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Novel Time-Domain Circuit Modelling of χ (2)

Nonlinear Process in Periodic Optical Waveguide

ALESSANDRO MASSARO,∗ VITTORIANA TASCO,
MARIA TERESA TODARO, ROBERTO CINGOLANI,
MASSIMO DE VITTORIO, AND ADRIANA PASSASEO∗∗

National Nanotechnology Laboratory of CNR-INFM, Distretto
Tecnologico-ISUFI, Università del Salento, Via Arnesano, 73100 Lecce, Italy

In this work we present a new time domain modelling approach of χ (2) nonlinear
processes in periodic slab waveguides and cavities. This method exploits the Hertzian
Potential Modelling (HPM) to design discontinuous dielectric interfaces. It is based
on a circuital approach which considers the time-domain nonlinear wave propagation
in transmission lines coupled with voltage and current generators. These generators
are placed directly on the interface nodes thus optimizing the numerical error of the
temporal second derivatives at the dielectric boundaries, and providing an accurate
characterization of the nonlinear processes in integrated optics.

Keywords Time domain modelling; nonlinear optical circuits

1. Introduction

The modelling of nonlinear devices by a time domain simulator containing second-order
nonlinearities is performed. The simulation algorithm is based on nonlinear wave equations
associated to the circuital approach which considers the time-domain nonlinear wave prop-
agating in transmission lines. The transmission lines represent the propagating modes of a
non linear optical waveguide. Each propagating mode is solution of the scalar Helmholtz
wave equation [1–5] and is associated to a transmission line with a characteristic impedance
which depends on the modal effective refractive index [1]. This analogy allows to model a
nonlinear optical waveguide as a set of transmission line circuits which take into account
the dielectric interfaces along the propagating direction as voltage and current generators.
The modelling of discontinuous optical waveguides by generators provides less computa-
tional time consuming with good convergent solutions [5]. In fact the generators are placed
directly on the interface nodes thus optimizing the numerical error of the temporal second
derivatives at the dielectric boundary condition. In this way it is also possible to discretise
and solve complex dielectric thin multilayer structures with spatial cells of the same order of
the dielectric thicknesses [5]. Especially the numerical approximation (voltage and current
generators) combined with the analytical approximation (effective dielectric constant (EDC)

Received July 29, 2008; in final form September 8, 2008.
∗Corresponding author. E-mail: alessandro.massaro@unile.it
∗∗Permanent address: IMM-CNR Sezione Lecce, University Campus, Lecce Monteroni 73100,

Italy.

[250]/62

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
] 

at
 0

2:
35

 3
0 

D
ec

em
be

r 
20

14
 



χ (2) Nonlinear Process in Periodic Optical Waveguide [251]/63

method) allows to model a two-dimensional (2D) or a three-dimensional (3D) nonlinear
waveguide with a good numerical convergent solution making the proposed formulation
more attractive than the full-wave solution, especially in three-dimensional complex optical
devices with typical sizes is sought. By using the Helmholtz equations to represent the prop-
agating fields in a nonlinear medium, the nonlinear field solution is reduced to an equivalent
scalar problem. For a 2-D second harmonic generation (SHG) problem, for example, the
proposed time-domain algorithm solves harmonic field. The same problem, solved by the
conventional finite difference time domain (FDTD) algorithm for three correlated field
components requires a central processing unit (CPU) time 50 times higher. In a 3D case
the proposed algorithm solves again two scalar equations instead of six, and subsequently
all the electromagnetic (EM) field components are obtained by the two scalar potentials
as in Hertzian potential formulation (HPM) [4, 5]. In the time-domain characterization of
nonlinear optical structures EM detailed analysis is not necessary even though an accurate
numerical solution in proximity of dielectric interfaces is required. In this work, by means
of this circuit modelling approach, we model and analyze the χ (2) non linear processes
of asymmetrical slab waveguide with nonlinear core and dielectric discontinuities. This
approach results suitable for the modelling of cavity structures. The scalar potentials used
allow to evaluate the fundamental and the second harmonic (SH) fields as two modes which
propagate independently in two transmission lines with generators corresponding to the
dielectric interfaces (see Fig. 1a), b)). The same circuital model is applied to a nonlinear
cavity. In particular the nonlinear cavity is modelled by considering a source signal inside
the cavity of length L, and current/voltages generators in proximity of the dielectric inter-
faces. Moreover in the spontaneous parametric down conversion process, a 2D time domain
circuit model describes the upward and the downward photon pair characterization.

Figure 1. a) Asymmetrical slab waveguide with nonlinear core; b) related transmission line model
with generators for a second harmonic process. The effective refractive indices nf,s refer to the
effective fundamental refractive index nf and to the effective second harmonic refractive index ns .
Zg is the source impedance and represents a not ideal source.
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2. Circuital Time-Domain Modellling of SHG Processes

The formulation of the fundamental and second-harmonic fields starts with the Helmholtz
wave equation for an homogeneous non-dissipative medium:

∇2�e,h(x, y, z, t) − µεeff
∂2�e,h (x, y, z, t)

∂t2
= 0 (1)

where ψe and ψh represent two guided modes of the asymmetrical waveguide shown in
Fig. 1 (a), and εeff is the effective permittivity index evaluated by the effective dielectric
constant (EDC) approach method [5]. Each mode propagates in the optical waveguide as a
signal which travels in a transmission line (see Fig. 1 (b)) characterized by a characteristic
impedance given by

Ze,h = 1
√

εeffe,h

√
µ0

ε0
(2)

It is known that the scalar wave equation may lead to inconsistencies because, in
inhomogeneous regions such as step discontinuities shown in Fig. 1 (a), it is, in general,
not equivalent to Maxwell’s equations. Electromagnetic scattering problems, including
free space, involve the calculation of the fields produced in the presence of geometrical
discontinuities by arbitrary currents and voltages [4]. Such discontinuities may be replaced
by equivalent generators [4, 5], (see Fig. 1 (b)), giving an accurate solution of the EM
field for structures with high dielectric contrast. In fact the scalar wave equation (1) for a
non-dissipative medium can be rewritten as

∇2�e,h(x, y, z, t) − µεeff
∂2�e,h(x, y, z, t)

∂t2
− µ

∂2P
e,h
pert (x, y, z, t)

∂t2
= 0 (3)

where

P e,h
pert (x, y, z, t) = �ε(x, y, z, t)�e,h(x, y, z, t) (4)

represents the dielectric polarization and in a 1D case [4]

�ε = εi+1 − εi i = z longitudinal position (5)

Equation (3) gives the effect of the generators Vf,s and If,s reported in Fig. 1 (b) as
variation of coefficients in the finite difference (FD) field discretisation [4]. In particular
the wave solution in the homogeneous region (uniform slab region without discontinuities)
is in the iterative form [4]

�n+1
e,h (i) = �n

e,h(i +1)

(
b

a

)
+�n

e,h(i)

(
2a − 2b

a

)
+�n−1

e,h (i)(−1)+�n
e,h(i −1)

(
b

a

)
(6)

and in the nodes between dielectric interfaces of step discontinuities (inhomogeneous
region) becomes:

�n+1
e,h (i) = �n

e,h(i+1)

(
b

a′

)
+�n

e,h(i)

(
2a′ − 2b

a′

)
+�n−1

e,h (i)(−1)+�n
e,h(i−1)

(
b

a′

)
(7)
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with

a = µε

(�t)2

a′ = a + µ�ε

(�t)2
(8)

b = 1

(�z)2

We observe that the equation (3) gives convergent solutions by considering also a non
fine spatial discretisation, by decreasing the computational cost [5]. In a nonlinear material
the wave equation (1) becomes

∇2�e,h(x, y, z, t) − µ0ε0n
2 ∂2�e,h(x, y, z, t)

∂t2
− µ0ε0

∂2P
e,h
NL(x, y, z, t)

∂t2
= 0 (9)

where P
e,h
NL is the polarization given by P

e,h
NL = χ (2)�e�h,, n is the material refractive

index, and χ (2) is the dispersionless nonlinear susceptibility. The general field formulation
considers three different fields propagating at three different frequencies �e(ω1), �h(ω2),
�g(ω3) in material exhibiting an instantaneous second-order nonlinearity

∇2�e = µ0ε0n
2
a

∂2�e

∂t2
+ µ0ε0χ

(2)(ω1)
∂2(�h�g)

∂t2
(10)

∇2�h = µ0ε0n
2
b

∂2�h

∂t2
+ µ0ε0χ

(2)(ω2)
∂2(�e�g)

∂t2
(11)

∇2�g = µ0ε0n
2
c

∂2�g

∂t2
+ µ0ε0χ

(2)(ω3)
∂2(�e�h)

∂t2
(12)

where na, nb, nc are the refractive indexes of the wave �e(ω1), �h(ω2), �g(ω3) respectively.
Coupled equations (10), (11), and (12) can be rewritten as

∇2�e = µ0ε0n
2
a

∂2�e

∂t2
+ µ0ε0χ

(2)(ω1) ·
(

�h

∂2�g

∂t2
+ �g

∂2�h

∂t2
+ 2

∂�h

∂t

∂�g

∂t

)
(13)

∇2�h = µ0ε0n
2
b

∂2�h

∂t2
+ µ0ε0χ

(2)(ω2) ·
(

�e

∂2�g

∂t2
+ �g

∂2�e

∂t2
+ 2

∂�e

∂t

∂�g

∂t

)
(14)

∇2�g = µ0ε0n
2
c

∂2�g

∂t2
+ µ0ε0χ

(2)(ω3) ·
(

�e

∂2�h

∂t2
+ �h

∂2�e

∂t2
+ 2

∂�e

∂t

∂�h

∂t

)
(15)

field in a SHG process, occurs with ω1 = ω2 = ω , ω3 = ω1 +ω2 = 2ω , χ (2) = χ (2) (ω1)/2
= χ (2) (ω3), We observe that equations (13), (14) and (15) for a generic three-wave-mixing
process can refer also to a twin photon generation process. The fundamental and the second
harmonic and �f = �e = �h (na = nb = nf ). In this case the coupled equations to solve
are the following

∇2�f = µ0ε0n
2
f

∂2�f

∂t2
+ 2µ0ε0χ

(2) ·
(

�f ∂2�s

∂t2
+ �s ∂2�f

∂t2
+ 2

∂�f

∂t

∂�s

∂t

)
(16)

∇2�s = µ0ε0n
2
s

∂2�s

∂t2
+ 2µ0ε0χ

(2) ·
(

�f ∂2�f

∂t2
+ ∂�f

∂t

∂�f

∂t

)
(17)
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We observe from equations (16) and (17) that the fundamental �f and the second har-
monic �s field are characterized by the refractive indexes nf and ns respectively. For the
asymmetrical slab shown in Fig. 1 (a), nf represents the effective refractive index along the
x-direction at ω1 = ωs and ns represents the effective refractive index at ω3 = ωf = 2ωs .
In this way it is possible to model the second harmonic generation process by two transmis-
sion lines as reported in Fig. 1 (b), each one characterized by the characteristic impedance
of Eq. (2), as

Zf = 1

nf

√
µ0

ε0
, Zs = 1

ns

√
µ0

ε0
(18)

and by an electrical length θf,s = β f,s l [4] where βf,s is the propagation constant of the
fundamental mode and of the second harmonic mode which are solutions of equation (9),
and l is the longitudinal length in which the effective index is constant. At the dielectric
interfaces of the step discontinuities are placed the current If,s , and the voltages generators
Vf,s as in the dielectric multilayered waveguides [4] in order to provide a convergent
solution. As example of simulation we consider an asymmetric waveguide (see Fig. 1 a))
with a grating on the GaAs core: the total grating length is L = 5
 with 
 = 6.021 µm
(quasiphase matching QPM condition [6]), d = 0.22 µm, D = 0.36 µm, χ (2)(GaAs)
= 200 pm/V, n1(GaAs) = 3.374, n2 = 3.1, n3 = 1. By applying the effective dielectric
constant EDC approach [5] the calculated effective refractive indices are nf1 = 3.1052,
ns1 = 3.2313, nf2 = 3.1895, ns2 = 3.3187. In Fig. 2 are reported the time evolution of
the fundamental mode (λ = 1.55 µm) and of the SH mode (λ = 0.775 µm) in the slab

Figure 2. Time evolution: normalised amplitude of the fundamental and second harmonic mode.
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Figure 3. Time evolution of the fundamental mode amplitude at input and at output of the grating
region.

waveguide before the grating region, considering as source a carrier Vg (with working
wavelength of λ0 = 1.55 µm) modulated by an exponential signal. Figure 3 and Fig. 4
show the time evolution of the fundamental and the SH normalized signals at the input and
at the output of the grating region, respectively. The discrete Fourier transform (DFT) of
the fundamental and of the SH signal at different cross sections of the grating (see Fig. 5)
validates the presence of the coupled SH signal obtained by the solution of the coupled
equations (5) and (6).

The circuit modeling describing the discontinuous optical slab waveguide can be
applied also to cavities which can characterize a spontaneous parametric down conversion

Figure 4. Time evolution of the second harmonic amplitude at input and at output of the grating
region.
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Figure 5. Spectra of the fundamental and of the second harmonic mode for different grating cross
section. Inset: grating cross sections.

Figure 6. a) Signals in twin photon generation process with cavity, and b) related transmission line
modelling with generators. c) Monodimensional cavity and d) related transmission line modelling
with generators.
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Figure 7. Fundamental field: energy stored in the cavity for different lengths L.

process. The coupled equations (2), (3) and (4) for a generic three-wave-mixing process
can refer also to a twin photon generation process [7]. In this case a pump signal �e

at pump angular frequency ω1 = ωp, a transverse electric (TE) polarized signal �h at
angular frequency ω2 = ωsTE, and a transverse magnetic (TM) polarized idler signal �g

at ω3 = ωiTM, describe the spontaneous parametric down conversion process. The pump
signal excites the nonlinear cavity along the z-direction by generating, in the transverse
x-direction (see Fig. 6a)), upward and downward photon pair characterized by energy
conservation ∇ωp = ∇ωsTE +∇ωiTM. The signal and the idler fields generated in the cavity
propagate as TE/TM modes along the orthogonal x-direction [7]. We validate the cavity

Figure 8. Second harmonic field: energy stored in the cavity for different lengths L.
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modeling of a SH process by considering a GaAs nonlinear cavity in air (see Fig. 6b)).
It is possible to verify the resonances of the fundamental �f and of the SH �s field by
evaluating the energy stored in the cavity for different cavity lengths. The energy stored in
the cavity is calculated as:

∫
L

(�f,s(z; t))2dz (19)

where L is the cavity length. In Fig. 7 and Fig. 8 the energies of the fields are shown for
different lengths L. In particular, as expected, the maximum peak energy stored is found
for L = (1.55 µm/2)/nf = 0.245 µm in the case of the fundamental field, and for L =
(0.755 µm/2)/ns = 0.115 µm, in the case of the generated SH signal.

3. Conclusion

A flexible and computationally efficient circuital applied to the second-order nonlinear
processes of asymmetric slab waveguides and cavities, is presented. The scalar potential
modelling is successfully applied to nonlinear optical waveguides with dielectric interfaces.
With the help of the EDC approximation the scalar potential method can be generalized to
complex 3D optical devices.
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