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We show how to extract a monotonic learning algorithm fronteasical proof of a geometric state-
ment by interpreting the proof by means of interactive meddility, a realizability sematics for clas-
sical logic.

The statement is about the existence of a convex angle imgadfinite collections of points in
the real plane and it is related to the existence of a convéxWe define real numbers as Cauchy
sequences of rational numbers, therefore equality andiagdare not decidable. While the proof
looks superficially constructive, it employs classicals@aing to handle undecidable comparisons
between real numbers, making the underlying algorithm eféexctive.

The interactive realizability interpretation transfortihe non-&ective linear algorithm described
by the proof into an #ective one that uses backtracking to learn from its mistakd® dfective
algorithm exhibits a “smart” behavior, performing comgans only up to the precision required
to prove the final statement. This behavior is not expliqitignned but arises from the interactive
interpretation of comparisons between Cauchy sequences.

1 Introduction

Interactive realizability is a realizability semanticatlextends the Brouwer-Heyting-Kolmogorov inter-
pretation to (sub-)classical logic, more precisely to finster intuitionistic arithmetic (Heyting Arith-
metic, HA) extended by the law of the excluded middle restricteﬁ(l’tcﬁormulas EM,), a system moti-
vated by its applications in proof mining. It was introdudgdBerardi and de’Liguoro iri [2].

We use interactive realizability in order to study the comagional content of a classical proof of the
following geometric statement.

Theorem (Convex Angle)
We have a finite set of at least three points in the real plafisuch
that no three points are on the same line. Then there exishdis
points RQ and R such that:

e all other points S are insid®PR,

e the angleQPR is convex, that is, less than

We choose this particular statement because we have a gribddhat looks algorithmic and can be
easily visualized. Theorehh 1 can be thought of as weakenwsibweof the existence of the convex hull
of a finite set of points.

As we said the proof we choose as example looks constructsieg only decidability of ordering
over real numbers. However, it is well known that there is fieative ordering on the real numbers.
In our encoding of the real numbers, totality of the ordemmgthe recursive reals is equivalentBEi;.
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Since the proof needs the ordering to be total, it nd&lds. Due to the low logical complexity of ex-
cluded middle which is used, the proof may be interpreteti wisimple case of interactive realizability.

We show how interactive realizability can be applied andwith@an tell us about the computational
content of the proof. What we get is an algorithm that, indtecomparing real numbers, makes an
arbitrary guess about which one is smaller. If later it beesrapparent that the guess is wrong the
algorithm retracts the choice it made since it can now makefanmed decision about that particular
comparison. Then the algorithm performs comparisons olgnmneeded and only up to the required
precision.

Thus we see how a simple classical proof which performs cosmes between real numbers is
interpreted as a learning algorithm which uses “educatedsps” in order to avoid norffective oper-
ations. This non-trivial behavior is not explicit in the stical proof, but follows from the definition of
ordering on Cauchy sequences by means of the interactilieataiity interpretation.

In the present work, our main goal is to showcase interactaéizability and the backtracking al-
gorithms it produces through a non-trivial example. Fos ttdason, we chose to present interactive
realizability as a proof interpretation technique ratlmt as a realizability semantics, in order to con-
centrate on the example and its computational interpogtatiithout being bogged down in technical
details. A more comprehensive treatment of interactivézazility can be found for instance inl[1].

2 Real Numbers

In this section we present our treatment of real numbers iytiktg Arithmetic. For a more in depth
treatment of real numbers from a constructive view pointjdge

There are many ways of encoding integer and rational nuniibét& and defining primitive recursive
operations and predicates on them. In the following we asdhiat we have any such encoding and that
we have decidable equality, and ordering<g, <g and dfective operations-g,-g. We use the variables
g and p for rationals.

There are many equivalent ways of defining the real numbers the rational numbers. The best
known are the definition of the reals as equivalence clags€awchy sequences and as Dedekind cuts.
We follow the first approach.

A sequence of rationals: N — Q is aCauchy sequendéthe following holds:

Vk. Tko. VK1, ko. (Ko + ko) — (Ko + ko)l < % (1)

While this sequence approximates a real number, it can dersoslowly. By means of classical rea-
soning, we can show that, from any Cauchy sequence, we ceateatfast-converging monotone sub-
sequence. For this reason, instead of general Cauchy smxgjeme can consider sequences of nested
intervals with rational extremes whose length decreaspsrentially. An interval is determined by its
extremes, so we represent a sequence of intervals as a afgglguences of rationats,r*, represent-

ing the lower and higher extremes of the intervals respelgti hen we require that is increasing and

r+ is decreasing (since the intervals are nested),rth@ is lesser than or equal t6 (k) (since they are
the lower and higher extremes of a same interval) and th@ardince is smaller tharm® More precisely

we say that™ andr* represent a real number when they satisfy the following itamg written as sH(l’
formula:

k. (1~ (K) <g () A (r(K) <g 1 (k+1))A

AT + + - (—k) (2)
(" (&) 2 r*(k+ D) A (K) —g 1 (K) <q 279).
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While the choice of the specific definition of real number ixeavhat arbitrary, it is significant because
it affects the logical properties (in particular the degree okgrahbility) of the ordering on the reals.

Now we can define an “order predicate” ®f(k), which can be thought of as a family of strict
partial orders on the real numbers indexed by natural nurkbévlore precisely, it is a formula that
determines when the sequence of nested intervalstrictly lesser thars, at precisiork. This happens
when, atk, the higher extreme of an interval is strictly greater tHamlower extreme of the other. Then,
from that point forward, the intervals will be forever digjy since they are nested sequences. This
allows us to write the order predicate as the formula:

OP(,s,K) =r*(k) <g s (K), 3)

which is decidable im ands. Note that the definition of OP depends on that of real numibere had
used the classical definition of Cauchy sequence the orddigatte would be the foIIowingg formula:

OP(r,sK) = V.1 > k- r(l) <q r(l). (4)

This is very significant for our purposes: the order predi¢at(3) is decidable in ands(since the order
on the rationals is), while i {4) it is onlgegatively decidableThis means that we have affective
method to decidd {4) when it is false, but not when it is true.

We need OP to satisfy the following properties, written dssu

OP(,s k) OP(,r,K)

-MON~5rcL Ly -i
OP-mo OP(.sk+1) OP-irrefl
®)
0 @) OP(, s K OPGt,l
OP-asym PE.sK PG OP-trans €54 St

1 OP(,t,max,1))

The OP-mon rule expresses a monotonicity property: whew@parison at a given precision can distin-
guish two approximations, then comparisons at greateigioecshould too. The other rules correspond
to the standard axioms for a strict partial order: irreflaéyjasymmetry and transitivity.

We verify that our definition of OP satisfies these properties

Lemma 1. The order predicate OP defined [B) satisfies the properties given (B).

Proof. Omitted. The properties follow directly from the definitiohOP as[(B) and from our representa-
tion of real number as sequences of nested interivals (2). m]

We can now define order and equality on the reals. It is notidhat, while we define order and
equality in terms of OP, we never use the definition of OPfitgeproving their properties. We only
need the properties of OP we proved in Lemina 1, thus we cooltbpd in the same way even if we had
defined OP dterently, as long as LemnhA 1 holds.

They are defined as follows:

r <g s=dk. OP(, s K), r <g s=VYk -OP(sr,K),
r #g s= dk. OP(, s k) v OP(sr,K), r =g s=VYk. -OP{, s k) A-OP(s,r,K).
Note that<y and+z arex{ formulas and<z and=y areIl formulas.

In order to prove Lemnﬂ 3, which is needed in the proof of Teeﬂ we need to show some of the
properties of the ordetp.
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Lemma 2 (Reflexivity, Semi-Transitivity and Totality ofr). The following properties hold:

r<gr (reflexivity)
<R SASSpt—r<pt, (semi-transitivity)
I <g SVS<gT. (totality)

Proof. The first two properties follows from the corresponding s of OP. The last is a classical
tautology.

¢ We omit the proof of reflexivity for reasons of space and @vahce.

e In order to prove this transitive property for mixeg. and <z we have to show that <g t =
vYk. -OP{,r,k), assuming <z s= Jk. OP{,s k) ands <z t = Yk. -OP¢,s k). This follows by
means of the OP-trans rule:

vk. =OP¢, s K) _[OP¢r.KI*  [OP(,s1)?
E—optsmaxk) OF 'S opg s maxk.D)
Ik oPf,sk) —FE T
IE - 2
\;' ~OPErK) T
vk —OPE.r.K)

o Whenr andsdenote recursive real numbers, totality is an instandehof:
r <g svs<gr =Yk =-OP(r,k)Vv Ik OP{,sK). O

The proof is constructive apart from the last point, wheresh@w that totality is actually an instance
of EM;. Note that only the reflexivity property is stated in the si@ml way, while transitivity and totality
are written in non-standard forms. We chose these formsMoréasons: they are easier to prove and
they are the exact forms we need in the proof of Lerhina 3.

Until now we have used, s andt as metavariables for real numbers in an informal way. Howeve
since we are working in the first-order language of arithmetur variables range only on natural num-
bers and not on functions. For our example we only need toeaddx finite but arbitrary number of
real numbers, that is, we only need a countable quantityesfithThus we can assume that we have a
countable set of pairs of function symbols indexed by thenahihumbers, sayf{, f; )nay. We assume
that each pair satisfies the convergence condifibn (2) amlrépresents a real number. Then, OP can
be formally defined ad;* (k) <q fj‘(k) wherei and j are arithmetic terms. Thus each real numbers is
represented by a natural number, namely its index. For coenee and consistency with the standard
notation for real numbers, instead of writingr j, we use the sugared versiorgg rj.

Now we can reason about finite sets of real numbers as setdefan. In the next lemma, we shall
work with the sets of real numbers indexed by initial segmeritthe natural numbers. We show the
existence of a least element in each of these sets. The leastr is actually a minimum, that is,
the unique least element of the set. However, in order toqoﬂ'd\eorenﬂl we do not need to show its
uniqueness, just its existence.

Lemma 3 (Least Element) For any n, the real numbersy...,r, have a least element with respect to
<r. More precisely:
Yndi<nVvj<nri<grj.

Proof. We proceed by induction om
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Zero case In the base case= 0 and we have to prove that < 0. Vj < 0. rj <z r;. Bothi andj can only
be 0; thus we just have to check the conditigrey rg, which holds by reflexivity okg.

Successor case In the inductive case we have to prove thlt< n+1. Vj <n+1 r; <g rj. By the
inductive hypothesis, lét< n be the index of the least elementrif)...,r,. By totality of <z we
have two cases.

IT<R 'n+1 Theni is the index of a least elementiip,...,rn.1, sincery <g r whenj = n+1 (since
we are considering this case) and wheqnin by inductive hypothesis.

'+1 < I7 Thenn+1is the index of a least elementiigy...,ry.1, Sincerp.y <g rywhenj=n+1
by reflexivity of <g and whenj < n by transitivity of <z and<g, sincern,; <g 7 <g rj by
inductive hypothesis. m|

The proof looks constructive: its computational interptienn is the usual algorithm that finds the
least element in a vector, by a simple recursion or by loomingts elements. We can write it as a
recursive function fmin” in Haskell:

Listing 1. The Least Element Program

rmin 0 =0

rmin n = if rle (rmin (n-1)) n
then rmin (n-1)
else n

where ‘rle” is a boolean function that stands feg, that is, it compares the reals indexed by its ar-
guments. The problem is that we are unable to wriiee” as a terminating program. The closest
approximation would be the following unfounded recursion:

Listing 2: The Lesser or Equal Program

rle i j = rle_urec 0 i j
rle_urec k i j if op j i k end
then False
else rle_urec (k+1) i j

where ‘op” is a total boolean function that stands for the order pra@icOP. We can assume that

“op” terminates for any input since OP is decidable. The probietmat < is total only classically.

More precisely, totality is an instance BM, becausey is aH? formula and thus negatively decidable.

This can bee seen concretely in the program fdre™. “rle i j” only halts (returning False”) if

“op j i kis true for somek, that is, if and only ifr; <rj is false. On the other hand, wher<rj is

true there is no suckand the evaluation of*le i j” will never halt: “True” does not even appear in

the program. This is the general behavior of an algorithrhdbenputes a negatively decidable predicate:

when the predicate is false it halts with the correct answdrvehen the predicate is true it does not halt.
For positively decidable predicates we have the dual behakvor instance, in the case of which

is defined by a:? formula and thus positively decidable, the decision pracedan be written as:

Listing 3: The Lesser Than Program

rlt i j = rlt_urec 0 i j
rlt_urec k i j = if op i j k
then True

else rlt_urec (k+1) i j
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The program is very similar to the previous one, the only wotéhy changes are the order of the argu-
ment given to 6p” and the fact that the only possible return valueTsde” instead of ‘False”. It only
halts (returning True”) if“ op i j k”is true for somex, that is, whem; <rj is true.

3 Thelnteractivelnterpretation of the L east Element Lemma

We have seen why the naive way of extracting a program frorofprails in the case of Lemnha 3. Now
we give the interactive interpretation of Lemina 3. Since wewaorking inHA + EM;, any proof can
be thought of as a constructive proof with open assumptibiag,are the instances BM; that are used
in the proof. The interactive realizability interpretatifollows the standard BHK interpretation for the
constructive parts, so we will concentrate on the integtieh of theEM; instances.

The only instances d&M; in the proof are those used to deduce the totality property:

i <g rjVrj<gfi. (6)

The left disjunct, which we call thaniversal disjunctis Hcl’ and negatively decidable, while the right
one, theexistential disjuncts Z‘l’ and positively decidable. Moreover universal disjunct aedation of
the existential disjunct are classically equivalent. Wetkat a formula isoncretewhen it is closed and
atomic.

A naive attempt to give a computational content toEMy instance fails, because in genei;,
instances are undecidable. Interactive realizabilityppses a way to side-step this problem. This is
possible since it is not true that the computational intetigiion of a proof using instances Bf; nec-
essarily needs to decide these instances. Consider thefcasality of the order on the real numbers.
The universal disjunct ig <g rj = Vk. =OP(j,r;,k). Being an universally quantified statement, it proves
infinite instances-OP(j,r;,k), one for each natural numbkr A proof that uses totality may need all
this infinite information or (for example, when proving a gimexistential statement) may only need a
finite quantity of these instances. In the second case, wawad the problem of fectively deciding
theEM; instance. We only need to decide those instances that ar@lgaised in the proof. This is pos-
sible, since each instance is decidable (being a quantiierformula) and we assumed there is a finite
quantity of them. Interactive realizability takes advaetaf this fact and gives a procedure to determine
which instances of the universal disjunct are needed artdratively decide them.

The interactive interpretation is a “relaxation” of the Bhierpretation. In the BHK interpretation
the decision of a disjunctiorffiectively selects a true disjunct, in the interactive casteied of a decision
we have a sort of “educated guess”. Therefore, wWiNg cannot be realized by the BHK interpretation
since there is noftective procedure to decide it, the interactive interpretatan because it yields a
weaker semantics, which produces a sure result only whegalds simply existential.

Interactive realizability revolves around the conceptrudwledge stateA knowledge state, or simply
state, is a finite object that stores information aboutBhg instances we use in the proof. The purpose
of this information is to help us decide ti#M; instances, that is, help us in choosing which disjunct
holds. Moreover, whenever the state chooses the exidtéigjanct, it should also produce a witness,
like in the BHK interpretation.

We can represent a state as a finite partial fun@tidvat maps a concrete instancekifl; into a
witness of its existential disjunct. Such a function desideguesses a concrete instadcef EM;: if it
is undefined o, then we choose the universal disjunct; if it is defined wesehthe existential disjunct

1By finite partial function, we mean a partial function whosergin (the set of elements where it is defined) is finite.
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with the returned witness. We are only interested in theaimsts appearing in the proof, namely, those
of the form [6) when, j are numerals. Thus an instance is determined by two naturabers; since
witnesses are natural numbers too, a state can be conatefelgd as a finite partial function fromx N

to N.

For instance, consider the case of B, instances used in the proof of LemBla 3. When we have to
decide [(6), we check the state on the paij)( At first, let us assume that the state is undefined g (
This means we have no knowledge about the universal dispugt rj. Since we cannotfiectively
check that the universal disjunct holds, we make an eduaaieds and assume that<g r; is true.
Clearly this assumption could very well be wrong, which maymay not become apparent later in the
proof. Keeping track of this assumption, we carry on withphaof. Every time we use this assumption
to prove a decidable instance of its we check if the instambgsh More concretely, if later in the proof
we use the assumption<g r; to deduce thatOP(j,i,k) for somek, we check that-OP(j,i,k) holds. If
this is the case, we carry on with the pronf<g r;j could still be false, but at least the particular instance
we are using is true. If this is not the case, we have found atecexample to the assumption<g rj:
being negatively decidable, the counterexample is encuglidctively decide that it is false. Therefore
we stop following the proof because we have chosen the wrisjigndt in theEM; instancel(b).

Moreover, a counterexample tp<g r; is a natural numbek such that OP(i,k). Thereforek is a
witness for the existential disjunct <g ri. We can use this new knowledge to adld)to the domain of
the state with valué. Remember that we assumed the state to be undefinedjpnwhich is why we
assumed the universal disjunct to be true in the first place.

At this point, we forget what we did after guessing (wronglyat the universal disjunct was true
and start again. More precisely, we need to backtrack to putation statdeforewe decided th&M;
instance in question and repeat our decision with the erksthte. Since the extended state is defined
on (, j) and yieldsk, this time we decide thEM; instance dierently: we choose the existential disjunct
rj <g ri with k as witness. Now we are sure that our choice is the correctmmeat a guess, since we
have éfectively decided that the existential disjunct holds (we siace it is positively decidable).

In order for the interactive interpretation to produce eotresults, we need to assume that the state
is sound, that is, when it is defined, the witness it yieldscisialy a witness. More formally, a state
is sound if, for any pairi( j), we have that OR(i, (i, j)) holds. This assumption is not problematic: the
empty state, namely the state that is always undefinedfisatisvacuously. Moreover, in the interactive
interpretation we outlined above, we only extend a statd ait actual witness. In other words, the
extension preserves the soundness property.

To summarize, the general procedure is the following:

1. we start from any sound state (usually the empty state),
2. we follow the proof choosing arM; instance according to the state,
3. if we discover that we wrongly assumed the universal digjof anEM; instance:

(a) we extend the state with the counterexample we found,
(b) we backtrack to a point before tB; instance we guessed wrong,
(c) we proceed as in stép 2,

4. if we never discover that we wrongly assumed an univelisglritt we carry on until the end of
the proof and we are done.

The exact point we need to backtrack to is not relevant, ag &mit is before the decision of the
EM; instance. A simple choice would be the very beginning, inclrltdase we do not need to keep track
of where we decided thEM; instance. In this case we only need a simple abort operatordier to
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formally write interactive realizers. A monadic versiontbis approach is given in[3]. A mordieient
choice is to backtrack right before the decision point, st te do not need to repeat the computations
that took place before it, since they are nfieated by the extension of the state. However this approach
would require more sophisticated control operators.

Interactive realizability can be thought as a “smart”, #@lbpartial”, decision algorithm for nega-
tively decidable statements. This can be seen comparinighitixe naive algorithm given in ListirB 2.1t
is partial because a real decision is impossible, so it cohsidlers a finite number of instances, unlike
the unbounded recursion employed by the program in Listingi& smart because it does not perform a
blind search, trying in order all the natural numbers. ladti uses the proof itself to find the counterex-
amples. There is a reasonable expectation that the ide&slyind the proof provide a more focused
way of selecting counterexamples than a blind search (thiswse depends on the proof itself).

Until now we considered a single instance of &, axiom, but little changes if there is more than
one. We will return to this point later. In the proof of LemBadBle instance oEM; is used for each
inductive step in the proof. When we interpret the proof wlith empty state, for each of these instances
we assume that the universal disjunct holds. Therefore rbef s interpreted as follows. In the base
step we choosegy. In the first inductive step, we have to decide B, instancerg <g r1 Vv ry <g fo.
Since the state is empty, we assume thatz r1. Thus we keepg as the least element of,r1. In the
second inductive step, we have to decideBEMy instancerg <g > Vra <g rp. Since the state is empty,
we again assume theg <g ro. Thus we keepg as the least element of, r1,ro. At the end of the proof,
we have assumed the following universal disjuncts:

ro<m 1,0 <g r2,...,ro <g rn. (7)

Under these assumptions, we have found that the least dlésnmgnRather disappointing, isn't it?

The reason for this is that the universal disjunGtsy r; are never instanced, so we have neither
opportunity nor reason to falsify one of them. However thiaynchange if Lemmal 3 is used inside
a bigger proof. This will happen later in the proof of Theor[jr/:Tn this case the outer proof might
instance these assumptions and discover them wrong, irhwh&e we have to backtrack to the proof of
Lemma B.

Let us see how Lemnia 3 behaves when its conclusion is usedtcedecidable instances. Assume
thatn = 5. If the state is empty, then Lemlﬂa 3 tells us thdsb a least element. This means thakr r;
for anyi. Imagine that we use Lemrbh 3in a bigger proof to proveithat rs. This is one of th&aM,
instances we assumed [d (7). Moreover, imagine that, afteamtiating this assumption, we discover
thatrg <g rz does not hold at precision 33, that is, ®FXp,33) holds. Then we have to extend the
domain of the state to (8) with value 33. At this point we backtrack, say at the beuigrof the proof
of Lemma. 5.

We again start fromg and proceed like before. The firsFigure 1: A graph showing the result of
and second inductive steps again selgcas the least ele-the least element computation
ment, assuming that <g r1 andrg <g r». Things change

at the third inductive step when we have to decigecg fo. gt
r3Vrs <g ro. Since now the state has a relevant witness, this / -
time we choose the existential disjunct with witness 33sthu 3 , > Ta r2
selectingrz as the new least element. In the next inductive -

steps we again assume the universal disjungtsg r4 and s

rs <z s, since the state has no information on them. Thbsll arrows represent information provided
the least element i. A summary of our decisions is repby the state, dotted arrows “guessed” infor-
resented in Figurg 1. Now imagine that we were to discoveation the state knows nothing about.
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a counterexample to; <g r», say at precision 25. This statement is not one of the uralelisjuncts
that we assumed. By looking at the proof or at Fidﬂre 1, we eantlsat it has been deduced by the
semi-transitivity property fromis <g rg andrg <g ro. The first is the existential disjunct for which we
found a witness, so we are sure that it holds. Thus the wrosigngstion isrg <g ro. By checking the
proof of semi-transitivity we can see that the countereXarfgr rg <g r, is max(2533), thus 33 again.
We extend the state accordingly and repeat the least eletnemtutation, which results in new least
elementr,. In FigureBZ we summarize the two iterations we saw until nog add some more, as an

example.

Figure 2: An example of evaluations of the interactive iptetation of Lemmél3.

Iter State L east element Used D?pgr%ed Discovered
1st ro ri.5 ro<gfz| ro<grf3 rs<grfo
ro ry2 r3<gr
2nd | rz3<grg ra / r3<gro I’g SE I’g > <g o
a5
o <rlp _— o r
3rd | r3<xro ro— r2<pfz| r2<gfs r3<gfr2
345
ra<rfo rh — o ri 3 <g 2
4th | rs3<grfo rs — rs<gri| Tl2<rflo ri<gro
r3<gr2 45 fo<gr 1
N <grTlo
r><gr r
5th r% <§ rg ri / 0 r<gfs M <gfa N <gpri
r3<gra 2345
N1 <rTo ro
2 <r o rh—
6th I3<rrlo Mg — T I3
[3<rl2 N 1 ’
g <gl1

Iter: the iteration represented by the current roState: the existential disjuncts witnessed by the sthigst
element: the least element yielded by LemphaBed: a concrete consequence of Lemltha 3 that is falsified in
the proof,Deduced from: the premisses we deduced the falsified consequenceisooyered: the existential
assumption we found a witness of.

In general we do not use all the information in the state irhataration: for example, in the third
iteration we do not use; < rg, which we discovered in the firstiteration and used in thesddteration.
This happens because the stdtees which instances &M; are used in the proof, which should be
apparent from the given iterations.

In the iterations listed in Figu@ 2, we compute the follogvBequence of least element candidates:
ro,rs,r2,ra,ri,rs. The fact thars appears two times may cause doubts regarding the ternminattithe
backtracking algorithm. The termination of the backtragkalgorithms in interactive realizability has
been proven in general, see Theorem 2.15]in [1].

In this particular case we can understand whis computed two times by taking a closer look at the
tree of the possible computations of the least element,iwikishown in Figura 3. For reasons of space,
we only show the tree fan = 3, which is enough to see what happens up to the fifth iteraniﬁigure&.
We can see that the first five iterations in Figﬂre 2 corresporide computation paths ending with the
first five leaves from the left in FiguEé 3, in order.

Moreover, from the computation tree we can see that we nearéornmn the same computation more
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Figure 3: The computation tree of the least elementfer3

To
fo<pfi M <rTo
ro ri
ro<gr2 2 <r o ri<gfrz o <gl1

fo r2 f M2
fo<rr3 r2<nfs f1<nrs r2<ar3
1 rs

lo s ) rs r o rs

Each path represents a possible computation, proceedarg foot to leaf, where non-leaf nodes are the current
least element candidates and the leaf is the final resulthBEaanching corresponds to &M, instance, where
the left branch is taken when we guess that the universaiisholds for lack of information and the right branch
is taken when the state contains the relevant witness.

than once. Indeed, assume we have just followed a particolaputation path. When we backtrack
we increment the state adding a witness of one ofBthk instances we encountered along the path,
an instance we did not have a witness for. This means thatiméxt computation, when we arrive
at the node corresponding to thHaM; instance, instead of taking the left path as we did previousl
(since the state did not have a witness for that instance}ales the right path, because this time we
do have a witness (since we just extended the state with hgrefore, each time we backtrack, the
computation path ends with a leaf that is more to the righﬁgmié[é. This gives a bound to the number
of backtrackings, namely"2 1.

This is very diferent from what one could expect by a superficial look at ttomfpof Lemma B.
Indeed, if the order on the reals were decidable, then thiplsi and natural proof would be quite
efficient, since its complexity would be lineariinHowever, its interactive interpretation has exponential
complexity. This can be seen in the computation tree toonglesicomputation corresponds to a path
and paths have length On the other hand, since we have backtracking, in the wass we may have
to perform every possible computation. Naturally, sin@dhder on the realis undecidable, an actual
comparison is impossible.

Moreover, while in the worst case the interactive intergienh needs a time that is exponential in
n, in general it is hard to estimate the amount of backtrackivag will be actually performed, for two
different reasons.

The first one is that the actual orderrgf...,r, affects heavily the operation of the algorithm. Indeed,
assume thaty is the least element: the interactive interpretation omyfgrmsn dummy comparisons
and immediately returns a least element candidate thahisncase, is the actual least element, so no
backtracking can ensue later.

The second reason is that the backtracking is controllecblaythe least element candidate returned
by the interactive interpretation is used. It is possibletf@ interactive interpretation to return a can-
didate that is not a least element, but such that its use iruar proof is does not cause backtracking.
In other words, we only need to compute a least element cataditiat is good enough instead of the
correct one and this can translate to a faster computatgain alepending on the situation. This also
explains why the interactive interpretation i$eetive even if a certainly correct least element cannot be
found dfectively.

In the BHK interpretation, the computational content of agéris usually much longer than the
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algorithm it describes. This can be easily seen by compdhagrogram in Listin@l with the proof
Lemmal 8. The reason for this discrepancy is that the proof contagtk the algorithm described in
Listing [1 and the evidence for its correctness. In genemathé computational content of a proof in
the BHK interpretation we can separate the part that corspraies and such (the informative com-
putation) from the part that computes the evidence showiagthe values are correct (the correctness
computation). The correctness computation doesffietithe result of the informative computation and
can be safely discarded when we are only interested in #igoextraction.

This is not the case for the computational content in thed@ctese interpretation. Here the correct-
ness part of the computatioifects the backtracking, whicttacts the state, which in turrffacts the
informative part of computation and thus the computed al@iterefore, in interactive realizability both
parts of the proof interact to produce the final result. Thigpparent in the second iteration, when we
falsify r3 <z ro and we have to retrace the proof of semi-transitivity, whh non informative proof,
in order to find whichEM; instance we guessed wrongly and to compute the witness thateed to
extend the state. This shows that in the interactive ingtation we cannot forget how we proved the
correctness of our computations.

4 TheReal Plane

In this section we introduce the real plane, points, lined some relations between them. We use
elementary analytic geometry: points are represented bsdowates, lines by equations and proofs are
mostly computations with real numbers.

We represent a point as a pair of real numbers, its coordin&ermally we can say that a point is
just a natural numbarand that there is a primitive recursive function mappingeies into pairs of real
numbers. As we did for real numbers, in order to improve rbéiiawe add some sugar to the notation
and use the metavariabl®Q, R, S for arithmetic terms used as indexes of points. When we use th
index of a point both as a number and as a point, we writeiiimthe first case and &% in the second.
We write the coordinates of a poiRtas (xp,yp) and of a pointP; as ;). A line passing through two
pointsPQ is written asPQ.

Before proceeding we need to introduce further infrastmgcfor the real numbers. Any rational
numberq can be represented as a real number by taking the constamrregof the degenerate interval
[a,q]- Let Oz be the representation of the rational zero. We can defingiaddsubtraction and multipli-
cation on the nested interval sequences by using the comdi rational operation point-wise on the
extremes. It is possible to retain the exponential convergey taking a suitable sub-sequence. This
can be doneféectively and follows from the continuity of the operations the rationals. Thus we can
safely assume that we have addition, subtraction and ricdtiipn on the reals.

In order to write the formal statement of Theorgm 1, we needha tw determine the position of a
point with respect to a line.

First of all consider two point® andQ. We can write the equation that a poRthas to satisfy to be
on the line going through them:

(XQ = XP)(YR = YP) — (X — XP)(YQ — YP) =R Ok. (8)

If the left-hand side is zero theRis on the same line witl® andQ. When left-hand side is not zero,
we can use its sign to distinguish which sideR#) Ris on. We call these sides left and right. We write

24 straightforward formalization of the proof in the Coq pf@ssistant is ten times longer than Listiﬂg 1.
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left(P, Q,R) (resp.right(P, Q,R)) and we say thaR is to theleft (resp.right) of the line passing through
the pointsP andQ when

left(P, Q,R) = (Xg — Xp)(YR— YP) — (Xr — XP)(YQ — YP) >k Ok,
right(P, Q,R) = (Xg — Xp)(YR— YP) — (Xr — XP)(YQ — YP) <r Or.

Both left andright are positively decidable, since they are defined by mears oMoreover, note that
Ris to the left ofPQif and only if Q is to the right ofPR We say thaP is above Qif yp >r yo and that
Ris below Qwhenyr <g Yo.

5 The Geometric Part of the Proof

Now we are ready to present the rest of the proof of the maiarstent. We divide the proof in two parts,
the first given as a lemma. Since these proofs are more confpteneason of readability and space we
will not be as formal as we have been until now.

From this point onward we assume that no three points areeosaime line, formally:

VP, Q,R. left(P,Q,R) v right(P, Q, R). 9)

This is a strong assumption, even more so because we reljigir® thold constructively: sindeft and
right areZ? formulas defined withkr, we assume that we have affiegtive map that given three points
yields the precision we need to reach in order to checkRhatnot on the linePQ. In other words, we
are assuming that we have a procedure tfattvely decides instances of thedt andright predicates.
The dfective computation we extract uses this procedure as a pteam

A further consequence is that all points must be distinctemsp =g Xq andyp =r Yq, the left-hand
side in [8) is always zero for arfy.

In the next lemma the point®g, Q1, Q> are three generic points, that §; is not necessarily the
point indexed by the natural numbierMoreover we assume that the indiex Q; is interpreted up to
congruence modulo 3 and thus always fallgdyi, 2}. For instance, when we writ@,, we actually mean
Q1. We write the coordinates @; as (,V;), with the same conventions for the index. We prove that
when three points are one to the left of the other with resjgegtcentral one, one of them is necessarily
lower than the central point.

Lemma 4 (Three points) Assume) and let PQp, Q1 and @ be four points in the real plane such that
Qi1 is to the left (resp. right) of P(for any i< 3. Then at least one of £Q1, Q> is strictly below P.
Formally:

VP, Qo, Q1, Q2. (Vi < 3. left(P,Qi, Qix1)) — Ji < 3. ¥ <r Yp.

We omit the proof for reasons of space. Since it is a constriproof, its interactive interpretation
coincides with its BHK interpretation and thus is not parely relevant for our analysis.
We can now prove the main statement.

Theorem 1 (Convex Angle) Assume(d). For any n> 2, we can select three points P, Q and R from
{Po,...,Pn} such that all the remaining points fall in the ang@PR, that is, all points are to the left of
PQ and to the right of PR.

Yn>2 dJi,pjk<n vVi<sn I #£i- (%] left(P,P;,P)) A #k — right(P;, P, P)).
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Note that the convexity of the ang@P\Ris assured, because we require tRas to the left ofPQ
andQ to the right ofPR

Classical proof. Let P be the point with the least vertical coordinate and chooserdtvo pointsQ’ and
R’, which are our candidates f@ andR respectively. We want all points exceptto be to the left of
PQ and to the right oPR If Q' is to the left ofPR, we swapQ’ andR'. Thus we know tha@’ is to the
right of PR andR’ is to the left of PQ'.

Now consider any poins exceptP, Q" andR’. We have four cases:

o If Sistothe left ofPQ and if it is to the right ofPR, then we keef)’ andR’ as candidates fdD
andR.

o If Sis to the right ofPQ, then we choos& as the new candidate Q).
Clearly @ is to the left of PS. Moreover, any other poirfs’,
which we already checked to be to the leftRi, is to the left
of PStoo. This is a consequence 6i (9) and Lenma 4.
Indeed, from[(R), we know th&’ is either to the left or to the
right of PS. We already know thas is to the right ofPQ and

Q' is to the right ofPS’.
If S” were to the right oPS, then by Lemm4, one @', S or S’ would have been strictly lower

thanP which would be a contradiction, sin€eis the lowest point. ThuS’ is to the left ofPS.

o Symmetrically, ifS is to the left of PR, then we choos8 as the new candidate f&:

¢ We show thas cannot be to the right #Q and to the left oPR.
If this were the case))’ would be to the left oPS andS would
be to the left ofPR. Since we know thav is to the left ofPQ,
by Lemma[]ﬁl, one 08, Q or R would be strictly lower thar.
This is a contradiction, sinde is the lowest point by Lemnid 3.
We repeat this procedure for all the points excep)’ andR’ and we find the required point3 and
R. O

For convenience we have written the proof as an iterativeritkgn. The proof is actually by induc-
tion on a slightly stronger version of the final statemerdt tidds the requirement férto be lower than
all the other points.

6 Thelnteractivelnterpretation

Before studying the interactive interpretation of the vehptoof of Theorerh]1 along with its lemmas,
we need to understand their computational significance.sTWeistop for a moment and recall some
general considerations on the computational meaning ofdtas in the BHK interpretation and, more
specifically, in the Curry-Howard correspondence.

As a consequence of the proofs-as-programs and formulagas interpretation, the conclusion of
a proof (that is, the statement it proves) can be thought thfeaspecification of the program representing
the proof.

In order to understand how the interactive interpretatiamks, it is important to distinguish com-
putations that can be carried oufextively from those that cannot. Consider a proof of a statérof
the formVvx. 3y. A. If we read it as a specification, it calls for a program thatatibes a function, a
subroutine. It takes a natural number as an argument naxnaad returns a pair containing a natural
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numbery and a prograrproof thaty satisfiesA. All of our theorems begin with universal quantifications
and implications, that is, they are specification for proggalescribing functions with arguments. Thus,
in order to have an actual computation we have to provide tbgram with the required arguments.

We can now explain the interactive interpretation of the \@hgyoof, composed of the two lemmas
and the final algorithmic proof. We focus on the interactietwieen these parts without analyzing each
part in detail as we have done for Lembha 3.

We start by considering the statement of Theorbm 1. Assuatenth are given a natural numbmer
In the proof we work with the firah + 1 points of the enumeration.

The proof is an iterative procedure to selB¢ct) andR satisfying the followingoounding condition

vi<n l£i—(I#)—left(P,Pj,P))A(l #k— right(Pi, Py, P))). (20)

The bounding condition specifies an informative computatsinceleft andright are defined by means of
<gr, Which is an existential quantification. Thus its proof cartgs some witnesses, namely the precision
of the comparisons we need to check that the bounding condiblds. While we are mainly interested
in the choice of the pointB, Q andR and not in the information needed to prove the bounding ¢immdi
itself, the precision of the computation provided byl (1®étually used in interactive interpretation since
it can cause backtracking.

We claim that this bounding condition specifies dfeetive computation. First of all, the outer
universal quantification is bounded, thus, in order to campbe condition, we have to compute the
body of the quantification+ 1 times. The same holds for the conjunctions. Thus ffezveness of the
whole condition follows from theféectiveness of the conjuncts. The implications dfedtive: their only
argument, the proof of the antecedent, is arithmetical etdmence irrelevant, thus the computations they
specify must be constant functions. Therefore, we ¢Becttvely compute them by applying them to any
single argument. Finally their consequents spedifgative computations, thanks {d (9), the assumption
that no three points are on the same line. Thus, proofs of teding condition describeffective
computations.

Now we can start following the proof. In the beginning, thedst pointP is selected using Lemrbh 3
on the vertical coordinate. Consider the statement of Lefiima

Yn.disnVvji<nr<grj.

As a specification, it calls for a program that, giveryields the valué and the correctness computation

that checks thatis the least element. Since the correctness computatiorothe carried outféectively

(it is negatively decidable), the interactive interprisiatcomputes a trivial least element the first time. If

later in the proof we happen to partially compute the comess computation, then we may discover new
information and backtrack again to the least element coatiout Since Lemmid 3 does not necessarily
return a least element, but only a least element candiBasaot the lowest point either, but just a lowest

point candidate.

The role of Lemmal4 is to prove that some point is strictly lotkwan P, thus producing a contra-
diction. In the classical proof this ensures that undekiratiuations never happen. In the interactive
interpretation however, sindeis not necessarily the lowest point, no contradiction ogclimstead, what
happens is that we actually are in one of the cases we haddextio the classical proof. At this point,
in order to deduce the contradictory statement, we haveapjartomputed the correctness computa-
tion returned by Lemmid 3 and thus discovered which assumptas incorrectly guessed. We compute
the relevant witness and extend the state accordingly. Weeoompute a new lowest point candidate
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and continue again following the proof of Theoréhn 1 untiheitwe can satisfy its conclusion or we
backtrack again.

We use Lemmél4 in two places in the proof of Theotém 1. The fasttakes place when, while
iterating on the points, we discover that the bounding dormfails for someS and we choos§ as the
new candidate fofQ or R. We use Lemmé&l 4 to show that this choice satisfies the bouradindition
for all the previous points we iterated over until now. Moregsely we use Lemnia 4 to prove that,
if the bounding conditions fails foB, then one ofQ, R or S is strictly lower thanP. As we described
previously, this in turn starts the backtracking.

We also use Lemnia 4 to claim that the bounding condition dafialdecauses is both to the right
of PQ and to the left ofPR This case was excluded completely in the classical pranéest always
leads to contradiction. When it occurs in the interactivierpretation, we backtrack for sure since the
bounding condition cannot be satisfied. More preciselyhis tase Lemmd 4 proves that one@fR
or S is strictly lower thanP. Therefore, in order to get the contradiction, we instaatthe assumptions
yp <r Yo, Yp <r Yr andyp <g ys with enough precision to falsify at least one of them.

As a last example, consider a situation where the state isyesmnp thusP is simply the first point in
the enumeration. Assume that the points are arranged as nshow Figure
Since the bounding condition is satisfied immediately, weeneeed
to use Lemmal4. Thus backtracking never ensues. This mean
P, while certainly not the lowest point, is a good enough cdaii

Figure 4: A situation where no
6Q§ktracking occurs.

tioned where the interactive interpretation produces adasiputa-
tion, since the lowest point is only computed once and thefpends
with no backtracking. This shows how the behavior of intévadn-
terpretation of Lemmd 3 depends heavily on the final statéofahe
proof.
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