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Abstract In the last few years, several ensemble approaches have been proposed for building high

performance systems for computer vision. In this paper we propose a system that incorporates

several perturbation approaches and descriptors for a generic computer vision system. Some of

the approaches we investigate include using different global and bag-of-feature-based descriptors,

different clusterings for codebook creations, and different subspace projections for reducing the

dimensionality of the descriptors extracted from each region. The basic classifier used in our ensem-

bles is the Support Vector Machine. The ensemble decisions are combined by sum rule. The robust-

ness of our generic system is tested across several domains using popular benchmark datasets in

object classification, scene recognition, and building recognition. Of particular interest are tests

using the new VOC2012 database where we obtain an average precision of 88.7 (we submitted a

simplified version of our system to the person classification-object contest to compare our approach

with the true state-of-the-art in 2012). Our experimental section shows that we have succeeded in

obtaining our goal of a high performing generic object classification system.

The MATLAB code of our system will be publicly available at http://www.dei.unipd.it/wdyn/

?IDsezione=3314&IDgruppo_pass=124&preview=. Our free MATLAB toolbox can be used to

verify the results of our system. We also hope that our toolbox will serve as the foundation for fur-

ther explorations by other researchers in the computer vision field.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Given the vast amount of data being collected machine analysis

of image content is imperative (Müller et al., 2004; Lew et al.,
2006), a key issue is finding effective feature representations
for images. Early systems developed in the 1990s, e.g., Candid
(Kelly et al., 1995), Photobook (Pentland et al., 1996), and
ier B.V. All rights reserved.

http://www.dei.unipd.it/wdyn/?IDsezione=3314&amp;IDgruppo_pass=124&amp;preview=
http://www.dei.unipd.it/wdyn/?IDsezione=3314&amp;IDgruppo_pass=124&amp;preview=
mailto:loris.nanni@unibo.it
mailto:loris.nanni@unipd.it
http://dx.doi.org/10.1016/j.jksus.2013.11.001
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2013.11.001


90 L. Nanni et al.
Nextra (Ma et al., 1997), exploited simple global features based
on image color, texture, and shape. Approaches around the
turn of the century, e.g. (Li et al., 2003; Fergus et al., 2004), fo-

cused on constellation models to locate distinctive object parts
and to determine constraints on the spatial arrangement. The
main drawback of these representations is that they typically

are unable to handle significant deformations such as large
rotations and occlusions. Moreover, they fail to consider ob-
jects, such as trees and buildings, with variable numbers of

parts.
More recent systems have taken advantage of new develop-

ments in the application of local descriptors in pattern recog-
nition, computer vision, and image retrieval. Of particular

importance has been the use of such local features as keypoints
and image patches, which have shown great promise in several
application areas, including wide baseline matching for stereo

pairs (Baumberg, 2000; Tuytelaars and Gool, 2004), object
retrieval in videos (Sivic et al., 2004), object recognition
(Lowe, 2004), texture recognition (Lazebnik et al., 2005), robot

localization (Se et al., 2002), visual data mining (Sivic and
Zisserman, 2004), and symmetry detection (Turina et al.,
2001). A consensus has emerged from that literature support-

ing the value of the bag-of-words (BoW) technique for image
representation (Lowe, 2004). BoW is based on powerful
scale-invariant feature descriptors that are used to match iden-
tical regions between images by representing regions in a given

image that are covariant to a class of transformations.
Region matching using local image features handles illumi-

nation changes, blurring, zoom effects, and many degrees of

occlusion and of distortions in perspective. Approaches for re-
gion description have been proposed that analyze different as-
pects of images, such as color, texture, edges, and pixel

intensities. Some of the most promising descriptors are those
based on histogram distributions (Mikolajczyk and Schmid,
2005). Some important examples of these descriptors include

the intensity-domain spin image (Lazebnik et al., 2006), an his-
togram approach that represents regions using the distance
from the center point and intensity values; the SIFT descriptor
(Lowe, 2004), an histogram that takes the weighed gradient

locations and orientations; and the geodesic intensity histo-
gram (Ling and Jacobs, 2005), a histogram that provides a
deformation invariant local descriptor. Other descriptors of

this type include PCA-SIFT (Ke and Sukthankar, 2004), mo-
ment invariants (Gool et al., 1996), and complex filters (Schaf-
falitzky and Zisserman, 2002). Some powerful texture

descriptors include center-symmetric local binary patterns
(CS-LBP) Heikkilä et al., 2009, a LBP-based texture descriptor
which is computationally simpler than SIFT and more robust
to illumination problems. Another interesting result in region

description is reported in Nowak et al. (2006), where it is
shown that random sampling, in the case where a large number
of regions is available, gives equal or better classification rates

than the other more complex operators that are in common
use. Some recent effort on visual recognition for very large dat-
abases are (Lin et al., 2011; Krizhevsky et al., 2012; Perronnin

et al., 2010).
Some recent advances in the problem of building recogni-

tion are also noteworthy (Hutchings and Mayol-Cuevas,

2005; Jing and Allinson, 2009). The specific difficulties of this
task are the various forms of occlusions encountered (e.g.,
trees and moving vehicles) and the varying viewpoints in the
images. In Hutchings and Mayol-Cuevas, (2005); and Jing
and Allinson, (2009) global features (intensity and color infor-
mation at different scales) and local features (Gabor features
at several different scales and orientations) were extracted

from a database of building images and used as a powerful
feature vector. Moreover, in Jing and Allinson (2009) several
subspace learning-based dimensionality reductions were tested

and compared to improve performance and to alleviate com-
putational complexity.

Starting from these and other results, we report improve-

ments of our previously published generic system for object
recognition (Nanni et al., 2012, 2013). The new system re-
ported in this paper is based on the following ideas:

� The utilization of both local and global descriptors to
represent images; we fuse several texture descriptors.

� Dimensionality reduction of the texture descriptors

using principal component analysis (PCA) according
to the PCA-SIFT approach (Ke and Sukthankar,
2004); PCA handles the problems of high correlation

among the features as well as the curse of dimensional-
ity. Different projections are performed retaining differ-
ent training subsets for building different projection

matrices. In this way it is possible to build an ensemble
of classifiers by varying the projection matrix. For each
projection matrix a different classifier is trained.

� The utilization of the BoW approach by computing

textons considering different clusterings; each cluster
is performed separately using a subset of the images
of each class. In this way different global texton vocab-

ularies are created, and for each vocabulary a different
SVM is trained.

� A new method proposed in this paper that is based on

cloud of features where all the subwindows extracted
from a given region of the image are used to train a
one-class support vector machine.

The strength of this paper lies in the detailed experiments
that, together with the shared code, may provide helpful bases
for researchers interested in image classification, especially for

students who are new to the topic. Different local descriptors,
codebook generation methods, subwindow configurations, etc.
are combined together and state-of-the-art results are obtained

in the tested datasets.
Our new generic system is compared with other approaches

using several well-known and widely used datasets: a 15-class

scene dataset (Xiao et al., 2010), a building recognition dataset
(Amato et al., 2010), the caltech-256 dataset (Griffin et al.),
and the person classification dataset of the object classification
contest of VOC2012. The new VOC2012 is the last of a very

famous series of computer vision competitions, where our sys-
tem was submitted as a participant so that we could report a
comparison of our system with the true state-of-the-art of

2012. In 2001 the accuracy in the 15-class scene dataset was
only 73.3%; by 2012 it had become 88.1% (Xiao et al.,
2010). The system proposed in this paper obtains an accuracy

of 88.3% in the scene dataset; 95.6% in the building recogni-
tion; 40% in the caltech-256 dataset, and 88.7% in the per-
son-classification VOC2012 dataset.

A full-feature MATLAB toolbox containing all the source
codes used in our proposed system is available at http://
www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=
124&preview=. We plan on maintaining this toolbox and

http://www.dei.unipd.it/wdyn/?IDsezione=3314&amp;IDgruppo_pass=124&amp;preview=
http://www.dei.unipd.it/wdyn/?IDsezione=3314&amp;IDgruppo_pass=124&amp;preview=
http://www.dei.unipd.it/wdyn/?IDsezione=3314&amp;IDgruppo_pass=124&amp;preview=
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updating it with new descriptors useful for the object/building/
scene recognition problem. Our hope is that this toolbox will
serve as the foundation for further explorations by other

researchers in the field.
The rest of this paper is organized as follows. In Section 2

the texture descriptors used in our system are briefly reviewed.

In Section 3 the proposed approach for object/building/scene
recognition is explained in detail, and in Section 4 experimen-
tal results are presented and discussed. We conclude in

Section 5.

2. Descriptors

Below we describe some of the state-of-art descriptors used in
our system and experiments.

2.1. SIFT descriptor

The SIFT1 descriptor (Lowe, 2004) is a 3D histogram that
takes the gradient locations (in our case quantized into a
4 · 4 location grid) and orientations (quantized into eight val-

ues) and weighs them by the gradient magnitude and a Gauss-
ian window superimposed over the region. The SIFT
descriptor, which is obtained by concatenating the orientation

histograms over all bins and normalized to unit length, shows
how the local gradients around a point are aligned and distrib-
uted at different scales.

2.2. Local ternary patterns (LTP)

LTP is a recent variant (Tan and Triggs, 2007) of LBP. The

LBP operator is rotation invariant and evaluates the binary
difference between the gray value of a pixel x and the gray val-
ues of P neighboring pixels on a circle of radius R around x. A
problem with conventional LBP is its sensitivity to noise in the

near-uniform image regions. The three value encoding scheme
of LTP overcomes this problem. The implementation of LTP
used in our experiments is a modification of the original

LBP Matlab2 code. It includes three value encodings and a
normalized histogram.

In our experiments, we used both the rotation invariant

bins and the uniform bins, with each descriptor used to train
a different classifier. The final descriptor was obtained by con-
catenating the features extracted with (R= 1, P = 8) and
(R= 2, P = 16). We tested both LTP with uniform bins

(LTP-u) and LTP with rotation invariant uniform bins
(LTP-r).

2.3. Local phase quantization (LPQ)

LPQ3 is a texture descriptor (Ojansivu and Heikkila, 2008)
that uses the local phase information extracted from the 2-D

short-term Fourier transform (STFT) computed over a rectan-
gular neighborhood of radius R at each pixel position in an im-
age. Only four complex coefficients, corresponding to the 2-D
1 Matlab code available at http://www.vlfeat.org/~vedaldi/code/

sift.html.
2 Matlab code available at http://www.ee.oulu.fi/mvg/page/

lbp_matlab.
3 LPQ code available at http://www.ee.oulu.fi/mvg/download/lpq/.
frequencies, are considered and quantized using a scalar quan-
tizer between 0 and 255. The final descriptor is the normalized
histogram of the LPQ values. Different LPQ descriptors were

evaluated in our experiments, with two selected for our final
system. Both of these were extracted by varying the parameter
R (specifically, R = 3 and R= 5), and each descriptor was

used to train a different classifier.

2.4. GIST

The GIST descriptor (Oliva and Torralba, 2001) computes the
energy of a bank of Gabor-like filters evaluated at 8 orienta-
tions and 4 different scales. The square output of each filter

is then averaged on a 4 · 4 grid.

2.5. The histogram of oriented edges (HOG)

One way of looking at HOG (Dalal and Triggs, 2005) is as a

simplified version of SIFT. HOG calculates intensity gradients
from pixel to pixel and selects a corresponding histogram bin
for each pixel based on the gradient direction.

The HOG features extracted in our experiments used a
2 · 2 version of the HOG. The HOG features were extracted
on a regular grid at steps of 8 pixels and stacked together con-

sidering sets of 2 · 2 neighbors to form a longer descriptor
with more descriptive power.

2.6. Daubechies wavelets (DW)

As explained in Huang et al. (2003), DW is a feature extraction
method where the average energy of the three high-frequency
components is calculated up to the Lth level decomposition

using both the scaling and the wavelet functions of the selected
wavelet. In our experiments we use decomposition L = 10
coupled with Daubechies 4 wavelet function.

2.7. Laplacian features (LF)

LP, as proposed in Xu et al. (2012), is based on a SIFT-like

descriptor extracted at different window sizes. A descriptor
called the multifractal spectrum (MFS) then extracts the
power-law behavior of the local feature distributions over
the scale. Finally, to improve robustness to changes in scale,

a multi-scale representation of the multi-fractal spectra under
a wavelet tight frame system is proposed.

2.8. Local derivative pattern (LDP)

As detailed in Zhang et al. (2010), LDP is a general framework
that encodes directional pattern features based on local deriv-

ative variations. The LDP templates extract high-order local
information by encoding various distinctive spatial relation-
ships contained in a given local region.

2.9. Speeded up robust features (SURF)

SURF Xiao et al., 2010 is an improvement of the famous SIFT

features (Lowe, 2004). SURF extract features starting from
interest points detected by a method based on the Hessian ma-
trix. A set of features based on Haar wavelet response around

http://www.ee.oulu.fi/mvg/download/lpq/
http://www.ee.oulu.fi/mvg/download/lpq/
http://www.ee.oulu.fi/mvg/download/lpq/
http://www.ee.oulu.fi/mvg/download/lpq/
http://www.ee.oulu.fi/mvg/download/lpq/


Figure 1 An example of an image and its saliency map.
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a point of interest is then extracted. To speed the feature
extraction step, the integral image is used.

3. Proposed approach

In this section, we explain the steps of our proposed approach.

In an outline form, they are the following:

� STEP 1: PRE-PROCESSING. The image is normalized

using contrast-limited adaptive histogram equalization.4

The image is then resized so that the lower dimension is
at least 50 pixels.

� STEP 2: GLOBAL DESCRIPTORS. The whole image is
divided into four equal regions without overlap, and a cen-
tral region of the same dimension is extracted. Since in most
computer vision applications it is important to extract fea-

tures only in the foreground region, we used a method pro-
posed in Hou et al. (2012) for extracting a saliency map
from the image. For each region we extract three sets of

descriptors: one from the original image and the other
two from two foreground regions (different combinations
were tested, see Section 4). Each pixel which saliency higher

than a prefixed threshold (0.15 and 0.25 in this work) is
determined to be part of the foreground. For each region,
different descriptors are extracted, and for each descriptor
a different SVM is trained. Results are pooled by sum rule.

An example of a given image and its saliency map is shown
in Fig. 1.
� STEP 3: SUBWINDOWS. Each image is divided into over-

lapping subwindows with the size specified as a percentage
(ps) of the original image taken at fixed steps
st= min(ps · l, ps · h)/2, where l · h is the size of the origi-

nal image. We tested different values of ps. In our final ver-
sion, we used both ps= 12.5% and ps = 8% (see the
experimental section for more details).

� STEP 4: LOCAL DESCRIPTORS. A local feature extrac-
tion method is performed by evaluating different texture
descriptors from each subwindow.
� STEP 5: DIMENSIONALITY REDUCTION BY PCA.

Each local descriptor is transformed according to PCA (cal-
culated as in TRAINING2).
� STEP 6: CODEBOOK ASSIGNATION. Two different

approaches are used for the codebook assignation:
(1) Each descriptor is assigned to one codebook (created as

in TRAINING3) according to the minimum distance

criterion;
(2) Each image is divided into four equal regions, and a dif-

ferent codebook assignation is performed separately for
each region. For each codebook, the method proposed

in Feng et al. (2012) is applied. In this way, there are
4 Using the function adapthisteq.m in MATLAB.
four different codebooks for each image, with each

region encoded into a 30-dimensional feature vector;
the four 30-dimensional feature vectors are concate-
nated and used to represent a given image.

� STEP 7: CLASSIFICATION. Each global and local
descriptor extracted from the image is classified by an
SVM (trained as in TRAINING1).
� STEP 8: FUSION. The classifier results are combined using

the sum rule, i.e., by selecting as the final score the sum of
the scores of a pool of classifiers that belong to an ensemble.
Before fusion, the scores of each classifier are normalized to

a mean of 0 and standard deviation of 1.
� TRAINING 1: SVM. A different SVM is trained for each
local or global descriptor. SVM (Duda et al., 2000) is a gen-

eral purpose two-class classifier that finds the equation of a
hyperplane that maximally separates all the points between
the two classes. SVM handles nonlinearly separable prob-
lems using kernel functions to project the data points onto

a higher-dimensional feature space. Multi-class problems
can be discriminated by performing, for example, several
‘‘one-versus-all’’ (OVA) classifications (OVA is used in this

paper). We used two different kernels in our experiments:
(1) histogram for BoW and (2) the radial basis function
for global descriptors. Because our system is general pur-

pose, we used the same kernel and the same parameters in
all the tested datasets (see the experimental section).
� TRAINING 2: PCA. A set of 250,000 subwindows is ran-

domly extracted from the training set (considering the dif-
ferent classes) and used to construct the PCA matrix (one
projection matrix for each descriptor). This step is iterated
several times (five times retaining 99% of the variance

and five times retaining 98% of the variance); for each iter-
ation, a different codebook is created and a different SVM
is trained.

� TRAINING 3: CODEBOOK CREATION. A different set
of textons is created for each class of the dataset, and for
each NIMG5 image a texton is built clustering a local

descriptor with k-means, with the number k randomly
selected between 10 and 40. For each descriptor, the final
texton vocabulary (codebook) is obtained by concatenating
the textons over all classes. Since k-means is an unstable

clustering approach, we run it twice to obtain more code-
books (for both these codebooks a different SVM is
trained).

3.1. Cloud of features

In our experiment we also tested a novel method for object rec-
ognition based on cloud of features (Lai et al., 2004). A cloud
represents image i as Mi feature vectors, storing the informa-

tion on Mi single points, or patches in the image. Each
point/patch is a ‘‘subwindow’’ of fixed size (we run three meth-
ods with size = {8, 10, 12}. The cloud points, Ci, of an image,
Ii, are formed by these patches. From each point/patch (in this

paper we extracted {150, 250, 350} points/patches from each
image), we extracted a given descriptor, giving us 9 classifiers
(three size · the number of retainer patches). These nine classi-

fiers were combined by sum rule.
5 Images are clustered in groups due to computational issues.
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In our experiments, we fit a one-class SVM (Maneivitz and
Yousef, 2002), implemented as in libSVM (www.csie.ntu.e-
du.tw/~cjlin/libsvm/) around the cloud of points Ci and enclose

the data by a hypersphere Hi of minimal volume. We can de-
scribe this process formally as follows:

Let the hypersphere be described by the center a and the ra-

dius R. For a vector x, coming from the cloud of points Cj,
representing the image Ij, we define:

CiðxÞ ¼ Q;

where x is accepted by the one-class classifier Hi that describes
the cloud points of the image pair Ii and where Q is the indica-
tor function (for instance, Q(A) = 1, if the condition A is true
and 0 otherwise). In our experiments the acceptance of the vec-

tor x is defined as follows:

1, if x is accepted by the one-class classifier;

0, if x is rejected by the one-class classifier.

An image Ij could be classified by taking into account the

fraction of vectors from the cloud representation Cj, which
are rejected by the classifier Hi:

SiðIjÞ ¼
1

Mj

� �X
x�Cj

ð1� CiðxÞÞ

where Mj is the size of the cloud Cj .
Notice that if only one classifier is used, the performance

may suffer from a large overlap between individual clouds of

points. For instance, if a cloud subsumes another originating
from a different class, the percentage of outliers (vector x re-
jected) can still be zero. Such a situation lowers the perfor-

mance of the whole system. To prevent this from happening,
the information given by all the classifiers is combined. The
relations among the images of the training set can be evaluated
using a ‘‘classifier profile,’’ which expresses the dissimilarities

among a given image from all the images of the training set.
The classifier profile of a test image is now classified by
Figure 2 Samples from
SVM trained using the classifier profile of the images that be-
long to the training set. We assign each image of the testing set
to the class of the nearest neighbor (for a better mathematical

description of classifier profile, see Lai et al., 2004).

4. Experimental results

In our experiments we tested our approach on the following
different datasets and object classification problems:

� Scene recognition: the 15-class scene dataset widely
used in the literature (Oliva and Torralba, 2001);

� Caltech-256: one the most familiar object classification

datasets (Griffin et al.);
� Building recognition; 12 buildings in the city of Pisa,

Italy (Amato et al., 2010);

� Person recognition: the PASCAL Visual Object Classes
Challenge 2012 protocol (VOC2012) Everingham et al.,
2012.

4.1. Datasets description

4.1.1. Scene dataset (Oliva and Torralba, 2001)

This dataset has the following fifteen categories (we set
NIMG = 50): coast (360 images), forest (328 images), moun-

tain (274 images), open country (410 images), highway (260
images), inside city (308 images), tall building (356 images),
street (292 images), bedroom (216 images), kitchen (210
images), living room (289 images), office (215 images), suburb

(241 images), industrial (311 images), and store (315 images).
Images are approximately 300 · 250. Fig. 2 shows a few
samples.

The testing protocol established by other papers in the lit-
erature for the scene dataset, which we followed, requires 5
experiments, each using 100 randomly selected images per cat-

egory for training and the remaining images for testing. The
the scene dataset.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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performance indicator is the accuracy, which is averaged
across the experiments.
4.1.2. Caltech-256

This dataset includes a challenging set of 256 object categories
containing a total of 30,607 images with at least 80 images for
each category. The images in Caltech-256 were collected by

choosing a set of object categories, and then by downloading
examples from Google Images. The final dataset was produced
by manually screening out all images that did not fit the chosen

category. According to a widely used protocol, we ran 5 split
tests using 40 images per class for training (we set
NIMG = 40) and 25 for testing. The performance indicator

was the accuracy, which was averaged on the 5 experiments.
Fig. 3 provides samples of some images contained in the Cal-
tech-256 dataset.

4.1.3. Building recognition

This dataset (Amato et al., 2010) contains 1227 photographs
crawled from Flickrs of landmarks located in Pisa. The dataset

is divided into 12 classes having a minimum of 46 images per
class. According to the official testing protocol (Amato
et al., 2010), the dataset should be divided into a training set

of 921 photos (we set NIMG = 50), or approximately 80%
of the dataset and a testing set of 226, or approximately
20% of the dataset. For comparison purposes these two sets
are provided on the web page of one of the authors of Amato

et al. (2010). The performance indicator used in our experi-
ments was accuracy. Some sample images are shown in Fig. 4.
Figure 3 Samples from

Figure 4 Samples from
The VOC2012 dataset (Everingham et al., 2012) includes
twenty classes of images from four main categories:

� Person: people;
� Animal: bird, cat, cow, dog, horse, and sheep;
� Vehicle: airplane, bicycle, boat, bus, car, motorbike,

and train;
� Indoor: bottle, chair, dining table, potted plant, sofa,

and tv/monitor.

According to the official protocol, we use Trainval images
for training and the Testing set of images for testing. Several
example images of the VOC2012 dataset are available

at http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
examples/index.html. The official performance indicator is
the average precision (AP). For a given task and class, the pre-

cision/recall curve is computed from a method’s ranked out-
put. Recall is defined as the proportion of all positive
examples ranked above a given rank. Precision is the propor-

tion of all examples above that rank which are from the posi-
tive class. The AP summarizes the shape of the precision/recall
curve. It is defined as the mean precision at a set of eleven

equally spaced recall levels ½0; 0:1; . . . ; 1� (Everingham et al.,
2010).

Due to restraints on computation time, we focused only on
the person image classification contest (we set NIMG = 250).

4.2. Empirical results

The first experiment, reported in Tables 1–3, was aimed at

comparing variants of the steps in our proposed approach.
the Caltech dataset.

the landmark dataset.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/examples/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/examples/index.html


Table 1 Performance of the proposed approach in the scene dataset.

Scene

LTP-u LPQ(3) LPQ(5) LTP-r HOG GIST LDP LF DW

B 67.24 57.35 55.34 55.71 50.08 61.81 68.41 58.43 55.04

B1 81.21 76.08 74.71 73.50 68.17 75.04 78.59 74.67 71.79

M1 79.87 73.74 72.06 71.02 63.42 71.76 77.32 66.20 63.69

M2 77.15 69.78 67.04 68.48 59.70 68.58 74.17 62.18 59.10

Fus1 81.41 76.88 75.54 74.45 70.65 75.58 78.96 75.51 74.10

Fus2 81.17 77.49 75.31 74.71 69.21 74.64 78.56 74.74 73.70

ALL1 87.10

ALL2 86.70

Xiao et al. (2010) 81.2

Huang et al. (2011) 82.6

Table 2 Performance of the proposed approaches in the building dataset.

Building

LTP-u LPQ(3) LPQ(5) LTP-r HOG GIST LDP LF DW

B 88.05 89.82 88.50 72.57 76.99 83.63 82.74 77.43 65.49

B1 91.59 95.58 94.69 81.86 86.28 88.05 85.85 89.38 81.42

M1 92.48 94.69 96.02 83.63 86.28 92.92 89.82 89.82 81.86

M2 91.15 94.69 94.69 86.28 88.50 89.82 89.38 88.05 78.76

Fus1 92.48 95.58 96.02 83.63 88.50 92.92 88.50 73.45 89.82

Fus2 93.81 95.58 96.46 85.84 89.82 93.36 89.82 91.15 85.84

ALL1 95.13

ALL2 95.13

Amato et al. (2010) 92

Table 3 Performance of the proposed approaches in the Caltech-256 dataset.

Caltech-256

LTP-u LPQ(3) LPQ(5) LTP-r HOG GIST LDP LF DW

B 12.15 10.62 10.92 9.77 7.26 17.43 11.27 6.87 5.45

B1 22.49 21.50 23.45 13.43 12.14 28.83 18.43 12.91 9.65

M1 21.80 22.12 23.50 13.49 10.94 27.69 17.76 11.79 8.22

M2 20.63 20.73 21.51 12.92 10.38 24.46 17.23 10.64 7.57

Fus1 23.80 23.78 25.75 14.80 12.30 31.16 19.17 14.50 10.79

Fus2 24.10 24.79 25.98 15.07 12.14 31.43 19.40 14.92 11.25

ALL1 37.67

ALL2 38.60

Ensemble of different local descriptors, codebook generation methods and subwindow configurations 95
In this table performance of the descriptors detailed in Sec-
tion 2 is reported.

In particular, we evaluated the performance obtained by

considering different global descriptors (STEP2 in Section 3).
In these tests we used only a stand-alone SVM, with the radial
basis function kernel and no dataset parameter tuning6 for

each dataset. We compared the following different approaches
for the global descriptors:

� B: the features were extracted from the whole image.
� B1: the image was divided in four equal regions without

overlap and a central region of size 1/2 of the original

image. For each region a different SVM was trained;
the five descriptors were then used to train four SVMs
combined by sum rule.
6 Parameters �g 0.1–c 1000.
� M1: as in B1, but instead of the original image, we used

the foreground region extracted method using the sal-
iency map with TH = 0.15.

� M2, as in B1, but instead of the original image, we used

the foreground region extracted using the saliency map
with TH = 0.25.

The following fusions among descriptors were also

compared:

� Fus1: sum rule among the descriptors based on B1 and

M1;
� Fus2: sum rule among the descriptors based on B1, M1,

and M2;

� ALL1: sum rule among the descriptors of Fus1;
� ALL2: sum rule among the descriptors of Fus2.



Table 5 Accuracy obtained by the state-of-the-art approaches

in the scene dataset.

Approach Year Accuracy (%)

Oliva and Torralba (2001) 2001 73.3

Lazebnik et al. (2006) 2006 81.4

Liu and Shah (2007) 2007 83.3

Wu and Rehg (2009) 2009 83.1

Xiao et al. (2010) 2010 88.1 (ensemble)

81.2 (stand-alone)

Gu et al. (2011) 2011 83.7

Meng et al. (2012) 2012 84.1

Nanni et al. (2012) 2012 82.0

Nanni et al. (2013) 2012 87.1

Elfiky et al. (2012) 2012 85.4

EDL 2012 88.3
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In the Scene dataset (see Table 1), B1 outperformsM1. This
is due to the fact that the background region discarded by the
saliency map contained important information for classifying a

given image in a given scene class. The fusion, Fus1 (sum rule
between B1 and M1), outperforms B1 because different
descriptors are extracted from the two different images (the

original image when B1 is applied and the foreground region
when M1 is used).

In the building recognition task, it is typically important to
discard background regions. For this reason, M1 outperforms

B1 in the Building dataset (see Table 2). The best results are
also obtained in this dataset by combining different ap-
proaches, with Fus2 outperforming the other approaches.

LPQ(5) works better than ALL1 or ALL2 in the Building
dataset but not on others: when using this approach, it would
be desirable to test it using the training data to determine

whether it is suited to that specific classification.
In the Caltech-256 dataset (see Table 3), the saliency ap-

proaches do not outperform B1, but both Fus1 and Fus2 out-

perform B1, M1, and M2.
From the results reported in Tables 1–3, the following con-

clusions can be drawn:

� In the building dataset, it is clear that global descrip-
tors work well. Notice that several of our approaches
outperform the SIFT based method reported in Amato

et al. (2010), which obtains an accuracy of 92%.
� It is interesting to note how differently the same

descriptor works in each of the datasets. In the scene/

landmark datasets, e.g., GIST works poorly with
respect to the object classification dataset. Fusion, it
should be noted, works well in all the tested datasets.

� For a statistical validation of our experiments, we have

used the Wilcoxon signed rank test (Demsar, 2006) to
compare FUS2 and B1 (considering the different data-
sets and the different descriptors); we found a statistical

difference with a p-value of 0.05.
� Finally, we should note that some state-of-art stand-

alone approaches obtain a performance that is similar

to our stand-alone best methods. The SIFT based
method tested in Xiao et al. (2010) (which was the best
method using an ensemble approach), for example,

obtained an accuracy of 81.2% in the scene dataset,
Table 4 Performance of the proposed approach using differ-

ent descriptors in the scene dataset.

�1 M�1 �2 M�2 Local

LPQ R= 3 72.86 74.10 67.54 71.12 79.50

LPQ R= 5 72.60 74.14 63.18 68.61 78.73

LTu 69.18 71.26 66.60 70.45 76.98

LTr 63.28 65.59 64.76 67.77 74.57

GI 75.41 75.95 70.45 74.67 82.01

HO 72.73 74.54 70.59 74.30 80.50

Sift – – – – 62.11

Lap 69.55 70.49 60.34 67.91 77.55

LDP 73.47 74.64 67.71 72.09 80.54

Surf – – – – 66.77

Fusion 85.80

Xiao et al. (2010) 81.2

Huang et al. (2011) 82.6

Higher accuracy for each descriptor.
while the salient coding approach (Huang et al.,
2011), which is a better performing variant of LLC
(the winner of VOC2009), obtained 82.6% in the scene
dataset.

In the BoW approach proposed in this work, we used a
stand-alone SVM as our classifier with the histogram intersec-

tion kernel (without any parameters tuning for each dataset7:
the same settings were used in all the datasets and with all
the descriptors). Using the same kernel with the same param-

eters for all the datasets and all the descriptors is very useful
for practitioners since they can use this same set of features
in their datasets.

In our second set of experiments, reported in Table 4, we
compare some variants in the steps of our proposed approach
using the scene dataset. We tested several descriptors derived
from the original image � all those described in Section 2

and their fusion by sum rule. We label the methods as follows:

� �1: a version of our system based on a single codebook

creation (only one PCA projection) with patches with
ps= 8% and only the first method of STEP6 for code-
book creation is used.

� M�1: a version of our system based on using all the
PCA projections for building patches (see Section 3 –
TRAINING2:PCA) with ps= 8% and only the first
method of STEP6 for codebook creation.

� �2: as in �1, but the second method of STEP6 is used.
� M�2: as in M�1, but the second method of STEP6 is

used.

� Local8: a complete version of our system based only on
a local descriptor; we combine, by sum rule, the scores
obtained by the SVMs trained using the textons vocab-

ulary obtained both with ps= 12.5% and ps = 8%.
� Fusion: the fusion of all the Local descriptors by sum

rule.

As can be seen in Table 4, our ensemble approach improves
the performance of stand-alone approaches (compare �1 with
Local), thus gaining a performance similar to state-of-the-art

stand-alone approaches: the SIFT based method tested in Xiao
7 C= 0.25.
8 Both the approaches for the codebook assignation are used, all the

10 PCA projections are used.



Table 6 Accuracy obtained by bag of word approaches.

�1 (%) M�1 (%) �2 (%) M�2 (%) Local (%)

Building LPQ R= 3 92.4 94.7 10.2 42.0 95.1

LPQ R= 5 89.8 92.5 52.2 49.1 93.0

LTP-u 75.7 79.6 65.5 73.0 80.5

LTP-r 70.4 77.9 59.3 64.2 79.7

GI 92.9 93.8 76.5 80.1 95.1

HO 91.6 91.2 9.8 42.5 92.0

Fusion 95.6

Caltech LPQ R= 3 16.66 16.90 18.07 18.33 20.43

LPQ R= 5 17.29 17.64 13.78 14.66 22.04

LTP-u 11.28 11.39 10.38 10.46 14.63

LTP-r 9.36 9.50 9.25 9.38 12.73

GI 18.06 20.49 12.00 13.91 23.57

HO 14.30 14.32 15.28 15.66 17.25

Fusion 28.3

Table 8 Accuracy obtained by cloud of features approach.

Cloud Local Sum

Building

LPQ R= 3 84.25 (77.52) 95.1 95.4

HO 83.21 (78.21) 92.0 92.3

LTP-u 74.11 (67.54) 80.5 82.5

Scene

LPQ R= 3 72.53 (69.08) 79.50 80.45

HO 73.11 (69.95) 80.50 80.85

LTP-u 71.42 (68.21) 76.98 78.75

Higher accuracy for each descriptor.

Table 7 Accuracy obtained by the state-of-the-art

approaches.

Dataset Approach Accuracy (%)

Building EDL 95.6

Nanni et al. (2013) 95

SIFT (Amato et al., 2010) 92

Color-SIFT (Amato et al., 2010) 82

SURF (Amato et al., 2010) 90

Caltech EDL 40.0

Nanni et al. (2013) 40.0

Gehler and Nowozin (2009) 48.9

Yang et al. (2009) (Ntrain= 45) 37.5

Perronnin et al. (2010) (Ntrain= 45) 45

Lin et al. (2011) (Ntrain= 45) 45.3

9 http://www.cs.dartmouth.edu/~lorenzo/Papers/tsf-eccv10.pdf.
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et al. (2010) obtained 81.2%, while salient coding based meth-

od proposed in Huang et al. (2011) obtained 82.6%.
In Table 5 we report the results obtained by our system

compared to the best methods reported in the literature for

the scene dataset. In the following tables we named the whole
system detailed in Section 3 as ensemble of different local
descriptors (EDL), i.e. global descriptors combined with the

local descriptors.
Due to computational time factors, we used fewer descrip-

tors for our bag of feature approach in the Caltech and Build-
ing datasets. Results are reported in Table 6. In the Building

dataset, we used images extracted from the foreground region
with the saliency map TH = 0.15, since this method using glo-
bal descriptors produced the best results. We used the original

images in the Caltech dataset because this produced the best
results with this dataset.

In the Building dataset, the second approach for building

the codebook works very poorly, so in Local this approach
was not considered in this dataset. It is clear in Table 6 that
the ensemble outperforms the stand-alone approach (compare

Local with �1).
In Table 7 we compare results obtained by our complete

system with the best methods reported in the literature. It
should be noted that in Demsar (2006), Gehler and Nowozin
(2009) and Yang et al. (2009) 45 images in Caltech-256 dataset
were used for training each class, making their training sets lar-

ger than those used in our system. In Torresani et al. (2010)
several approaches are compared (see Fig. 2 of that paper9),
and only LPbeta (i.e. Gehler and Nowozin, 2009) among the

approaches based on 40 training images obtained a perfor-
mance higher than 40%.

In Table 8, we report the results obtained by the cloud of

feature approach (Cloud), comparing it with the local ap-
proach detailed in Section 2 (Local) and their fusion by
weighted sum rule (SUM1) where the weight of Local is three
and the weight of Cloud is 1. Cloud is applied separately in the

five regions (B1), and then these five scores are combined by
sum rule.

To reduce the computational time, we used only three

descriptors and ran tests on only two datasets. These prelimin-
ary results show that the method proposed here could be con-
sidered a new approach for object classification.

In Table 8, each cell of Cloud reports two values. The first is
the performance obtained considering the fusion among the
nine approaches detailed in Section 3.1. The value between
the brackets is the performance obtained by a standalone

method, with DIMsize = 10 and 150 patches retained in each
image. It is clear in these experiments that Cloud is very well
suited for building an ensemble of classifiers.

http://www.cs.dartmouth.edu/~lorenzo/Papers/tsf-eccv10.pdf


Table 9 Results on a subset of the validation set.

�1 M�1 �2 M�2 Local

Local

LPQ R= 3 44.25 52.68 40.25 53.25 62.35

LPQ R= 5 48.85 56.36 41.19 55.76 66.55

LTP-u 53.03 59.03 42.88 46.85 63.88

LTP-r 48.58 52.10 36.52 42.21 57.36

GI 53.25 60.67 47.45 57.54 65.48

HO 55.50 56.36 46.05 58.27 65.73

Global

LPQ R= 3 48.82

LPQ R= 5 45.31

LTP-u 60.32

LTP-r 41.25

GI 58.90

HO 41.59

F1 73.70

F2 73.90

F1 + F2 78.90

Fp 87.40
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Finally, in Table 9, we report the results on the VOC2012

contest. We ran our approach on only the person classification
dataset. Since our ensemble approach needs bounding boxes
that contain a given object to classify, we used the method pro-

posed in Bourdev and Malik (2009) for extracting subwindows
that might contain a person (we simply retained the 15 regions
with higher similarity to the person template used (Bourdev
and Malik, 2009). Since each subwindow was of a different

dimension, we resized each so that the minimum size was 40
pixels. Each subwindow was classified as person/non-person
using our approach.

The results reported in Table 9 are a subset of the valida-
tion set (500 person images and 1500 non-person images)
and only the B1 approach is used for the global descriptor

(the saliency map is not considered). Moreover, the TRAIN-
ING2 step is iterated only four times (two times retaining
99% of the variance and two times retaining 98% of the var-
iance). These restrictions were due to constraints in computa-

tion time. It should be remarked that this dataset is built by
images with complex backgrounds that contain no information
about the class of the images. Increasing the dimension of the

ensemble would likely boost the performance of our system.
Examining the results in Table 9, it is clear that the ensemble
once again improves performance.

Since a validation set is available, we also ran some exper-
iments for optimizing the approach:

� F1, the best fusion by sum rule of LPQ R= 3, GIST,
and LTP-u among the global approaches, obtained an
average precision (ap) of 73.7;

� F2, the fusion among the local approaches, obtained an

ap of 73.9;
� F1 + F2, the fusion between F1 and F2, obtained an

ap of 78.9;

� Fp, the fusion by weighted sum rule of F1, F2, and the
score obtained by poselet (Bourdev and Malik, 2009)
(weight of poselet = 4), obtained an ap of 87.4.
We submitted our best approach as a competitor for the
VOC2012 contest. The result obtained in the VOC2012 contest
was 88.7%. Notice that in this paper we have not used the

images used in the test set of VOC2012, since their labels are
unavailable, in this work we have used a validation set. Since
the VOC2012 classification dataset is the same as that used

in 2011 and no additional data has been annotated, we can
fairly compare our approach with both the competitors of
VOC2011 and VOC2012 (http://pascallin.ecs.soton.ac.uk/
challenges/VOC). Among the 26 competitors of VOC2011/

VOC2012 contests, we rank in the 10th position. Except for
Panasonic and the National Laboratory of Pattern Recogni-
tion, Institute of Automation Chinese Academy of Science,

we obtained a performance that was similar to the other state
of the art approaches. Moreover, since we simplified our ap-
proach for the competition by reducing the number of compo-

nents due to restrictions in the computation time. We would
expect to obtain an even better performance using the com-
plete system described in this paper.

5. Conclusion

In this paper we presented a new method that combines a fea-

ture extraction approach from regions of the image by consid-
ering the saliency of the image using a bag of features
approach. We explored variations of both based on a combi-
nation of different descriptors for recognizing object categories

and scene.
For improving the performance of each descriptor, we com-

bined different codebooks obtained in different ways (e.g., via

different descriptors and different clusterings for different
codebook creations) to enrich the power of codebook repre-
sentations. Finally, the descriptors are used to train a stand-

alone SVM. Without any ad hoc optimization of SVM per
dataset, our approach obtains a very high performance on dif-
ferent object recognition datasets.

In the tested datasets the classes are often imbalanced. It is
widely known in the literature (Gang Wu and Chang, 2006)
that several classifiers tend to treat data in the minority class
as noise, resulting in a class boundary that unduly benefits

the majority class. For handling this problem several ap-
proaches have been proposed in the literature. A very popular
one is SMOTE, which increases diversity by generating pseudo

minority class data (Chawla et al., 2002). We have tried to cou-
ple SVM with SVM but the performance of whole system is
only slightly better, and we have not found any statistical dif-

ference, also with a p-value of 0.1.
As future work we want to couple SVM with some more re-

cent systems, see (Wang and Yao, 2012), for handling the
unbalancing problem.

As further future work we will try to improve the results by
improving the classifier. Empirical results, reported in Li et al.
(2003), show that the bagging SVM outperforms the stand-

alone SVM and other ensemble of classifiers.
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