
Received September 15, 2017, accepted November 15, 2017, date of publication November 22, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2776349

Adaptive Image Contrast Enhancement by
Computing Distances into a 4-Dimensional
Fuzzy Unit Hypercube
MARIO VERSACI1, (Senior Member, IEEE),
FRANCESCO CARLO MORABITO1, (Senior Member, IEEE),
AND GIOVANNI ANGIULLI 2, Senior Member, IEEE)
1Department of Civil, Energy, Environmental and Materials Engineering, Mediterranea University of Reggio Calabria,89122 Reggio Calabria, Italy
2Department of Information, Infrastructures and Sustanaible Energy Engineering, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy

Corresponding author: Giovanni Angiulli (giovanni.angiulli@unirc.it)

ABSTRACT A new fuzzy procedure for adaptive gray-level image contrast enhancement (CE) is presented
in this paper. Starting from the pixels belonging to a normalized gray-level image, an appropriate smooth
S-shaped fuzzy membership function (MF) is considered for gray-scale transformation and is adaptively
developed through noise reduction and information loss minimization. Then, a set of fuzzy patches is
extracted from the MF, and for each support of each patch, we compute four ascending-order statistics
that become points inside a 4-D fuzzy unit hypercube after a suitable fuzzification step. CE is performed
by computing the distances among the above points and the points of maximum darkness and maximum
brightness (special vertexes in the hypercube), and by determining the rotation of the tangent line to the
MF around a crucial point where fuzzy patches and the MF coexist. The proposed procedure enables high
CE in all the treated images with performance that is fully comparable with that obtained by three more
sophisticated fuzzy techniques and by standard histogram equalization.

INDEX TERMS Image processing, adaptive contrast enhancement, fuzzy logic, fuzzy unit hypercubes,
over-/under-enhancement.

I. INTRODUCTION
Within image processing (IP), contrast enhancement (CE)
improves image data by stretching the distribution of the
gray levels using adaptive techniques that directly and auto-
matically process the extracted features [1]–[3]. Many CE
techniques have been developed based on the type of infor-
mation to be highlighted. Mathematical morphology, for
example, is a mature technique for extracting shape and
size information from an image that involves configuration
of a set of nonlinear operators (dilation and erosion) that
act on images using structuring elements [4], [5]. By con-
trast, the top hat transformation is considered to be a good
technique to extract bright or dark features smaller than a
given size from an uneven background [6]. Both single-
scale and multi-scale morphological filtering have been
successfully exploited in local contrast enhancement, pro-
ducing good visual results in terms of contrast [4], [6].
In [7]–[9], for example, good results were obtained by
power-law transformation and saturation operators, which

resulted in good quality in the modified images. Furthermore,
substantial effort has been made to remove noise while pre-
serving the edges [10], [11]. CE techniques based on his-
togram equalization (HE) are the most popular because of
their simplicity and the meaningful results [12]–[15]. This
technique, which is based on flattening and stretching the
dynamic range of the image’s histogram, can achieve overall
CE but may sometimes reduce the local details and result
in over-enhancement. Accordingly, specific HE techniques,
such as contrast-limited adaptive histogram equalization,
which splits the image into tiles on which HE is applied
and combines the neighboring tiles by bilinear interpolation
to eliminate artificially induced boundaries and emphasize
local contrast rather than overall contrast, have been devel-
oped [16]. In addition, taking into account the input histogram
separation approach, several techniques have been devel-
oped based on the mean gray level (brightness-preserving
bi-HE), the median gray level (dualistic sub-image HE), and
the maximum gray level (minimum mean brightness error
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FIGURE 1. S-function covered by FP1, FP2, FP3 (gray, dark and bright
zones) and the new S − function produced by the proposed procedure
(red line). Two cusps, P1 and P2, are clearly shown.

Bi-HE) [1], [17]. However, the techniques mentioned above
do not consider the fact that the sampling techniques and
the transition zones of a gray level image often feature from
uncertainty and vagueness, so it may be useful to treat images
with fuzzy approaches. In particular, the logarithmic func-
tion [18], fuzzy entropy approaches [19]–[21] and fuzzy sim-
ilarity indexes [22] have been successfully exploited for gray
level fuzzification and to capture the neighborhood charac-
teristics. In addition, appreciable results have been achieved
through fuzzy-wavelet procedures using approximation and
detail coefficients together with transformation and sat-
uration operators to transfer images remotely [23]–[26].
In such a context, owing to the development of a geomet-
rical fuzzy procedure that makes the approach ‘‘readable’’
and helpful for non-technical experts, in this paper, inspired
by [27], we propose a new fuzzy approach based on the
combined exploitation of a 4-dimensional fuzzy unit hyper-
cube (FUHC), noise reduction and information loss mini-
mization to enhance gray level images. A smooth S-shaped
fuzzy membership function (MF), which is adaptively set
by techniques based on both noise reduction and informa-
tion loss minimization, fuzzifies the gray level image. Then,
the input-output space of the MF is covered by a set of par-
tially overlapped fuzzy patches (FPs) (Fig. 1) seeking within
that space a crucial point (CP) (i.e., the point of maximal
ambiguity with membership values falling around 0.5) on
which to modify the MF . From the supports of each FP,
we extract 4 statistical features (F) that, after appropriate
fuzzification, become 4-dimensional points inside a FUHC
(or 4-unit Kosko’s cube (4 − UKC)) [28]. Two particular
points lie inside each 4−UKC : the total brightness and total
darkness (Fig. 2). If the fuzzified features (FFs) are closer to
the total brightness point, they are considered brighter rather
than darker, and theMF slope around theCP is increased by a
factor depending on that distance. Conversely, if the FFs are
closer to the total darkness point, then they are considered
darker rather than brighter, and the MF slope around the CP
is reduced by a factor depending on that distance (for details,
see Fig. 3).

FIGURE 2. FFs inside a n − UKC .

When applied to a set of low-contrast images, satisfying
results, largely comparable with those obtained by using
established techniques, are achieved. The rest of this paper
is organized as follows. After a quick overview of fuzzy set
theory for IP (Section II), the materials and methods are
detailed, leading to the exploitation of n − FUHC to set
and edit the parameters characterizing the CE (Section III).
The approach is applied to a set of low-contrast gray level
images with different features, and each operational choice
is justified by comparing the results with those obtained by
other established fuzzy techniques, such as those presented
in [18], [19], and [21], and with the standard histogram
equalization procedure (Section IV). Finally, in Section V,
some conclusions and future perspectives are discussed.

II. FUZZY SET THEORY FOR IMAGE PROCESSING (FIP)
Proposed as an extension of classic set theory, fuzzy set
theory addresses problems with inherent vagueness and/or
imprecision in the shading of themembership of each element
to a given set in the range [0, 1] by a membership function
(MF) that manages its fuzziness. Formally, a fuzzy set A is
defined by the ordered pair (U , h(U )), where U is the uni-
verse of discourse (all possible values defining A), and h(u) :
U → [0, 1], u ∈ U , defining the membership value of u to
A. Fuzzy IP (FIP) usually follows three steps: fuzzification,
inference engine and defuzzification. Fuzzification maps an
image from the pixel plane (PP) to the fuzzy plane (FPL)
over which the image enhancement is performed (inference
engine). Finally, defuzzification maps the modified image
from the FP to the PP. If xij is a gray-level pixel of an original
image (OI ) whose brightness is L(xij) ∈ [0, 255], setting
Lmin = 0 and Lmax = 255, then the image can be formalized
as

M−1∑
i=1

N−1∑
j=1

[xij,Lnorm(xij)]

∀xij ∈ OI , i = 0, . . . ,M − 1, j = 0, . . . ,N − 1,

where Lnorm(xij) = yij =
L(xij)
Lmax

∈ [0, 1], i = 0, 1, . . . ,
M − 1, and j = 0, 1, . . . ,N − 1 are the normalized gray
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FIGURE 3. Flow chart of the proposed procedure.

levels. In addition, a fuzzy MF , hij = h(yij) : I → [0, 1],
formalizes the membership of yij to OI such that:{

hij = 0 if yij /∈ OI (totally),
hij = 1 if yij ∈ OI (totally).

Intermediate values of hij indicate partial membership of
the related pixel. Therefore, CE can be defined as an hij
transformation to obtain the modified image on the FPL.

III. MATERIALS AND METHODS
To explain the details of the proposed procedure, in this
section, we introduce some definitions exploited in the
following.

Definition 1 (Fuzzy Contrast Enhancement (FCE)): By
considering dark , light and gray as instances of fuzzy quan-
tities, we define a smooth shape function, S(·), that, starting
from a normalized OI , fuzzifies the information content and
modifies its values:

S = S(hij) hij ∈ OI normalized,

to obatin an image on a FPL over which CE is performed.
Thus, the shape parameters, S(hij), have to be adaptively
computed to achieve the best performance. In particular,
if c is a k-dimensional vector defining such parameters,
then S is dependent on both hij and c. In this paper,
c is computed via noise reduction and information loss
minimization.

26924 VOLUME 5, 2017



M. Versaci et al.: Adaptive Image CE by Computing Distances into a 4-D FUHC

Definition 2 (Fuzzy Paches (FPs) and Supports): ByFPs,
we denote geometrical spots, e.g., rectangular spots that
are partially superimposed and completely cover S (Fig. 1).
If |{FPs}| = m, then

{FPs} = {(FP)j, j = 1, . . . ,m 3′ (FP)j ⊆ U × [0, 1]}.

The following characterization ensures partial overlap among
consecutive FPs: 1) {FPs} are a covering of the S-function
(labeled by A); and 2) consecutive FPs are partially superim-
posed. Formally:⋃

j

(FP)j ⊇ A; (FP)k ∩ (FP)l 6= ∅, k = l + 1.

We orthogonally project each FPj over both U and [0, 1] and
determine closed and limited Supportj and uj characterized
by (Fig. 1):
(FP)j = Supportj × uj
Supportj ⊂ U
uj ⊆ [0, 1]; Supportk ∩ Supportl 6= ∅; uk ∩ ul 6= ∅,

with k = l + 1.
Definition 3 (Crucial Point (CP)): For the FPL, the mem-

bership value equal to 0.5 is the most critical because it is
the site of maximum uncertainty. Therefore, this point plays
a major role in the proposed procedure. Formally, we define
CP as the hij value corresponding to the fuzzy value equal
to 0.5, i.e., CP = hij 3′ S(hij) = 0.5. S(hij) is modified
around this point, as detailed below. Each Supportj must be
fuzzified and, after the extraction of an n-dimensional vector
of features, transformed into a point falling in a particular
n-dimensional space (n− UKC).
Definition 4 (Features (Fs) of Supports): ∀ Supportj we

extract n statistical F to characterize each by a set of real
parameters. Therefore, Featuresj ∈ Rn

∀j = 1, . . . ,m
have to be fuzzified, for example, by a sigmoidal function,
Sig([·]),1 whose argument [·] is n− dimensional to obtain the
fuzzified features (FFs) that, inside the n − UKC , represent
n−dimensional points so that FCE is treated by computation
of distances inside the n − UKC (Fig. 2). The FFs can be
formalized as

Sig([Featuresj]) = [FFj] ∈ n− UKC, ∀j = 1, . . . ,m.

Definition 5 (Kosko’s Hypecube n− UKC): Kosko’s hyper-
cube (n − UKC) is a unitary orthogonal n-dimensional
cube [28]: n− UKC = [0, 1]1 × [0, 1]2 × ...× [0, 1] ⊆ Rn.
Each [FFj] inside n− UKC is a point, FFj, such that:
1) the nearer FFj is to point zero (0n−UKC , maximal dark-

ness point), the darker FPj is considered to be;
2) the nearer FFj is to the unitary point (1n−UKC , maximal

brightness point), the brighter FPj is.
Therefore, both 0n−UKC and 1n−UKC strongly influence the
shape function so that distance(FFj, 1n−UKC ) indicates how

1Other types of fuzzifying function can be considered depending on the
application under study.

far FFj is from total brightness and distance(FFj, 0n−UKC )
measures how far FFj is from total darkness.
Since CP is the maximal fuzziness point, FCE is obtained

after considering, on CP, the tangent line to the S-shaped
membership function (S − SMF) (t−line for short), whose
slope increases (or decreasing) according to the following
criterion: if FFj is close to 1n−UKC ⇒ FPj, it is brighter:

Slopenew = Slopeold ×
distance(FFj, 1n−UKC )
distance(FFj, 0n−UKC )

; (1)

conversely, if FFj is close to 0n−UKC ⇒ FPj, it is darker:

Slopenew = Slopeold ×
distance(FFj, 0n−UKC )
distance(FFj, 1n−UKC )

, (2)

where Slopeold and Slopenew are the t−line slopes before and
after (1) and (2), respectively. (1) and (2) can be taken into
account iff both denominators are 6= 0, and it is imperative
to guarantee that Slopenew is still limited. The following
theorem, whose proof is reported in the appendix, meets these
requirements.
Theorem 1 ( ): If Eqs. (1) and (2) are satisfied, surely:

distance(FFj, 0n−UKC ) 6= 0
distance(FFj, 1n−UKC ) 6= 0
0 < Slopenew <∞.

(3)

A. MAPPING OF THE OI INTO FPL
For our application, to achieve good smoothing transition
quality among gray levels, let us consider an S-shaped mem-
bership function (S − SMF) defined as follows (Fig. 1):

hij = 0, if 0 ≤ yij ≤ c1;

hij =
(yij − c1)2

(c2 − c3) · (c3 − c1)
if c1 ≤ yij ≤ c2;

hij = 1−
(yij − c3)2

(c3 − c2) · (c3 − c1)
if c2 ≤ yij ≤ c3;

hij = 1 ifyij ≥ c3,

(4)

where c1, c2 and c3 are the S − SMF shape parameters that
are determined adaptively as described below.

B. ADAPTIVE PROCEDURE FOR SETTING THE S − SMF
PARAMETERS
Since c1 and c3 are external values, they are adaptively
computed by noise reduction while c2 is evaluated by
entropy maximization (located around a gray level whose
membership value falls in the neighborhood of 0.5). Start-
ing from [19], let us consider the gray level distribu-
tion over the FPL whose histogram Hist (h) has s peaks,
{Hist (h1),Hist (h2), . . . ,Hist (hs)}, with weighted mean

(Yistmax (h))mean =

∑z
i=1 Histmax (hi) · hi∑z

i hi
,
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where Yistmax (h) is the height of the center of gravity of
the histogram.2 Starting from the s peaks, we consider t
peaks (t ≤ s) larger than (Yistmax (h))mean, ruling out the
others because they are less meaningful. From this new set
of peaks, we select the minimum and maximum values,
(Yistmin (h1))mean and (Yistmax (ht ))mean, so that the gray levels
with h such that h < (Yistmin (h1))mean are considered as the
background while gray levels with h > (Yistmax (h1))mean are
considered as noise preserving. Taking into account that the
loss of information of an OI occurs in the neighborhood
of the endpoints of the gray level range, we identify two
characteristic gray levels to determine GL1 and GL2, such
that GL1 < GL2, and consider the ranges [hmin,GL1] and
[GL2, hmax] on which the information loss is equal to a fixed
‘‘ad hoc’’ value 0 < f1 < 1. GL1 and GL2 are produced by
verification of the following equalities:

GL1∑
i=hmin

Hist (i) = f1;
hmax∑
i=GL2

Hist (i) = f1.

Finally, c1 and c3 are obtained by

c1 =
hmax − hmin

2
+ hminand c3 =

hmax − hk
2

+ hk

with two further conditions:

if (c1 > GL1)→ c1 = B1; if (c1 > GL1)→ c1 = B1.

After computing c1 and c3, if c2 ∈ (c1, c3), the entropy of an
FI will depend on both FI and c as:

Entropy = Entropy(FI , c1, c2, c3) (5)

with

S(hmin) ≤ c1 < c2 < c3 ≤ S(hmax),

where c2optimal is computed by maximization of Eq. (5).

C. EDITING OF THE S-FUNCTION
We now split [c1, c3] into three superimposed sub-ranges to
create FP1, FP2 and FP3 (Fig.1): FP1 and FP3 represent
darker and brighter zones of theOI , respectively. To underline
the fuzzy nature of the procedure, FP1 and FP3 have a
common vertex located at U with fuzzy membership equal
to 0.5 (maximal fuzziness) so that FP2 is centered on a fuzzy
membership equal to 0.5 characterizing the gray zones. In this
way, 

SupportFP1 =
c2 + c3

2
−
c1 + c2

2
;

SupportFP2 = c2 − c1;
SupportFP3 = c3 − c2.

2In [19], this computation was obtained by

(Yistmax (h))mean =
1
s

s∑
i=1

Histmax (hi),

but no weighted mean of Histmax (hi) was taken into account, which could be
determinant for a correct FCE .

∀ Supportj, j = FP1, FP2, FP3, we address our attention to
the fourth-order statistics exploiting Fj as a 4− D vector

F j = [stati(Supportj)], i = 1, 2, 3, 4,

where stat1(·) is the arithmetic average; stat2(·) is the vari-
ance; stat3(·) is the skewness; and stat4(·) is the kurto-
sis index. Therefore, F j (with j = FP1,FP2,FP3) rep-
resents three points over R4 that, after fuzzification by a
sigmoid function, for j = FP1,FP2,FP3, gives us three
4− D vectors

FF j =
[

1

1+ e−u(Fj−w)

]
∈ 4− UKC i = 1, 2, 3, 4,

so the new S − SMF is edited by evaluating the distances
between FF j and both 0n − UKC and 1n − UKC . After
evaluating FF j (j = FP1,FP2,FP3), the mutual distances
in n− UKC can easily be computed as{

distance(FFm,FFn) = ||FFm,FFn||2
m, n = FP1,FP2,FP3.

Clearly, two of the following cases could be true. 1) If FP1
represents a brighter zone rather than a darker zone, then the
following inequality holds:

||FF1 − FF2||2 > ||FF1 − FF3||2. (6)

2) If FP1 is related to a darker zone rather than a brighter
zone, the inequality assumes the following form:

||FF1 − FF2||2 < ||FF1 − FF3||2. (7)

The editing of the S-function is performed through anticlock-
wise rotation of the tangent line (t − line for short) to the
S − SMF in CP (point of overlap between darkness and
brightness, where FP1, FP2, FP3 and S − SMF coexist). If
FP1 is bright rather than dark,FF1 is both next to 1n−UKC and
further away from 0n−UKC , increasing the slope of t− line by
a factor equal to:

||FF1 − 1n−UKC ||2
||FF1 − 0n−UKC ||2

. (8)

Similarly, if FP1 is considered darker rather than brighter,
then the t − line slope is decreased by a factor
equal to:

||FF1 − 0n−UKC ||2
||FF1 − 1n−UKC ||2

. (9)

In any case, a new t − line, labeled rot − line, is adaptively
generated. Over the Cartesian plane, the CP coordinates can
be written as (c2, (c2−c1)/(c3−c1)), so the t− line equation
can be written as

t − line(hij) =
c2 − c1
c3 − c1

+
2

c3 − c1

(
hij − c2

)
.

Taking into account both (6) and (8), the rot-line slope
assumes the form

rot − lineSlope = t − lineSlope + t − lineSlope
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FIGURE 4. (a) Portrait representative of Class I (Image 1 in text); (b) A set of coins representing Class II (Image 2 in
text); (c) Small bright areas in large dark are are highlighted in this image chosen to represent Class III (Image 3 in
text); (d) Image with high alternation of bright and dark areas chosen to represent Class IV (Image 4 in text).
(e) to (h) show the histograms for (a) to (d), respectively.

·
||FF1 − 1n−UKC ||2
||FF1 − 0n−UKC ||2

=
2

c3 − c1

(
1+
||FF1 − 1n−UKC ||2
||FF1 − 0n−UKC ||2

)
,

so its equation immediately follows:

rot − line(hij) =
c2 − c1
c3 − c1

+
2

c3 − c1

·

(
1+
||FF1 − 1n−UKC ||2
||FF1 − 0n−UKC ||2

)
(hij − b).

Finally, to fully define S − SMF , we must identify points
P1 and P2, and the intersection of the rot-line with both
the line of membership values equal to zero and the line of
membership values equal to unity (Fig.1):

P1 =

c2 +
c1 − c2

2 · (1+ ||FF1−1n−UKC ||2
||FF1−0n−UKC ||2

)︸ ︷︷ ︸
hP1

, 0

 and

P2 =


(
1−

c2 − c1
c3 − c1

)
·

c1 − c2
2

c3−c1

(
1+ ||FF1−1n−UKC ||2

||FF1−0n−UKC ||2

)
︸ ︷︷ ︸

hP2

, 1

 ,

where the gray levels are indicated by hP1 and hP2 , hP1 <

hP2 .
3 Finally, the new S − SMF function, shown in Fig. 1,

3hP1 will never be equal to hP2 by virtue of the previous theorem.

can be written as follows:

0 hij ≤ hP1
c2 − c1
c3 − c1

+
2

c3−c1
·

·

(
1+
||FF1 − 1n−UKC ||2
||FF1 − 0n−UKC ||2

)
·(hij − p2) hP1≤hij≤hP2

1 hij≥ hP2 .
(10)

Finally, we obtain the enhanced OI by defuzzification.
Specifically, by applying the inverse function of (10),
we obtain the fuzzy gray levels (ranging over [0, 1]); then,
we convert the fuzzy gray levels into the equivalent levels
ranging over [0, 255]. When patch FP1 is considered darker
rather than brighter, it is sufficient to follow the same process
(including fuzzification procedure), by carefully considering
the inequality (7) with decreased factor (9), to obtain similar
equations.

IV. EXPERIMENTAL RESULTS
Four distinct classes of images of the same size with different
contrast characteristics are considered. The database includes
35 low-contrast images belonging to four classes:

1) Class I contains low-contrast portraits;
2) Class II contains images with few areas with medium

gray levels;
3) Class III contains images with large dark areas and

small bright areas;
4) Class IV contains images with alternating small bright

and dark areas.
The procedure is implemented on an Intel Core 2 1.47 GHz
CPU in MatLab R2013. The results for the different images
are comparable, so we present the results of a single image
for each Class (labeled Image 1, Image 2, Image 3 and
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FIGURE 5. CE of Image 1 by means of (a) Prop. Proc., (b) HE , (c) R, (d) P and (e) C , and their histograms from (f) to (j), respectively.

FIGURE 6. CE of Image 2 by exploiting (a) Prop. Proc., (b) HE , (c) R, (d) P and (e) C . (f) to (j) show the histrograms of (a) to (e), respectively.

TABLE 1. Comparison of the results obtained by the proposed procedure and by other established techniques.

Image 4), as shown in Fig. 4 together with their histograms,
which confirm the low-contrast characteristics of each image.
Figs. 5a, 6a, 7a and 8a, obtained by setting f1 = 0.2 [13],

shows the results of the proposed procedure in which, as indi-
cated by the histograms, a substantial increase in contrast
is detectable in all images, although we note some areas in
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FIGURE 7. CE of Image 3 obtained by (a) Prop. Proc., (b) HE , (c) R, (d) P and (e) C , and their histograms, respectively, from (f) to (j).

FIGURE 8. CE of Image 4 obtained by (a) Prop. Proc., (b) HE , (c) R, (d) P and (e) C for CE of Image 4, and their histograms from (f) to (j),
respectively.

which over- and under-enhancement occur because the edited
S − SMF presents two cusps. However, the good quality of
the obtained contrast compensates the presence of these small
altered areas. After implementing the proposed procedure,
the principal elements of the images are enhanced, and the
contours, shadows and details are highlighted. The perfor-
mance of the proposed procedure (Prop. Proc.) is evaluated
by comparing the results with those of Cheng and Xu [19],
Li et al. [21], Reshmalakshmi and Sasikumar [18] and his-
togram equalization (HE) approaches. Moreover, in each
4 − UKC , the location of the individual FP denotes the
tendency for under- and/or over-enhancement (see Fig. 2
for Image 1).4 The obtained CE is also evaluated based on

4The closer the FP is to 04−UKC , the higher the risk of under-
enhancement. Conversely, the closer FP is to 14−UKC , the higher the risk
of under-enhancement

four metrics, namely, entropy measure (EM ), peak signal-
to-noise ratio (PSNR), measure of luminance index (MLI )
and measure of contrast index (MCI ), whose numerical
results are displayed in Table 1. The high values of EM
and MLI together with the small values of PSNR indicate a
high-quality contrast. However, in confirmation of the risk
of under-/over-enhancement, some of the PSNR values are
lower than those produced by the other techniques. Similarly,
the MLI values are slightly higher than those obtained by
the alternative techniques. Figs. 5b, 6b, 7b and 8b show the
results of the HE procedure. This procedure produced good
results for images belonging to Class III, in which large
dark areas and small bright areas are present (Fig. 7b). The
other images (Figs. 5b, 6b and 8b), although conservative
in detail, are lacking in clarity, as numerically confirmed
by the results reported in Table 1. Figs. 5c, 6c, 7c and 8c
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present the results of Reshmalakshmi’s approach [18]. Rela-
tive to the treated images, the obtained contrast lacks in qual-
ity, especially for highly detailed images (Figs. 5c and 8c),
while a good contrast is produced in the remaining images.
Even in these cases, the numerical results show compliance
with the qualitative results (Table 1). The following set of
Figures, 5d, 6d, 7d and 8d, is produced by Li’s approach [21].
This approach does not produce high-quality images when
there is a high level of detail in the OI , as indicated by
both qualitative and numerical analysis. However, the proce-
dure produced good results for images in Class III (Fig. 7d,
Table 1). Finally, Figs. 5e, 6e, 7e and 8e show the results
produced by Cheng’s method [19].

V. CONCLUSIONS AND PERSPECTIVES
In this paper, the problem of contrast enhancement for gray
level images is solved with a new fuzzy procedure. Start-
ing from a pixel-by-pixel scan of a normalized gray level
image, a smooth S-shaped membership function is adaptively
set according to both noise reduction and information loss
minimization. A set of partially overlapped fuzzy patches
cover the input-output space of the S-function; after appro-
priate fuzzification, a set of statistical features are extracted
from the supports to identify the critical point characterized
by the maximum fuzziness. This point give us the coexis-
tence of fuzzy patches and the S-function and provides the
point where the S-function will change its slope to imple-
ment contrast enhancement. Specifically, the fuzzified sta-
tistical features are considered as points inside a fuzzy unit
hypercube, and fuzzy contrast enhancement is achieved by
a weighted calculation of the distance among these points
and the vertexes of the hypercube representing both the max-
imum brightness and maximum darkness. This procedure
is implemented and applied to four classes of low-contrast
images with different characteristics and the performance is
evaluated with respect to four objective metrics and stan-
dard histogram comparisons. The experimental results are
encouraging, as clearly demonstrated by comparison with
other established fuzzy techniques and the standard his-
togram equalization approach. However, it should be noted
that the proposed technique can produce over- and under-
enhancement phenomena due to the non-differentiability of
the S-function in two cusps. Therefore, future effort should
be focused in this direction.

APPENDIX
PROOF OF THEOREM 1
Let us consider (c, <) = ({c1, c2, c3}, <). Since c is a vector
of brightness values, then

hmin < c1 = min(c) < c2 < c3 < . . . < ck−1 < ck
= max(c) < hmax

holds. If [hmin, c1] represents the total darkness, its member-
ship degree is null. Therefore, Support1 = [hmin, c1] gains in
significance and S(Support1) = 0. Clearly, [cj−1, cj] with j =
1, . . . , k can be considered as supports: Supportj = [cj−1, cj]

with j = 1, . . . , k and S(Supportj) 6= 0 (particularly, >

0). Since S(Support1) = 0 and S(Supportj) 6= 0, j =
2, . . . , k , we extract k n-dimensional vectors of features,
F(Supportj), but S(Supportj) > 0 implies F(Supportj) 6= 0
andF(Supportj) > 0 is not necessary. Finally,F(Support1) =
0 and F(Supportj) 6= 0, j = 2, . . . , k . The k vectors require
fuzzification, which by means of sigmoidal functions, gives
us the following characterization:{

FFSupport1 = Sig(0) = 0
FFSupportj = Sig(F(Supportj)) > 0, j = 2, . . . , k.

Note that FFSupportj is greater than zero (for j = 2, . . . , k)
since fuzzification produces amapping ranging into n−UKC .
To obtain (3), it is sufficient to observe that, in n−UKC and
by a norm, for j = 2, . . . , k , the relation

distance(FFj, 0) = ||Sig(F(Supportj))− Sig(0)||

holds and, by the considerations specified above, gives us

distance(FFj, 0) 6= 0.

To prove that distance(FFj, 1n−UHC ) 6= 0, it is sufficient to
repeat the same path, resulting in the following implication:

S(Support1) = 1
S(Supportj) 6= 0
j = 2, . . . , k

⇒


F(Support1) = 1
F(Supportj) 6= 0
j = 2, . . . , k

and, after fuzzification by the Sig function, it is easy to get{
FFSupport1 = Sig(1) = 1
FFSupportj = Sig(F(Supportj)) 6= 0, j = 2, . . . , k.

Finally, the purpose is obtained in terms of norms:

distance(FFj, 1) = ||Sig(F(Supportj))− Sig(1)|| 6= 0.

To prove that 0 < slopenew < ∞, we observe that both
distance(FFj, 1n−UKC ) and distance(FFj, 0n−UKC ) are inner
ranges of n− UKC , so they suffer from limitations{

0 < distance(FFj, 1n−UKC ) <
√
n

0 < distance(FFj, 0n−UKC ) <
√
n,

(where
√
n represents the diagonal length in n − UKC), that

when divided by each other give

0 <
distance(FFj, 1n−UKC )
distance(FFj, 0n−UKC )

<∞,

from which the assertion follows.
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