
ending by one termination mark: Ssit<ω.{δ+, δ−}.

8

A. Brogi et al

(ii) Define the “history semantics” Oh : LΨ → P(Shist) as the following
function: For any agent A,

Oh(A) =

{(θ0, σ0). · · · .(θn, σn).δ
+ : 〈A0 | (θ0, σ0)〉 → · · · 〈An | (θn, σn)〉,
A0 = A, θ0 =⊥, σ0 = ∅, An = E, n ≥ 0}

∪
{(θ0, σ0). · · · .(θn, σn).δ

− : 〈A0 | (θ0, σ0)〉 → · · · 〈An | (θn, σn)〉 �→,
A0 = A, θ0 =⊥, σ0 = ∅, An �= E, n ≥ 0}

2.2.4 On compositionality.

It is here worth noting that the operational semantics Oh is not compositional.
For instance, taking Ψ1 and Ψ2 two distinct and closed Ψ-terms, we have that:

Oh(get(Ψ1)) = Oh(get(Ψ2)) = {(⊥, ∅).δ−}

whereas

Oh(tell(Ψ1) || get(Ψ1))= {(⊥, ∅).(⊥, {Ψ1}).(⊥, ∅).δ+}
Oh(tell(Ψ1) || get(Ψ2))= {(⊥, ∅).(⊥, {Ψ2}).δ−}

Hence, Oh is not compositional.

The purpose of the next section is precisely to define a compositional se-
mantics for LΨ which is correct with respect to the history operational se-
mantics but which also contains a “minimal” amount of information to be
compositional. In other words, we shall try to define a fully abstract (compo-
sitional) semantics.

3 Fully abstract compositional semantics for histories

There are two main reasons why the history semantics Oh is not composi-
tional. First, the execution of a computation step produces a store and a
binding which are not necessarily empty. A compositional semantics should
therefore account for initial stores of any content and bindings of any values.
Second, as shown from the transition system, the computation of the agent
A || B amounts to interleaving execution steps of A and B. A compositional
semantics should thus allow for transition steps made by the environment.

Following [7], we shall model transition steps in the form of pairs of input
and output stores and take as semantic domain sets of sequences of such
pairs. These sequences possibly contain gaps, accounting for actions of the
environment. Moreover, they will start in any store, allowing previous steps
to result in a possibly non-empty store.

9

A. Brogi et al

3.1 Notation

Before proceeding, it is convenient to introduce some notations.

Definition 3.1 Define Shhist as the following set

Shhist = {h = ((θ1, σ1), (κ1, τ1)). · · · .((θn−1, σn−1), (κn−1, τn−1)).((θn, σn), δ) :

θi, κi ∈ Saffect , σi, τi ∈ Setat for i = 1, . . . , n, δ ∈ {δ+, δ−}
and κi ≺ θi+1 for i = 1, . . . , n− 1}

Notation 3.2

(i) Let S be a set of histories of Shhist and p be a sequence of (Ssit×Ssit)<ω.
Then

S[p] = {h : p.h ∈ S}
(ii) Let S be a set of histories of Shhist. Then,

Sa = {h : h = (s, t).h′ ∈ S}
S+= {h : h = (s, δ+) ∈ S}
S−= {h : h = (s, δ−) ∈ S}

(iii) Let h be an history of Shhist. Then

init(h) =

s if h = (s, t).h′

s if h = (s, δ), δ ∈ {δ+, δ−}
(iv) For n ≥ 0 and δ ∈ {δ+, δ−}, let

h = ((θ1, σ1), (κ1, τ1)). · · · .((θn−1, σn−1), (κn−1, τn−1)).((θn, σn), δ)

be an history of Shhist. Then

diff (h) = (σ1 \ τ1) ∪ (τ1 \ σ1) ∪ · · · ∪ (σn−1 \ τn−1) ∪ (τn−1 \ σn−1)

where ∪ and \ denote, respectively, multiset union and difference. Abus-
ing notations, we shall lift diff to sets of histories in the natural way:
For any set S of histories of Shhist,

diff (S) =
⋃
{diff (h) : h ∈ S}

(v) Let h = ((θ1, σ1), (κ1, τ1)). · · · .((θn−1, σn−1), (κn−1, τn−1)).((θn, σn), δ) be
an history of Shhist. Then

V ars(h)= {x ∈ Svar : ∃i ∈ {1, . . . , n− 1} : κi(x) �= θi(x)}
Ext(h)= {x ∈ Svar : ∃i ∈ {1, . . . , n− 1} : θi+1(x) �= κi(x)}

By extension, we shall lift these notations to sets of histories: for any
S ⊆ Shhist,

V ar(S)=
⋃
h∈S

V ars(h)

Ext(S)=
⋃
h∈S

Ext(h)

10

A. Brogi et al

Definition 3.3 An history h ∈ Shhist is continuous iff it has the form

(s0, s1).(s1, s2). · · · .(sn−1, sn).(sn, δ)

with δ ∈ {δ+, δ−}. In that case, h denotes the following sequence of stores

h = s0.s1. · · · .sn.δ

3.2 Denotational semantics

Defining a compositional semantics consists of, on the one hand, specifying
the meaning of elementary statements and, on the other hand, providing an
operator at the semantic level for each syntactic operator. We start with
this second task in the following section. A compositional semantics, called
denotational in view of the compositionality property, is defined next. It is
then proved correct with respect to the history operational semantics Oh, and
finally it is established to be fully abstract.

3.2.1 Property.

Before going into the details of the definitions, it is worth observing that the
variable non-sharing constraint we have requested from the parallel composi-
tion of agents imposes that an agent cannot expect from its environment to
modify the values of variables that it modifies. Technically speaking, for any
agent A and history h of the denotational semantics Dh(A) of A, the following
equality should thus hold:

V ars(h) ∩ Ext(h) = ∅.
This property is even more general: none of the histories associated with
an agent may expect the environment to modify a variable modified by the
history. In other terms,

V ars(Dh(A)) ∩ Ext(Dh(A)) = ∅.

3.2.2 Semantic operators.

There are three syntactic operators to combine elementary agents: Sequential
composition, parallel composition, and choice. Let us examine each of them
in turn.

Sequential composition. Since semantic histories may include gaps and begin
with any input store and any binding, composing the meaning of two agents
which are sequentially composed amounts to concatenating their histories.
However, some of the resulting histories may violate the values increasing
condition κi ≺ θi+1 of definition 3.1. An intersection with Shhist is introduced
for that purpose. Moreover, care is taken in the expected manner for the
termination marks. This leads to the following operator.

11

A. Brogi et al

Definition 3.4 Define ;̃ : P(Shhist) × P(Shhist) → P(Shhist) as the
following function: For any subset S1, S2 of Shhist,

S1 ;̃ S2 = {h1.h2 : h1.(σ, δ+) ∈ S1, h2 ∈ S2,
Ext(h) ∩ (V ars(S1) ∪ V ars(S2)) = ∅} ∩ Shhist

∪ {h1.(σ, δ−) : h1.(σ, δ−) ∈ S1,
Ext(h) ∩ (V ars(S1) ∪ V ars(S2)) = ∅}

Parallel composition. Parallel composition is modelled in an interleaving fash-
ion. Consequently, composing in parallel two semantic histories amounts to
take their merge. Again care has to be taken to termination marks and on
the value increasing constraint, as formalized below.

Definition 3.5 Define the parallel composition of two histories as the func-

tion ‖̃h : Shhist× Shhist→ P(Shhist) defined inductively by the following
equalities, where δ stands either for δ+ or δ−.

(s1, t1).h1 ‖̃h (s2, t2).h2= ({(s1, t1).h : h ∈ h1 ‖̃h (s2, t2).h2} ∩ Shhist)
∪ ({(s2, t2).h : h ∈ (s1, t1).h1 ‖̃h h2} ∩ Shhist)

(s1, t1).h1 ‖̃h (s2, δ2)= (s2, δ2) ‖̃h (s1, t1).h1

= {(s1, t1).h : h ∈ h1 ‖̃h (s2, δ2)} ∩ Shhist

(s1, δ1) ‖̃h (s2, δ2)=

{(s1, δ+)}, if s1 = s2 and δ1 = δ2 = δ+

{(s1, δ−)}, if 1) s1 = s2 and

2) δ1 = δ
− or δ2 = δ

−

∅, if s1 �= s2
Definition 3.6 Define the parallel composition of two sets of histories as the

natural lifting of function ‖̃h , namely as the function ‖̃ : P(Shhist) ×
P(Shhist)→ P(Shhist) defined as follows: for any subset S1, S2 of Shhist,

S1 ‖̃ S2 =

⋃ {h1 ‖̃h h2 : h1 ∈ S1, h2 ∈ S2,
Ext(h) ∩ (V ars(S1) ∪ V ars(S2)) = ∅},

if V ars(S1) ∩ V ars(S2) = ∅
∅, otherwise

Note that the composition of histories has been made possible only if they
do not affect common variables.

12

A. Brogi et al

Choice. Choice is modelled as an internal choice, namely an agent formed
from the choice of two agents can proceed as any of its components. As before
care has to be taken for termination marks. The composed agent fails if the
two components do so; it succeeds if at least one of the two components does.

Definition 3.7 Define +̃ : P(Shhist) × P(Shhist) → P(Shhist) as the
following function: for any subset S1, S2 of Shhist,

S1 +̃ S2 = {h ∈ Sa
1 ∪ Sa

2 : Ext(h) ∩ (V ars(S1) ∪ V ars(S2)) = ∅}
∪ S+

1 ∪ S+
2 ∪ (S−

1 ∩ S−
2)

3.2.3 Definition.

Given the operators ;̃ , ‖̃ , and +̃ , defining the denotational semantics
amounts to specifying the semantics of the basic constructs tell, ask, nask,
get and of the instructions, typically denoted instr. This is achieved according
to the intuition given by their operational behavior.

Definition 3.8 Define the denotational semantics as the following function
Dh : Sagent → P(Shhist): for any Ψ-term Ψ, for any instruction instr, for
any agents A1, A2,

Dh(tell(ψ))= {((θ, σ), (θ, σ ∪ {ψ})).((κ, τ), δ+) : σ, τ ∈ Sstore,
θ, κ ∈ Sbin, θ ≺ κ}

Dh(ask(ψ))= {((θ, σ), (θµ, σ)).((κ, τ), δ+) : σ, τ ∈ Sstore, ψc ∈ σ,
ψ
 ψc = µ, θ, κ ∈ Sbind, θµ ≺ κ, κµ = κ}

∪ {((θ, σ), δ−) : σ ∈ Sstore, θ ∈ Sbind,
� ∃ψc ∈ σ : ψ corresponds to ψc}

Dh(nask(ψ))= {((θ, σ), (θ, σ)).((κ, τ), δ+) : σ, τ ∈ Sbind,
� ∃ψc ∈ σ : ψ corresponds to ψc, θ, κ ∈ Saffect, θ ≺ κ}
∪ {((θ, σ), δ−) : σ ∈ Setat, θ ∈ Sbind,

∃ψc ∈ σ : ψ corresponds to ψc}
Dh(get(ψ))= {((θ, σ), (θµ, σ \ {ψc})).((κ, τ), δ+) : σ, τ ∈ Sstore,

ψc ∈ σ, ψ
 ψc = µθ, κ ∈ Sbind, θµ ≺ κ, κµ = κ}
∪ {((θ, σ), δ−) : σ ∈ Sstore, θ ∈ Sbind,

� ∃ψc ∈ σψ corresponds to ψc}
13

A. Brogi et al

Dh(instr)= {((θ, σ), (θ, σ)).((κ, τ), δ+) : σ, τ ∈ Sstore, θ, κ ∈ Sbind,
executable(instr, θ), θ ≺ κ}

∪ {((θ, σ), δ−) : σ ∈ Sstore,¬executable(instr, θ)}
Dh(A1 ; A2)=Dh(A1) ;̃ Dh(A2)

Dh(A1 || A2)=Dh(A1) ‖̃ Dh(A2)

Dh(A1 + A2)=Dh(A1) +̃ Dh(A2)

3.2.4 Properties.

It is easy to observe that the semantics Dh is compositional by construction. It
is also correct with respect to the semantics Oh in the sense that the latter can
be obtained from Dh. Indeed, it is sufficient to take the continous histories
from Dh starting in the empty store and the empty binding to get those
produced by Oh.

Proposition 3.9 Let α : P(Shhist) → P(Shhist) be defined as follows: for
any subset S ⊆ Shhist,

α(S) = {h : h ∈ S, h continuous, init(h) = (⊥, ∅)}.
Then

Oh = α ◦ Dh.

Proof By structural reasoning.

Proposition 3.9 establishes that if two agents A1 and A2 have same deno-
tation, viz. Dh(A1) = Dh(A2), then they are indistinguishable in any context.

Note that, as a corollary of this proposition an operational history s1. · · · .sn.δ
corresponds biunivoquely to a continuous denotational history starting in the
empty binding and empty store: ((⊥, ∅), s1). · · · .(sn, δ).

The denotational semantics can also be characterized in terms of the op-
erational semantics as follows.

Proposition 3.10 Extend the denotational semantics to the empty agent E
as follows:

Dh(E) = {(s, δ+) : s ∈ Ssit}.
Let A be an agent and (θ, σ), (κ, τ) be situations such that Dh(A)[((θ, σ), (κ, τ))] �=
∅. Moreover, let B1, . . . , Bm be all the agents such that

〈A | (θ, σ)〉 → 〈B | (κ, τ)〉
Then,

Dh(A)[((θ, σ), (κ, τ))] = Dh(B1) ∪ · · · ∪ Dh(Bm).

Proof By structural reasoning.

14

A. Brogi et al

Note that Dh(B1) ∪ · · · ∪ Dh(Bm) is almost Dh(B1 + · · · + Bm). They
actually differ by the treatment of immediately failing computations: All of
them are registered in Dh(B1)∪· · ·∪Dh(Bm) while only those common to B1,
. . . , Bm appear in the denotational semantics of B1 + · · ·+Bm.

The next property to ask is whether Dh contains the least information nec-
essary to be compositional and correct. That corresponds to a full abstraction
result. This result is so involved that it deserves a complete section, which is
done in the next section.

As a preliminary result, it is interesting to observe that for any agent A,
the denotational semantics Dh(A) is extensible in the following sense.

Proposition 3.11 For any agent A, any situations s, s1, . . . , sn,

(i) if Dh(A) �= ∅, there is a continuous history in Dh(A) starting in s

(ii) if Dh(A)[(s1, s2). · · · .(sn−1, sn)] �= ∅ then there is a continuous history in
Dh(A) of the form (s1, s2). · · · .(sn−1, sn).h

′

Proof By structural reasoning.

3.3 Full abstraction

3.3.1 Definitions.

Definition 3.12 Let ✷ be a fresh symbol. Define the set of contexts Scontext
by the following rules, where t is a token, A is an agent and c denotes a
communication action.

C ::=✷ | A | C ; A | A ; C | C || A | A || C | C + A | A + C

The application of a context C to an agent A is defined as the new agent ob-
tained by replacing the place holder ✷ in C, if any, by A. This is subsequently
denoted as C[A].

Definition 3.13 The semantics Dh is fully abstract with respect to the se-
mantics Oh iff the following property holds: for any agents A1, A2, the follow-
ing assertions are equivalent

i) for any context C, Oh(C[A1]) = Oh(C[A2]);

ii) Dh(A1) = Dh(A2).

3.3.2 Intuition.

The compositional property of Dh together with proposition 3.9 establish the
implication (ii) ⇒ (i). It thus remains to prove the converse (i) ⇒ (ii). To
that end, we shall proceed by contraposition. Given two agents A1, A2 such
that

Dh(A1) �=Dh(A2)

we shall construct a context C such that

15

A. Brogi et al

Oh(C[A1]) �= Oh(C[A2])

The two semantics reporting sets, the construction amounts to construct-
ing from a denotational history h of one agent, say A1, which is not in the
denotation of the other A2, a context C and an operational history of C[A1]
not of C[A2]. In view of the relation between Oh and Dh as shown by α
in proposition 3.9, this amounts to establishing the existence of a continu-
ous denotational history, starting in (⊥, ∅), which is in Dh(C[A1]) and not in
Dh(C[A2]). To that end, following [7], we shall construct from h a new history
h′ and an agent T such that h′ is in the denotation of A1 || T and not in the
denotation of A2 || T .

The proof basically proceeds by induction on the length of h.

In the base case, h takes the form ((θ, σ), δ) with δ being either δ+ or δ−.
The tester T then essentially constructs a continuous sequence yielding (θ, σ)
from the initial situation (⊥, ∅) in a way that, on the one hand, prevents A1

and A2 to do any intermediary step, and, on the other hand, forces A1 and A2

to do the last step ((θ, σ), δ). By hypothesis, this is possible for A1 and not
for A2.

In the inductive case, h takes the form ((θ, σ), (κ, τ)).h∗ for some history h∗.
Two cases are possible: either there is no history starting by ((θ, σ), (κ, τ))
in Dh(A2) or those which start by ((θ, σ), (κ, τ)) cannot end by h∗. In the
first case, the proof proceeds as in the base case. In the second case, the
proof uses induction. However, the induction should be applied for h∗ in
Dh(A1)[((θ, σ), (κ, τ))] and not in Dh(A2)[((θ, σ), (κ, τ))]. As stated by propo-
sition 3.10, these sets turned out to be basically but not exactly the denota-
tions Dh(A

′
1) and Dh(A

′
2), of some agents A′

1 and A′
2. We shall consequently

generalize a bit the induction to sets of denotational histories. This extension
being discarded here for the sake of simplicity, we thus apply the induction
hypothesis for h∗, A′

1 and A
′
2. It points out a tester T

′ and an history h′′ which
is in Dh(A

′
1 || T ′) and not in Dh(A

′
2 || T ′). From there we should construct a

tester T and an history h′′′ in Dh(A1 || T) and not in Dh(A2 || T). Basically,
the step ((θ, σ), (κ, τ)) has to be done before h′′ and since h′′′ needs to be
continuous, h′′ has to start in a possibly non empty situation. Hence, we have
to generalize the theorem and construct in general from h an history h′ which
start in any binding and any initial store. Given this generalization, the tester
T basically consists of first making the steps necessary to produce (θ, σ) from
the given initial store, then of making an auxiliary transition from τ to some
τ ′ chosen so as to ensure that A1 and A2 have to do the step ((θ, σ), (κ, τ)),
modify the bindings to the variables to make them identical to those of the
initial situation of h′′ and finally consists of T ′.

3.3.3 Auxiliary concepts.

The above intuition points out two auxiliary tasks. The first one consists of
making by an auxiliary agent the steps necessary to modify a binding θ in a
binding κ ! θ while preserving a store σ. This is the purpose of the agent

16

A. Brogi et al

BW
(θ,σ)→(κ,σ). The second task is to produce a given target store τ from a given

initial store σ while preserving a binding θ. These steps are subsequently
achieved by means of the following agent AgV

(θ,σ)→(θ,τ).

Definition 3.14 Let θ, κ be two bindings such that θ ≺ κ. Let σ be a store
and W be a set of Ψ-terms. Then the agent BW

(θ,σ)→(κ,σ) is defined as follows.
Let us denote by µ the binding defined by

µ(x) =

κ(x) if κ(x) �= θ(x)
⊥ if κ(x) = θ(x).

Note that it is such that κ = θµ. Moreover let us denote by x1, . . . , xn the
variables such that µ(xi) �=⊥. Let now f be a functor of arity n which appears
in none of the Ψ-terms in σ, nor in W . Construct then the Ψ-terms

Ψc = f(t1 = µ(x1), · · · , tn = µ(xn))

Ψ= f(t1 = x1, · · · , tn = xn)

Define BW
(θ,σ)→(κ,σ) as the agent

tell(Ψc); get(Ψ).

Obviously, the history

((θ, σ), (θ, σ ∪ {ψ})).((θ, σ ∪ {ψ}), (θµ, σ)).((θµ, σ), δ+)
is an history of Dh(B

W
(θ,σ)→(κ,σ)). We shall denote it by ΓW

(θ,σ)→(κ,σ).

It is here worth stressing that we will not be able later to put the agent
BW

(θ,σ)→(κ,σ) in parallel with other agents manipulating common variables. By
doing so, we would then end up with an empty denotational semantics.

Definition 3.15 Let V be a finite set of Ψ-terms, σ and τ be two stores, and
θ be a binding. Let

σ \ τ = {g1, · · · , gm}
τ \ σ= {t1, · · · , tn}

with m,n ≥ 0. Let a1, . . . , am+n be the closes Ψ-terms not in V , σ, and τ .
Abusing language by forgetting in the notation about these ai’s, we denote by
AgV

(θ,σ)→(θ,τ), the agent

get(g1); tell(a1);

· · ·
get(gm); tell(am);

tell(t1); tell(am+1);

· · ·
tell(tn); tell(am+n);

get(a1); · · · ; get(am+n)

17

A. Brogi et al

Note that, as all the get primitives have a closed Ψ-term as argument, they
cannot modify the binding of any variables. Hence V ars(Dh(Ag

V
(θ,σ)→(θ,τ))) =

∅ holds. Moreover, we note by ΣV
(θ,σ)→(θ,τ) the associated sequence of states

((θ, ξ0), (θ, γ1)).((θ, γ1), (θ, ξ1)).

· · ·
((θ, ξm−1), (θ, γm)).((θ, γm), (θ, ξm)).

((θ, ξm), (θ, τ1)).((θ, τ1), (θ, ξm+1)).

· · ·
((θ, ξm+n−1), (θ, τn)).((θ, τn), (θ, ξm+n)).

((θ, ρ0), (θ, ρ1)). · · · .((θ, ρm+n−1), (θ, ρm+n))

where

ξ0 = σ

ρ0 = ξm+n

ρm+n = τ

γi = ξi−1 \ {gi} (1 ≤ i ≤ m)

ξi = γi ∪ {ai} (1 ≤ i ≤ m)

τj = ξm+j−1 ∪ {tj} (1 ≤ j ≤ n)
ξm+j = τj ∪ {am+j} (1 ≤ j ≤ n)
ρk = ρk−1 \ {ak} (1 ≤ k ≤ m+ n)

Obviously, AgV
(θ,σ)→(θ,τ) can generate histories of the form

ΣV
(θ,σ)→(θ,τ).((κ, γ), δ

+) for any binding κ such that θ ≺ κ and any store
γ. If V is suitably chosen, it also has the property of being responsible for
making the steps of ΣV

(θ,σ)→(θ,τ) when placed in parallel with another agent.

Proposition 3.16 Let σ and τ be two stores. Let θ be a binding. Let A be
an agent and let V contain the Ψ-terms present in the tell, get, ask and nask
communication primitives of A.

(i) Any history h = ΣV
(θ,σ)→(θ,τ).h

′ of Dh(Ag
V
(θ,σ)→(θ,τ) || A) is of the set

ΣV
(θ,σ)→(θ,τ).((κ, γ), δ

+) ‖̃h ha for some store γ, some binding κ ! θ and

some history ha ∈ Dh(A).

(ii) For any agent B, any history h = ΣV
(θ,σ)→(θ,τ).h

′ of

Dh((Ag
V
(θ,σ)→(θ,τ) ; B) || A) is of the set ΣV

(θ,σ)→(θ,τ).hb ‖̃h ha for

some histories ha ∈ Dh(A) and hb ∈ Dh(B).

Proof Let us establish the first part of the proposition, the proof of the

18

A. Brogi et al

other part being similar.

By definition 3.8, if h is in Dh(Ag
V
(θ,σ)→(θ,τ) || A), there are h1 ∈

Dh(Ag
V
(θ,σ)→(θ,τ)) and h2 ∈ Dh(A) such that h ∈ h1 ‖̃h h2. Moreover, in

view of AgV
(θ,σ)→(θ,τ), h1 is necessarily of the following form:

((θ1, α1), (θ1, α1 \ {g1})).((θ2, β1), (θ2, β1 ∪ {a1})).
· · · .

((θ2m−1, αm), (θ2m−1, αm \ {gm})).((θ2m, βm), (θ2m, βm ∪ {am})).
((θ2m+1, αm+1), (θ2m+1, αm+1 ∪ {t1})).
((θ2m+2, βm+1), (θ2m+2, βm+1 ∪ {am+1})).

· · ·
((θ2m+2n−1, αm+n), (θ2m+2n−1, αm+n ∪ {tn})).

((θ2m+2n, βm+n), (θ2m+2n, βm+n ∪ {am+n})).
((θ2m+2n+1, π1), (θ2m+2n+1, π1 \ {a1})).

· · ·
((θ3m+3n, πm+n), (θ3m+3n, πm+n \ {am+n}))

Let us first progressively establish that h1 = ΣV
(θ,σ)→(θ,τ).h

′
1 for some history

h′1.
Using the notations of definition 3.15, we first observe that h2 cannot be of

the form ((θ, ξ0), (θ, γ1)).h
′
2. Indeed, if this was the case, then, in view of the

merge operator ‖̃h , either h1 = ((θ, γ1), (θ, ξ1)).h
′
1 or h

′
2 = ((θ, γ1), (θ, ξ1)).h

′′
2.

However, both cases are impossible. In the first case, in view of the above form
of h1, one would have ξ1 = γ1 \{g1} and thus a1 �∈ ξ1 since a1 �∈ γ1 whereas by
definition of ξ1, a1 ∈ ξ1. In the second case, since a1 cannot be told by A by
choice of a1, then again a1 �∈ ξ1 whereas by definition of ξ1, a1 ∈ ξ1. Hence,

h1 = ((θ, ξ0), (θ, γ1)).r1

Moreover, as just explained, by its choice, a1 cannot be told by A and con-
sequently, h2 cannot be of the form h2 = ((θ, γ1), (θ, ξ1)).h

′
2, f or some h′2. It

follows that

h1 = ((θ, ξ0), (θ, γ1)).((θ, γ1), (θ, ξ1)).r2

By similar reasoning, h1 can be proved to be of the form

h1 = ((θ, ξ0), (θ, γ1)).((θ, γ1), (θ, ξ1)). · · · .
((θ, ξm−1), (θ, γm)).((θ, γm), (θ, ξm)).

((θ, ξm), (θ, τ1)).((θ, τ1), (θ, ξm+1)). · · ·
((θ, ξm+n−1), (θ, τn)).((θ, τn), (θ, ξm+n)).r3

19

A. Brogi et al

Now, since by definition A cannot get any ai, h1 must further be of the
form

((θ, ξ0), (θ, γ1)).((θ, γ1), (θ, ξ1)).

· · · .
((θ, ξm−1), (θ, γm)).((θ, γm), (θ, ξm)).

((θ, ξm), (θ, τ1)).((θ, τ1), (θ, ξm+1)).

· · ·
((θ, ξm+n−1), (θ, τn)).((θ, τn), (θ, ξm+n)).

((θ, ρ0), (θ, ρ1)).

· · ·
((θ, ρm+n−1), (θ, ρm+n)).r4

Summing up, the agent AgV
(θ,σ)→(θ,τ) has made all the 3*(m+n) steps and

thus has reached completion successfully. It follows that r4 should be ((κ, γ), δ
+),

for some store γ and some binding κ ! θ.

Proposition 3.16 can be extended to more general sets of denotational
histories.

Definition 3.17 A set of denotational histories is called coherent if it is ex-
tensible (in the sense of proposition 3.11), if it its set diff (S) is finite and if it
satisfies V ars(S) ∩ Ext(S) = ∅.
Proposition 3.18 Let σ and τ be two stores. Let S be a coherent subset of
Shhist and let V contain diff (S).

(i) Any history h = ΣV
(θ,σ)→(θ,τ).h

′ of Dh(Ag
V
(θ,σ)→(θ,τ)) ‖̃ S is of the set

ΣV
(θ,σ)→(θ,τ).((κ, γ), δ

+) ‖̃h hs for some store γ, some binding κ ! θ, and
some history hs ∈ S.

(ii) For any agent B, any history h = ΣV
(θ,σ)→(θ,τ).h

′ of

Dh(Ag
V
(θ,σ)→(θ,τ) ; B) ‖̃ S is of the set ΣV

(θ,σ)→(θ,τ).hb ‖̃h hs for

some histories hs ∈ S and hb ∈ Dh(B).

Proof Similar to that of proposition 3.16.

3.3.4 Key proposition.

Theorem 3.19 Let S1, S2 be two coherent subsets of Shhist such that S1 \
S2 �= ∅. Let g ∈ S1 \ S2 of minimal length and init(g) = (θ, σ). Then, for
any store α, there is an agent T such that V ars(Dh(T)) ⊆ Ext(S1) and a

continuous history h ∈ (S1 ‖̃ Dh(T)) \ (S2 ‖̃ Dh(T)) which starts in (θ, α).

20

A. Brogi et al

Proof The proof is conducted by induction on the minimum Lg of the length
of the histories which are in S1 and not in S2.

Case I: Lg = 1.

Then g ∈ S1 \ S2 is of the form ((θ, σ), δ+) or of the form ((θ, σ), δ−).
Subcase i: g = ((θ, σ), δ+). Let us first examine the case where g =

((θ, σ), δ+). By hypothesis, ((θ, σ), δ+) �∈ S2. Let V be the set diff (S2). Con-
sider T = AgV

(θ,α)→(θ,σ). Obviously, V ars(Dh(T)) = ∅ and thus V ars(Dh(T)) ⊆
Ext(S1). Moreover, h = ΣV

(θ,α)→(θ,σ).((θ, σ), δ
+) is a continuous history be-

longing to S1 ‖̃ Dh(T). To conclude in this case, let us prove that it does not

belong to S2 ‖̃ Dh(T). Indeed, if so, by proposition 3.18, h should come from
the following merge:

h ∈ ΣV
(θ,α)→(θ,σ).((κ, γ), δ

+) ‖̃h hs

for some store γ, some binding κ ! θ and some history hs ∈ S2. Moreover,
since h ends after ΣV

(θ,α)→(θ,σ) by ((θ, σ), δ+), one should have, by definition of

the merge (see definition 3.5), γ = σ, κ = θ, and hs = (σ, δ+). Therefore,
((θ, σ), δ+) should belong to S2, which contradicts the hypothesis on A2.

Subcase ii: g = ((θ, σ), δ−). The case where g = ((θ, σ), δ−) can be treated
similarly with the proof ending by noting that hs = ((θ, σ), δ−) should belong
to S2, which contradicts the hypothesis.

Case II: Lg > 1.

Let us now consider the case where the minimum of the lengths of the
histories of S1 \ S2 is greater than 1. In that case, g is of the form g =
((θ, σ), (κ, τ)).h′ f or some stores σ, τ , some bindings θ, κ, and some history
h′. There are two cases to be considered: either S2[((θ, σ), (κ, τ))] = ∅ or
S2[((θ, σ), (κ, τ))] �= ∅ but h′ �∈ S2[((θ, σ), (κ, τ))].

Subcase i: S2[((θ, σ), (κ, τ))] = ∅. If S2[((θ, σ), (κ, τ))] = ∅, then let us
first observe, by proposition 3.11, that there is a continuous history of the
form ((θ, σ), (κ, τ)).hr in S1. Let us then consider V and T = AgV

(θ,α)→(θ,σ)

as above. Obviously, h∗ = ΣV
(θ,α)→(θ,σ).((θ, σ), (κ, τ)).hr is a continuous his-

tory starting in (θ, α). Moreover, if ((ρ, ω), δ) is the last pair of the sequence
hr, then h

∗ belongs to the merge of the histories ΣV
(θ,α)→(θ,σ).((ρ, ω), δ

+) and

((θ, σ), (κ, τ)).hr, and consequently to S1 ‖̃ Dh(T). To conclude, let us es-

tablish that it does not belong to S2 ‖̃ Dh(T). Indeed, otherwise, following
proposition 3.18, h∗ should then come from the merge of two histories of the
form ΣV

(θ,α)→(θ,σ).((φ, γ), δ
+) and hs with hs ∈ S2. According to the definition

of the merge operation, one would then have hs = ((θ, σ), (κ, τ)).hr and thus
S2[((θ, σ), (κ, τ))] would be non-empty, which contradicts the hypothesis.

Subcase ii: S2[((θ, σ), (κ, τ))] �= ∅ but g′ �∈ S2[((θ, σ), (κ, τ))]. In that
case, by hypothesis g′ ∈ S1[((θ, σ), (κ, τ))] \ S2[((θ, σ), (κ, τ))] and the min-
imum of the length of those histories which are in S1[((θ, σ), (κ, τ))] and

21

A. Brogi et al

not in S2[((θ, σ), (κ, τ))] is strictly less than Lg. We are thus in the posi-
tion of applying the induction hypothesis. Let init(g′) = (θ′, σ′). Note that
Ext(S1[((θ, σ), (κ, τ))]) ⊆ Ext(S1) and V ars(S1[((θ, σ), (κ, τ))]) ⊆ V ars(S1).
Applying the induction hypothesis delivers, for an arbitrarily given store α′

— to be specified in a moment — a tester T ′ such that V ars(Dh(T
′)) ⊆

Ext(S1[((θ, σ), (κ, τ))]) and a continuous history h∗r starting in (θ′, α′) and

which is in (S1[((θ, σ), (κ, τ))] ‖̃ Dh(T
′)) \ (S2[((θ, σ), (κ, τ))] ‖̃ Dh(T

′)). The
proof then consists of prefixing T ′ by some actions, yielding T , and h∗r by a
suitable sequence, yielding h∗, such that h∗ starts, as required, in (θ, α), is

continuous, and is in S1 ‖̃ Dh(T) and not in S2 ‖̃ Dh(T). Applying the previ-
ous technique, T should start by AgV

(θ,α)→(θ,σ) to bring the situation (θ, α) to

(θ, σ), then leave S1 and S2 do the step ((θ, σ), (κ, τ)), follow by BW
(κ,α′)→(θ′,α′)

where W is taken as diff (S2) and finally resume by doing T ′. In order to
force the Si’s to do so, we need a trick which basically consists of adding in
h∗ after ((θ, σ), (κ, τ)) a step that can only be made by T . Hence, let t be a
fresh closed Ψ-term not appearing in diff (S1), diff (S2), and in the Ψ-terms
used by AgV

(θ,α)→(θ,σ) and let α′ be τ ∪ {t}. Moreover, let us take

T = AgV
(θ,α)→(θ,σ) ; tell(t) ; B

W
(κ,α′)→(θ′,α′) ; T

′

and

h∗ = ΣV
(θ,α)→(θ,σ).((θ, σ), (κ, τ)).((κ, τ), (κ, α

′)).ΓW
(κ,α′)→(θ′,α′).h

∗
r.

Note that AgV
(θ,α)→(θ,σ) and tell(t) interfere with no variables. Moreover,

BW
(κ,α′)→(θ′,α′) is such that

V ars(BW
(κ,α′)→(θ′,α′)) ⊆ Ext(g) ⊆ Ext(S1)

and the agent T ′ affects only the variables ofExt(S1[((θ, σ), (κ, τ))]) ⊆ Ext(S1).
The agent T thus does not alter the variables of Ext(S1). Finally, the history

h∗ is in (S1 ‖̃ Dh(T)). Indeed, as h∗r is in (S1[((θ, σ), (κ, τ))] ‖̃ Dh(T
′)), there

are h1 ∈ S1[((θ, σ), (κ, τ))] and ht ∈ Dh(T
′) such that h∗r ∈ h1 ‖̃h ht. Conse-

quently, ((θ, σ), (κ, τ)).h1 ∈ S1 and ΣV
(θ,α)→(θ,σ).((κ, τ), (κ, α

′)).ΓW
(κ,α′)→(θ′,α′).ht ∈

Dh(T). Summming up,

h∗ ∈ ((θ, σ), (κ, τ)).h1 ‖̃h ΣV
(θ,α)→(θ,σ).((κ, τ), (κ, α

′)).((κ, α′), (θ′, α′)).ht

and thus h∗ is in S1 ‖̃ Dh(T).

To conclude, it remains to be established that h∗ �∈ S2 ‖̃ Dh(T). Two cases
need to be discussed according as T has variables in common with V ars(S2).

Case a. V ars(S2) ∩ V ars(Dh(T)) �= ∅. In this case, S2 ‖̃ Dh(T) = ∅ and
the proof is concluded.

Case b. V ar(S2)∩ V ars(Dh(T)) = ∅. Here we shall proceed by contradic-
tion as before. Otherwise, in view of proposition 3.18, h∗ should be in the set

ΣV
(θ,σ)→(κ,τ).ht ‖̃h hs for some histories ht ∈ Dh(tell(t) ; B

W
(κ,α′)→(θ′,α′) ; T

′) and
hs ∈ S2. Moreover, T cannot be responsible for the step ((θ, σ), (κ, τ)) ie, re-
stated in formal terms, ht cannot be of the form ht = ((θ, σ), (κ, τ)).h′t. Indeed,

22

A. Brogi et al

if this was the case, then τ = σ ∪ {t}, whereas by definition t �∈ τ . Hence,
hs = ((θ, σ), (κ, τ)).h′s for some history h′s. Note that, since hs ∈ S2, h′s ∈
S2[((θ, σ), (κ, τ))]. Moving one step further in h∗, again, thanks to the choice
of t, S2 cannot perform the step ((κ, τ), (κ, α′)) ie h′s cannot rewrite as h′s =
((κ, τ), (κ, α′)).h′′s . In view of the choice ofW , none of the steps of ΓW

(κ,α′)→(θ′,α′)
can be performed by h′s. Therefore, ht = ((κ, τ), (κ, α′)).ΓW

(κ,α′)→(θ′,α′).h
′
t.

Summing up, h∗r ∈ h′t ‖̃h h′s for some histories h′t ∈ Dh(T
′) and h′s ∈

S2[((θ, σ), (κ, τ))] and, consequently, h
∗
r ∈ S2[((θ, σ), (κ, τ))] ‖̃ Dh(T

′), which
contradicts the fact that by construction h∗r is in (S1[((θ, σ), (κ, τ))] ‖̃ Dh(T

′))\
(S2[((θ, σ), (κ, τ))] ‖̃ Dh(T

′)).

3.3.5 Proof of the full abstraction property.

We are now in a position to establish the full abstraction property.

Theorem 3.20 The semantics Dh is fully abstract with respect to the seman-
tics Oh.

Proof Following definition 3.13, two following properties should be estab-
lished equivalent:

i) for any context C, Oh(C[A1]) = Oh(C[A2]);

ii) Dh(A1) = Dh(A2).

The implication ii) ⇒ i) follows directly from proposition 3.9. The
other implication i) ⇒ ii) is proved by contraposition. Assume Dh(A1) �=
Dh(A2). Then, since both Dh(A1) and Dh(A2) are sets, there is an history
h which is in one set and not in the other one. Without lost of gener-
ality, we may assume that h ∈ Dh(A1) and h �∈ Dh(A2). Moreover, let
init(h) = (θ, σ). Then Dh(A1) \ Dh(A2) �= ∅ and, consequently taking as
coherent sets S1 = Dh(A1), S2 = Dh(A2), and ∅ as initial store α, the-
orem 3.19 establishes that there is an agent T and a continuous history

g ∈ (Dh(A1) ‖̃ Dh(T)) \ (Dh(A2) ‖̃ Dh(T)) which starts in (θ, ∅). Further-
more, V ars(Dh(T)) ⊆ Ext(Dh(A1)) ie V ars(Dh(T)) ∩ V ars(Dh(A1)) = ∅.
Note that, by definition 3.8, g ∈ Dh(A1 || T)\Dh(A2 || T). Consider now S =
B∅

(⊥,∅)→(θ,∅) and the history ((⊥, ∅), (⊥, {ψ})).((⊥, {ψ}), (θ, ∅)).((κ, τ), δ+) ∈
Dh(B(⊥,∅)→(θ,∅)). The history k = ((⊥, ∅), (⊥, {ψ})).((⊥, {ψ}), (θ, ∅)).g is con-

tinuous, starts in (⊥, ∅), belongs to Dh(S) ;̃ (Dh(A1) ‖̃ Dh(T)) but not to

Dh(S) ;̃ (Dh(A2) ‖̃ Dh(T)). Therefore, by proposition 3.9, k is an operational
history of Oh(S; (A1 || T)) which is not in Oh(S; (A2 || T)). There is thus a
context C = S; (✷ || T), such that Oh(C[A1]) �= Oh(C[A2]), which concludes
the proof.

23

A. Brogi et al

4 Concluding Remarks

We have considered a simple language that embodies the essential features of
coordination languages based on generative communication à la Linda as well
as an improved form of matching based on Ψ-terms.

The definition of a fully abstract compositional semantics for the language
sets a firm foundation for reasoning about agents and agent compositions
in a coordination-oriented setting. For instance, the denotational semantics
induces a number of semantic equalities among agents. The following propo-
sition reports a few classical ones.

Proposition 4.1

(C1) X + X = X

(C2) X + Y = Y + X

(C3) X + (Y + Z) = (X + Y) + Z

(P1) X || Y = Y || X
(P2) X || (Y || Z) = (X || Y) || Z

(SC) (X + Y) ; Z = (X ; Z) + (Y ; Z)

(E1) X ; E = X

(E2) E ; X = X

(E3) E || X = X

Proof Direct from definitions 3.4, 3.5, 3.6, 3.7, and 3.8.

It is worth noting that, on the other hand, the equality

X ; (Y + Z) = (X ; Y) + (X ; Z)

does not hold.

Future work will be devoted to develop and analyse semantics-preserving
program transformation techniques in this setting.

As we already pointed out in the Introduction, our work is an extension
of previous work on the denotational semantics of Linda-like languages ([1]).
It extends it so as to manipulate not just tokens but richer structures which
may be partially defined. These structures, called Ψ-terms, introduce the
need for novel treatments, notably for a proper handling of values generated
by primitives acting on the shared dataspace.

24

A. Brogi et al

As a result of our previous work, the denotational semantics proposed in
this paper takes also inspiration from the denotational models for concur-
rent languages proposed by Horita, de Bakker and Rutten in [7]. In [7] the
problem of defining fully abstract denotational semantics for concurrent lan-
guages is studied in the context of an concurrent imperative setting based on
assignments of variables and if-then-else constructs as basic operations. Our
contribution has been to show that whereas the concurrent language LΨ dif-
fers substantially from this setting, the denotational model proposed in [7] can
be applied to characterize LΨ. Namely, the idea of employing gaps in state
sequences to represent possible interactions of agents with the state and the
testing technique allow us to obtain a fully abstract compositional denota-
tional semantics for LΨ.

A general framework embodying a variety of concurrent languages all based
on asynchronous communication is studied in [6]. Among others, a full ab-
straction result similar to ours is claimed however without much details. Our
contribution was to show how the peculiarities of the LΨ language can be used
to actually establish the claim in a restricted setting.

Full abstraction for a shared variable parallel imperative language is also
studied in [2]. However, the observables are composed of the final states of
the computation coupled to termination marks. They thus substantially differ
from what is returned by the semantics Oh and hence, so are the denotational
semantics although traces are also used in [2].

De Nicola and Pugliese defined in [9] a testing scenario for a process al-
gebra based on Linda’s primitives. The language considered in [9] is richer
than the language LΨ considered in this paper, in that the former includes
several other composition operators and allows infinite processes. The work
by De Nicola and Pugliese however differs from ours in the type of description
chosen to model Linda-based coordination languages (testing vs. denotational
semantics).

5 Acknowledgment

The authors thank K. Apt, M. Bonsangue, J.W. de Bakker, F. de Boer, E. de
Vinck, E. Horita, J. Kok, U. Montanari, J. Rutten for stimulating discussions
on the semantics of coordination languages.

References

[1] A. Brogi and J.-M. Jacquet. Modeling Coordination via Asynchronous
Communication. In D. Garlan and D. Le Métayer, editors, Proceedings of
the Second International Conference on Coordination Languages and Models,
volume 1282 of Lecture Notes in Computer Science, pages 238–255, Berlin,
Germany, 1997.

25

A. Brogi et al

[2] S. Brookes. Full Abstraction for a Shared-Variable Parallel Language. In
Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer
Science, pages 98–109, Montreal, Canada, June 1993. IEEE Computer Society
Press.

[3] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, 1989.

[4] N. Carriero and D. Gelernter. Coordination Languages and Their Significance.
Communications of the ACM, 35(2):97–107, 1992.

[5] P. Ciancarini and C. Hankin, editors. Proceedings of The First International
Conference on Coordination Models and Languages, number 1061 in LNCS.
Springer-Verlag, 1996.

[6] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The Failure of
Failures in a Paradigm of Asynchronous Communication. In J.C.M. Baeten and
J.F. Groote, editors, Proc. 2nd Int. Conf. on Concurrency Theory (Concur’91),
volume 527 of Lecture Notes in Computer Science, pages 111–126, Amsterdam,
The Netherlands, 1991. Springer-Verlag.

[7] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully abstract denotational
models for nonuniform concurrent languages. Information and computation,
115(1):125–178, 1994.

[8] R. Milner. A Calculus of communicating systems. Springer-Verlag, 1980.

[9] R. De Nicola and R. Pugliese. A process algebra based on Linda. In
P. Ciancarini and C. Hankin, editors, COORDINATION 96, number 1061 in
LNCS. Springer-Verlag, 1996.

[10] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University, 1981.

26

