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Measuring and identifying human behaviours are key aspects to support the simulation processes that have a significant role in
buildings’ (and cities’) design and management. In fact, layout assessments and control strategies are deeply influenced by the
prediction of building performance. However, the missing inclusion of the human component within the building-related
processes leads to large discrepancies between actual and simulated outcomes. This paper presents a methodology for measuring
specific human behaviours in buildings and developing human-in-the-loop design applied to retrofit and renovation
interventions. The framework concerns the detailed building monitoring and the development of stochastic and data-driven
behavioural models and their coupling within energy simulation software using a cosimulation approach. The methodology has
been applied to a real case study to illustrate its applicability. A one-year monitoring has been carried out through a dedicated
sensor network for the data recording and to identify the triggers of users’ actions. Then, two stochastic behavioural
models (i.e., one for predicting light switching and one for window opening) have been developed (using the measured data)
and coupled within the IESVE simulation software. A simplified energy model of the case study has been created to test the
behavioural approach. The outcomes highlight that the behavioural approach provides more accurate results than a standard
one when compared to real profiles. The adoption of behavioural profiles leads to a reduction of the discrepancy with respect to
real profiles up to 58% and 26% when simulating light switching and ventilation, respectively, in comparison to standard
profiles. Using data-driven techniques to include the human component in the simulation processes would lead to better
predictions both in terms of energy use and occupants’ comfort sensations. These aspects can be also included in building
control processes (e.g., building management systems) to enhance the environmental and system management.

1. Introduction

Occupants are the key factor for the building energy assess-
ment [1] since they influence the indoor environment both
in a passive and active way [2]. The former is related to the
presence of the users just in terms of sources of heat and
CO2 production. The latter concerns the direct interaction
between the people and the building systems and devices
(e.g., open and close the windows, switch on and off the heat-
ing system). The minimization of the importance of the
human component in the simulation environment led to sig-
nificant discrepancies (also known as “energy gap”) between

real and simulated building performances [3]. One of the
main weaknesses of building performance simulation (BPS)
programs is the lack of advanced, but also user-friendly,
methods to measure and replicate real behaviours.

The majority of simulation software adopt deterministic
rules and fixed settings (e.g., Department of Energy, ASH-
RAE 90.1) to model behavioural features. The standard
profiles, although coming from real monitoring campaigns,
barely reproduce the actual patterns of occupancy and the
interactions with the building devices [4, 5]. Despite the fact
that this approach is still the most diffused, some signs of
progress have been achieved in the last years. For example,
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the EMS (energy management system) feature in EnergyPlus
provides the opportunity to adjust the same controls avail-
able through EMSs in real buildings through an integrated
interface inside the simulation engine [6]. Deeper customiza-
tions can be achieved by modifying the source code. How-
ever, the software houses do not usually provide the access
to the source code, and even if it was possible, a very high
level of expertise is required [7]. Recently, the cosimulation
is becoming very popular since it provides the higher level
of flexibility to the external user. Allowing data exchange
between different modules in real time, this approach accu-
rately reproduces the mutual interactions and influences
between the occupants and the environment. Because of its
potentialities, several cosimulation approaches have been
proposed. The cosimulation can be performed by coupling
PC-based energy engines (e.g., EnergyPlus and ESP-r) to a
Functional Mock-up Unit [8] or using web-based applica-
tions (e.g., the Occupancy Simulator) [9] and external plat-
forms (e.g., BCVTB to couple Matlab with EnergyPlus)
[10–12]. The literature analysis provides a clear evidence of
the advantages derived from cosimulation approach applied
to building performance assessment. Therefore, there is the
need to increase the knowledge on how behaviours can be
accurately measured and fitted for wider application in the
context of building design and management.

Endorsing this emerging approach, the NewTREND
European project developed a cosimulation framework to
empower the IESVE energy simulation engine with a
stochastic behavioural tool. The software has been enhanced
to allow user-defined functions and a two-way data exchange
between different modules during the simulation runtime.
Given the availability and the advantages of the cosimulation
framework, a complete workflow to apply the tool to
buildings’ retrofit design has been performed. The proposed
research is aimed at demonstrating how human behaviours
can be measured and fitted to create calibrated functions
suitable for the cosimulation in the building performance
assessment.

Monitoring and data collection are the first steps to inves-
tigate occupants’ behaviours in the built environment [13].
The measurement of human behaviour means building up
a dedicated sensor network able to capture both physical
and behavioural quantities and to define robust methods
for the data fitting and model development [14]. Each
building has its own contextual factors affecting human
behaviours and comfort perceptions [15, 16]. Thus, a dedi-
cated monitoring plan needs to be designed when starting
the investigation, to rely on realistic basis rather than
unfounded assumptions [17]. Moreover, IoT solutions can
be exploited to gather the necessary information, given their
growing popularity and employment [18]. According to
these premises, the methodology proposed in this paper is
based on environmental and occupants’ data ingestion to
apply statistical analyses and to determine correlations
between a certain action (e.g., window opening) and the state
of the surrounding environment. Collecting data is not
enough, but also, the measurement accuracy plays an impor-
tant role to allow the required understanding. For example,
thermal comfort, one of the major factors motivating the

interaction with the building, requires an accurate measure-
ment [19], and in some cases, the mere environmental mon-
itoring is not enough, but the inclusion of physiological
measurements could provide the required level of accuracy
in the determination of personal factors [20].

Experimental data need to be statistically analysed
through data fitting procedures to identify correlations
between users’ actions and environmental drivers and, as
a consequence, to obtain data-driven behavioural models.
In recent years, the wide proliferation of behavioural
approaches leads to the identification of the most important
features that a model should incorporate [21]. Basically, a
model should be stochastic to provide probabilistic and not
fixed outputs. It could be presented both in an implicit (i.e.,
giving the status of the device) or explicit form (i.e., giving
the probability of an action occurrence). Explicit models
are preferred since they usually provide functions for
reversal action too. In fact, even if the inclusion of the
reversal form (e.g., opening and closing) is crucial for sim-
ulations, many models lack in this sense [22, 23]. Also, the
contextual factors and the boundary conditions of the data
monitoring (e.g., duration, sample frequency) and of the
case study (e.g., building end-use, climate) must be explicitly
described. In fact, this information can be useful for
understanding models’ applicability to other contexts. In this
perspective, researchers should present a method including
all the steps to obtain the models and not just a mathematical
formula [21].

The stochastic attribute of behavioural models is essential
to replicate the variability of the human nature; however, this
feature leads to some issues in the simulation environment.
In fact, probabilistic inputs can generate different output
even under the same boundary conditions. This means that
to reduce the uncertainty produced by the method, a number
of simulations are required. However, performing multiple
runs increases both the computing time and the examining
efforts and, in parallel, it is not a synonym of greater accuracy
in the results [24]. Uncertainty analyses offer a statistical
procedure for estimating the coverage interval achievable
running a predetermined number of simulations. In this
paper, uncertainty estimation has been performed to evaluate
the feasibility of running just one simulation.

Addressing the building performance gap, modelling the
human-building interaction and integrating models within
simulations have been recognised as three main current
challenges of BPSs [25]. In the perspective of overcoming
these issues, several EBC Annexes (53 and 66) focused on
developing tools to understand occupants’ behaviours and
to calculate real building energy use [26]. Also, many behav-
ioural models have been developed in the last decades [27].
Referring to either one or multiple actions, to several
climate zones and to different building uses, such models
are covering more and more cases and applications. How-
ever, the implementation of such models in BPS programs
is still extremely rare since few simulation software provide
options to implement or define custom settings, and those
which allow such implementation usually do not have a
user-friendly interface and require deep programming
knowledge [21].

2 Journal of Sensors



This study aims at bridging the gap between the measure-
ment and development of behavioural models and their
implementation within simulation software to enhance the
predictions of energy consumptions. In particular, the paper
presents (1) the development of explicit and data-driven
behavioural models for window opening and closing and
light switching in offices; (2) the implementation of the
models in the IESVE environment; (3) the explanation of
the cosimulation approach; and (4) the comparison
between simulated and actual behaviours. The final aim
is to provide a methodology flexible enough to be easily
tuned to different contexts and research targets. Moreover,
offering simulated building performances, which consider
the occupants’ perspective and the human-building interac-
tion, the design team will be aided in the decision-making
process and in the enhancement of the building design, retro-
fit, or renovation stages.

2. Materials and Methods

The general methodology followed during the present
study is outlined in Figure 1. The methodology can be
resumed in two main actions. The first stage is devoted
to real measurements and to the data fitting targeting the
development of behavioural models, while the second is
directed to applications in the simulation environment
for the building design. In detail, the first step concerns
the acquisition of environmental and behavioural data in
real buildings through monitoring campaigns. Then, the
data fitting allows the development of data-driven behav-
ioural models to predict users’ interactions with building
devices. The behavioural framework is coupled with the
simulation engine through a cosimulation approach which
allows the data exchange during the simulation runtime.
Finally, simulation outcomes are evaluated to assess the
design strategy which best fits users’ preference and energy
requirements.

To develop the abovementioned workflow, the following
research steps have been carried out:

(1) Framework. Definition of the mandatory steps for devel-
oping the behavioural models in relation to data acquisition,
algorithms, and model workflow.

(2) Experimental Phase. Identification of a case study build-
ing for monitoring and behavioural investigations.

(3) Data Analysis. Processing of one year of monitored data
in three multioccupied offices and assessment of the drivers
for users’ behaviours.

(4) Fitting Phase. Development of behavioural models using
regression methods to predict light switching and window
adjustment.

(5) Implementation. Coupling of behavioural models and
IESVE simulation software using a cosimulation approach.

(6) Simulation. Modelling of a portion of the case study
building in the virtual environment and testing of both the
standard and the behavioural approaches.

(7) Findings. Comparison of the energy performances related
to the two approaches and the juxtaposition between stan-
dard, behavioural, and real profiles to assess which approach
would provide the best predictions.

(8) Uncertainty Analysis. Estimating the uncertainty due to
the number of stochastic simulations.

2.1. Measurement and Fitting of Human Behaviours. The
behavioural approach requires realistic data for a
knowledge-based modelling of occupants’ behaviour. A
monitoring campaign is thus needed to capture occupants’
actions and the parameters related to the surrounding
environment (indoor and outdoor) that potentially trigger
those actions. A fine granularity of data acquisition allows
the best data interpretation. For this reason, the monitoring
approach used in this research included

(1) continuous measurements with a dedicated sensor
network, acquiring data with a time interval of 10
minutes

(2) monthly occupants surveying about personal infor-
mation and the thermal environment

The monitoring campaign had a duration of one year
to cover all seasons and consequent changes in users’
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Figure 1: Sketch of the adopted methodology.
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behaviours. In particular, window opening and light switch-
ing were the actions to be monitored. To this end, window
status and illuminance on the work plane were measured.
The illuminance on the work plane was used to derive turn
on and off actions since it was not feasible to install sensors
directly on the light switches. Concerning contextual factors,
indoor environmental quantities were measured together
with the occupancy, while outdoor environmental quantities
were gathered from a local weather station. A detailed
description of the monitoring is presented in the next
sections and in previous studies [28].

The raw data recorded during the monitoring need to be
analysed to assess whether any correlation exists between
environmental parameters and people’s actions. Regression
methods allow fitting the data and to obtain behavioural
functions.

The regression model adopted in this paper derives
from the one proposed by Wang et al. [29]. It consists of
a general formula to evaluate the probability of occupants’
behaviour in relation to environmental conditions and
(eventually) time-related events. Based on a “memoryless
hypothesis,” the probability is influenced only by the
current environmental conditions and not by previous
states. Equations (1a) and (1b) present the increasing and
decreasing forms, respectively.

P xt = 1 − e− xt−u /l kΔt/t , if xt > u,
0, if xt ≤ u,

1a

P xt = 1 − e− u−xt /l kΔt/t , if xt < u,
0, if xt ≥ u

1b

A discrete three-parameter Weibull cumulative function
is adopted to calculate the probability. The parameters u, l,
and k are three constant coefficients which quantify the way
the occupants react to a certain environmental discomfort.
The parameter u, called the “threshold,” represents the
limit above or below which starts users’ reactions to dis-
comfort. It is the discriminating factor for the probability
calculation. The coefficient l is the “scale,” namely, the
linear effect of the trigger, and k is the “shape,” representing
the power exponent for the effect of the environmental
stimulus. The temporal frequency is provided by the
parameters Δt and t. The first is a discrete time step in
the measurement and/or simulation (set at 10 minutes),
and the second is a known time constant (here fixed at 60
minutes).

This model is suitable to be used with every environmen-
tal variable, and in the case of behaviours driven by multiple
effects, the system can be easily expanded to include further
parameters.

The approach has been already adopted to predict air-
conditioning usage in residential buildings [30] and light
switching in offices [31]. The flexibility of the formula allows
also the coupling with an agent-based model [32] and its
application at the district level [33].

In the present study, the approach has been used to pre-
dict the light-switching behaviour towards the work-plane
illuminance and the window opening and closing actions in
relation to indoor and outdoor temperatures.

The strength of the correlations is evaluated by calculat-
ing two goodness-of-fit (GOF) estimators. The coefficient of
determination (R2) and root mean square error (RMSE) have
been estimated for each correlation. The former is an
adimensional index ranging between [0, 1] which explains
the variation of the independent variable in the dependent
variable. Higher values indicate better fits (especially when
overcoming 0.75). The latter represents the standard devia-
tion of the residuals and measures the spread of the data
around the fit. Good fits are related to small RMSEs.

2.2. The Cosimulation Approach. In general, energy simula-
tion software model occupants’ behaviours adopting fixed
schedules and deterministic rules. However, this method
hardly captures the dynamic human-building interaction.
To overcome such standard schedule-based approach, the
IESVE software has been improved to support the cosimula-
tion. A new type of profile has been created to describe user-
defined functions (written in the Python language) which
include also stochastic aspects. This new feature allows a
two-way data exchange between different modules during
the run.

Figure 2 sketches the general workflow of the simulation.
At start, the software evaluates whether the preconditions are
satisfied (in terms of building use and climatic conditions). If
the answer is negative, the behavioural model cannot be
applied and a standard simulation, with deterministic sched-
ules, is performed. Otherwise, the behavioural models are
initialised and kept active until the simulation end.

In detail, the engine calls the functions and provides the
mandatory input to compile the algorithms. The output is
sent back to the energy model, which sets the profiles and
modifies the environmental conditions. This process is
repeated at each time step, until the simulation end.

In this paper, the framework has been developed to mod-
ify lighting and ventilation profiles. Since occupants perform
differently according to the action, two different workflows
have been developed and reported in Figure 3.

The workflow is organised into three main sections,
according to the occupancy profile. In fact, the behavioural
models are active only when the room is occupied since
people’s presence is the main requirement for an action’s
occurrence. For this reason, at the first time step, the lights
are off and the windows are closed. At arrival (i.e., at the first
occupied time step), the models evaluate the probability to
switch the lights on and to open the windows (P0,1) in
relation to the environmental conditions. During the inter-
mediate period, the lighting model calculates the turn-on
probability (P0,1), and once the action is taken, the lights
are maintained on until the users’ departure. In fact, accord-
ing to observations in offices, the workers switch off the lights
only when leaving definitely the room [34]. The ventilation
model is provided with both the direct and the reversal form.
At each time step, the window status can turn from close
(P0,1) to open or vice versa (P1,0), according to thermal
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conditions and previous status of the window. At depar-
ture (i.e., at the end of the working day), the status of
the devices returns to its initial setting, independently
from the environmental situation.

It should be noted that the behavioural functions provide
as output a probability, which can range between [0; 1] (or,
similarly, between 0% and 100%). However, the energy sim-
ulation needs a dichotomous output to modify the schedules
(e.g., 0 =window closed; 1 =window open). To overcome this
issue, the probability P (to take the action) is compared to a
random number Rn stochastically generated from a uniform
distribution. If P is greater than Rn, the action is taken; other-
wise, the device status remains unchanged. This technique
has been widely adopted in the literature as a criterion for
decision [35, 36].

The workflow presented to model ventilation and light-
ing profiles can be easily tailored to many other behavioural
aspects (e.g., heating and cooling) by adjusting few settings
and input/output parameters.

3. Experimental Application

This section describes the experimental application of the
methodology reported in the previous section. At first, the
features of the case study building and the monitoring cam-
paign are presented. Then, the thermal environment is char-
acterised both in objective and subjective terms. Finally, the

energy model built up with the IESVE energy software and
the simulation settings are detailed.

3.1. Case Study Description. The study took place in a univer-
sity building settled in Ancona, Italy (latitude: 43°35′15″N;
longitude: 13°31′01″E; altitude: 140m). The location is char-
acterised by a hot summer Mediterranean climate, according
to the Köppen Climate Classification System [37].

The building has a centralised heating system with at
least one fan coil unit per room. Since neither conditioning
nor mechanical ventilation systems are present, only natural
ventilation (i.e., window opening) can be used for air
exchange.

Three multioccupied offices (2–3 persons) have been
selected as case studies to survey occupants behaviours. The
rooms are usually occupied fromMonday to Friday and from
9 a.m. to 7 p.m., with some variations according to personal
tasks. The age of the occupants is about 30 years and they
are equally distributed between male and female.

3.2. Measurement Campaign. A one-year monitoring cam-
paign has been performed fromMay 2016 to May 2017. Such
long-term approach allows obtaining environmental and
behavioural data from all seasons. A dedicated sensor net-
work was implemented to measure and collect data from
the three rooms (Figure 4). The network is based on an IoT
gateway communicating with deployed sensor nodes
through 802.15.4 protocol. The gateway stores data locally
on MySQL database and remotely through the internet con-
nection for continuous processing. Two different sensing
nodes were implemented in each room: one measuring air
temperature, relative humidity, and occupancy; another one
measuring CO2 concentration, indoor illuminance, and win-
dow opening.

Table 1 illustrates the recorded parameters and the char-
acteristics of the sensors installed in the rooms. A time step of
10 minutes has been set for all the probes. In particular, peo-
ple presence has been identified as cumulative frequency dur-
ing each time interval, while the window status was provided
by contact sensors, placed on the top of the casements,
through a Boolean output (i.e., 0 =window closed and
1=window open). The outdoor temperature has been
detected from a public weather station (property of the
Marche Civil Defence), located approximately 2 km from
the surveyed building. Further information regarding the
building and the monitoring approach can be accessed in a
previous study [28].

3.3. Characterization of the Thermal Environment. This par-
agraph aims at providing a brief overview of the thermal
environment from both an objective and subjective point of
view.

The environmental data have been statistically analysed
and reported in Table 2. The table summarises the parame-
ters monitored in the three rooms only during the occupied
periods. The table is split up into three sections according
to different seasons to underline the climatic differences.
The analysis concerns nearly 200 working days, with about
100 days of both heating and nonheating season.
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Figure 2: General simulation workflow.
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The mean winter indoor temperature is slightly higher
than the recommended value (20°C) while the summer one
is slightly lower than the suggested threshold (26°C). During
the summer season, very high values (up to 34°C) have been
recorded in the room facing east. The analysis of the CO2
concentration shows that the mean is rather acceptable
(650 ppm), even if values overcoming the International

Guidelines [38] limits have been recorded too. In relation
to the work-plane illuminance, it can be noted that the mean
value is about 360 lx, which is quite lower than the threshold
recommended by the EN 12464 [39]. Despite slight varia-
tions in relation to guidelines and standards, the outcomes
suggest that the occupants should be quite satisfied with the
working environment.
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To have a comprehensive evaluation of the thermal envi-
ronment and investigate the degree of satisfaction of the
users, anonymous questionnaires have been distributed to
the occupants once a month. The structure of the question-
naire has been set up to collect personal information (e.g.,
age and gender), room features (e.g., exposure and nr. of col-
leagues), and comfort sensations (i.e., thermal vote). The
gathered information allows investigating the thermal

perceptions for both the whole sample and according to the
different orientations. Figure 5 displays the thermal vote in
relation to the four seasons and separated for the north-
(solid filling) and east-oriented (dashed filling) rooms. In
general, the occupants felt a neutral sensation (i.e.,
PMV=0) along the whole year, except during the summer
where they frequently experienced warm perceptions. Inter-
mediate seasons (autumn, in particular) show the greatest

Table 1: Key features of the probes in the sensor network.

Sensor Acquired parameter Accuracy Range Number

Thermistor (SHT75) Air temperature (°C) ±0.4°C 0 ÷ 70°C 1 per room

Capacitive (SHT75) Relative humidity (%) ±1.8% 0 ÷ 100% 1 per room

NDIR CO2 (ppm) ±50 ppm 0 ÷ 2000 ppm 1 per room

Photodiode Si Light (lx) ±3% 0.02 ÷ 20 klx 1 per room

PIR Occupancy (num.) n/a 12m 1 per room

Magnetic Window status (num.) n/a n/a 4 per room

Table 2: Statistical analysis of the monitored variables during the heating season, the nonheating season, and the total period (only
occupied periods).

Season Indoor temp. (°C) Outdoor temp. (°C) Indoor humidity (%) CO2 (ppm) Work-plane illuminance (lx)

Total

Max 34.1 34.6 77 1660 2000

Min 15.4 −2.7 21 363 0

Mean 23.9 17.3 44 650 357

St. dev. 2.6 7.5 10.5 186 196

Heating season

Max 28.6 23.8 65 1543 944

Min 15.6 −2.7 21 375 0

Mean 22.7 11.7 37 713 336

St. dev. 1.1 5.0 7.6 150 142

Nonheating season

Max 34.1 34.6 77 1660 2000

Min 15.4 8.4 24 363 0

Mean 24.9 22.5 50 593 376

St. dev. 3.1 5.2 8.6 198 235
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variability (from cool to slightly warm) as a consequence of
the wide outdoor fluctuations. The exposure affects the ther-
mal sensation over the whole year. In fact, 18% of the votes,
collected in the offices facing north, are connected to cooling
sensations (i.e., votes −1 and −2), against 0% of the east side.
On the contrary, the percentage of votes related to warm sen-
sations (i.e., votes 1 and 2) is 23% for the north side and 36%
for the east one. It is evident that the users working in the
north side of the building suffer more often for cooling, espe-
cially during the autumn.

These analyses give a useful representation of the indoor
thermal conditions and of users’ perceptions in their working
environment. However, it should be noted that the answers
collected in the questionnaires are representative of an entire
month. Along such period, many different situations could
have been occurred, and so the occupants reported just the
prevalent perception. This time span has been chosen target-
ing at performing a long-term seasonal analysis to support
and complete the environmental monitoring. Therefore, this
monthly data collection did not allow deriving neither hourly
nor daily correlations to be implemented in the behavioural
models.

3.4. Building the Energy Model. This section describes the
virtual model created to test the workflow detailed in the
previous section (Materials and Methods). The IESVE
energy simulation software has been adopted to create
the energy model.

The sketch, depicted in Figure 6, represents three floors
of the case study building consisting of 12,183m3. The

heating surface is about 1150m2 for each of the three floors.
Offices (green), corridors (blue), and stairs (grey) have been
set according to rooms’ real properties both in terms of mate-
rials and schedules.

The heating system, set at 20°C, is active from the begin-
ning of November to the mid of April, following the direc-
tives of Italian regulations [40]. As for the actual building,
the cooling system and the mechanical ventilation are not
included.

Table 3 summarises the settings of the profiles (i.e., occu-
pancy, lighting, heating, and ventilation), which have been
applied considering both the rooms end-use and the guide-
lines of ASHRAE 90.1 [41] and ISO 13790 [42].

A one-year baseline simulation has been run using stan-
dard and fixed schedules with the settings recapped in
Table 3. After that, the behavioural models have been
employed for a stochastic variation of lighting and ventila-
tion profiles during the simulation runtime in the office
rooms. The baseline simulation has been used for comparing
deterministic and stochastic results.

The main aim of this study is to provide a methodol-
ogy to include the human component within the entire
design process. To provide a concrete application of this
methodology, the connection to a real case study is essen-
tial. As a consequence, the behavioural models presented
in this paper are strictly connected to the context in which
they have been developed. In these terms, they can be
defined as “calibrated models” since they are tailored on
a specific and detailed case study. The models should be
applied without changes in buildings which have similar

Stairs

Offices
Heating set‑point = 20°C
Occupancy = 20 pers/m2

Stochastic lighting profile
Stochastic ventilation profileNo heating system

No occupancy
No lighting
No ventilation

Corridors
Heating set‑point = 20°C
Occupancy = 93 pers/m2

Lighting threshold = 500 lx
No ventilation

Figure 6: The building energy model developed in the IESVE environment.
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boundary conditions of the surveyed building (e.g., settled
in the Mediterranean climate, office buildings, free human-
building interaction).

Applications in contexts with dissimilar features could be
possible but the uncertainty of the results would increase.
One of the key points in extending the models to different
contexts is the identification of the trigger parameters for
users’ behaviours and the tuning of the coefficients of the
equations. Model adjustments require experimental data that
can be collected not only with long-term monitoring but also
performing spot campaigns along the different seasons.
Moreover, the mathematical approach adopted in this
research has been derived from previous studies which
already provide behavioural models for applications in differ-
ent contexts (e.g., use of air-conditioning units in homes).

4. Results and Discussion

Starting from presenting the developed behavioural models,
this section offers a critical comparison of the predicting
capabilities using the behavioural approach and the standard
simulation approach, also in relation to real actions. A fur-
ther analysis concerns the evaluation of the most influencing
action on the energy consumptions to assess which behav-
iour mainly leads to a variation of building performances.
Finally, simulations’ repetition has been investigated using
an uncertainty analysis.

4.1. Behavioural Models. The human-building interactions
recorded during the monitoring have been analysed to iden-
tify the triggers for users’ behaviours. Window opening and
closing actions are mainly driven by thermal comfort prefer-
ences. In naturally ventilated buildings (as for the case study),
ventilation patterns are strictly connected to indoor and out-
door temperature trends [43–45]. Light-switching behav-
iours are related both to visual comfort and habits. In
particular, the lights are more likely to be turned on at the
decrease of the indoor illuminance [46, 47], while switch off
actions occur almost only when the occupants leave the room
[34, 47].

According to these patterns, the regression analysis for
window opening and closing has been carried out in
relation to indoor and outdoor temperature, while light
switching (i.e., turn-on behaviours) has been correlated
to work-plane illuminance.

In reference to the numerical approach explained in the
previous section (Measurement and Fitting of Human

Behaviour), Table 4 reports the constant coefficients u, l,
and k for each correlation. It also includes R2 and RMSE,
which highlight the quality of the fits on the experimental
data. It can be noted that all correlations are statistically
significant since both GOF estimators are of good quality.
The best fit is the one relating the work-plane illumi-
nance to light-switching behaviour, while indoor temper-
ature and window closing are linked with a less robust
correlation.

Figure 7 graphically shows the behavioural models for
window opening (Figure 7(a)), window closing
(Figure 7(b)), and light switching (Figure 7(c)). The proba-
bility functions for window opening present a monotoni-
cally increasing trend, with a very similar shape. They
show a significant probability when the temperatures over-
come about 25°C, with T50 (i.e., the temperature at which
half of the occupants open a window) around 30°C. The
models for predicting the closing actions, characterised
by a decreasing trend, significantly differ. The one linked
to the indoor temperature reaches a closing probability
of 50% at 19°C, while that driven by the outdoor temper-
ature arrives at 60% at 0°C. The light-switching probability
function is almost flat until 130 lx; then, it rapidly
increases reaching 100% for 0 lx.

4.2. Behavioural Approach vs. Standard Approach. This para-
graph presents a comparison between the stochastic
approach and the deterministic approach.

A baseline scenario has been achieved running a one-year
simulation with static settings. The profiles from standards
(Table 3) have been applied in all the rooms, according to
their specific end-use. Then, the profiles regulating the
“office” rooms (see Figure 6) have been linked to the behav-
ioural models for a stochastic adjustment of ventilation and
lighting schedules.

Table 3: Summary of the energy settings according to the different end-use.

Settings
Room type

Office Corridor Stairs

Occupancy profile Mon–Fri/8–19 Mon–Fri/8–19 —

Lighting threshold 500 lx 500 lx —

Lighting profile Mon–Fri/8–19 Mon–Fri/8–19 —

Heating profile Mon–Fri/6–23 Sat/6–19 Mon–Fri/6–23 Sat/6–19 —

Ventilation threshold 24°C — —

Ventilation profile Mon–Fri/8–19 — —

Table 4: Coefficients of the behavioural models and goodness-of-fit
estimators.

Correlation u l k R2 RMSE

Window open-indoor temp. 18 8.6 3.9 0.96 0.07

Window open-outdoor temp. 0.1 25.1 8.9 0.98 0.05

Window close-indoor temp. 31.5 8.7 3.1 0.71 0.15

Window close-outdoor temp. 31 18.9 3.5 0.93 0.04

Light switching-illuminance 360 269.4 12.6 0.99 0.01
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The computation time to perform one-year simulation
using the behavioural functions is about 1 minute, for the
current model. This new functionality increases the duration
of the simulation of few seconds in comparison to the tradi-
tional settings.

The total energy performance (MWh) and the lighting
consumptions (MWh) have been selected as key indicators
to compare the two approaches.

Figure 8(a) highlights that the standard approach pro-
vides a higher energy use than the behavioural one for both
the two indicators. Figure 8(b) reports the percentage abso-
lute difference between the two approaches. The variation of
the overall energy consumptions is minimal since it is
roughly 2%. This result is mainly a consequence of several
building features and modelling settings. In fact, the window
use is minimal during the winter season, when the con-
sumptions are mainly a consequence of the heating system.
Conversely, during the nonheating season, window adjust-
ments are extremely frequent but no building system

consumes fuel (i.e., neither cooling nor mechanical ventila-
tion systems are present).

In comparison to consumptions related to the whole
buildings, those related to lighting use show a much bigger
variation. The difference up to 10% is mainly affected by
the profile settings. According to the behavioural model
shown in Figure 7(c), the light-switching probability starts
for values lower than 360 lx but provides more consistent
probabilities from 130 to 0 lx. Differently, the standard
schedules consider the lights switched on when the indoor
illuminance is lower than 500 lx, as stated in the prescriptions
for office buildings.

4.3. Comparing Behavioural and Standard Profiles to Real
Behaviours. The comparisons between simulated and real
data give a concrete idea of the predicting capabilities of a
model. In general, such observations are made at the building
level, especially using energy consumptions as indicators. In
the case study, it was not possible to record or derive this
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Figure 7: Behavioural models for the (a) opening probability; (b) closing probability; (c) switch-on probability.
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information both because of privacy issues and systems’ con-
figuration (the building has a very complex centralised sys-
tem with central heating). To overcome these limitations
and, in parallel, provide a realistic comparison between pre-
dicted and actual data, the analysis has been performed on
the lighting and ventilation profiles. In detail, simulated pro-
files, both using the behavioural and standard approaches
and real patterns, have been examined to assess the percent-
age of occupied time with lights on and the window open.
The analysis has been performed for each month, except
August since the case study building was almost always
closed for the summer vacations.

Figures 9 and 10 show the results of this comparison for
two rooms with a different orientation (i.e., north-exposed
on the top and east-exposed on the bottom) in relation to
lighting and ventilation profiles, respectively.

The behavioural profiles present a better prediction of the
real patterns, in all the cases. The greatest difference between
the standard approach and the behavioural approach can be
appreciated for the light switching (Figure 9). Standard

profiles present a constant trend along the year. The lights
are always switched on during occupied hours since the sim-
ulated indoor illuminance never overcomes the threshold of
500 lux. The greatest discrepancies are related to the summer
season (especially July), during which real lighting events are
very rare. On the contrary, during wintertime, the gap is sub-
stantially shrunk because the occupants are more likely to
work with lights turned on. Tuned on real users’ preference,
the behavioural model provides a much greater accuracy for
both the orientations. In the north-exposed room, the behav-
ioural profiles tend to overestimate real interactions. How-
ever, the difference is very little for most of the year
(especially from March to September). The east-exposed
room presents a real profile characterised by much more
hours with lights turned on. The behavioural model provides
better predictions for most of the year, except from March to
May where the standard approach performs better.

The difference between actual and simulated ventila-
tion patterns presents fewer differences for most of the
months (Figure 10). The behavioural and standard
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Figure 9: Comparison between standard (grey), behavioural (red), and real (black) light-switching monthly behaviours in a north-exposed
room (a) and an east-exposed room (b).
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approaches follow a very similar trend during the heating
season (i.e., from October to April). Predicting almost no
hour with the window open, they slightly underestimate
real behaviours. The gap is lower than 10%. In fact, in
winter, occupants are unwilling to ventilate the offices to
avoid thermal discomfort.

During the nonheating season, the two rooms behave
similarly. They present an increase in the opening percentage
until July when it reached the maximum. Then, the ventila-
tion decreases due to thermal issues. During this period, the
behavioural model provides more accurate predictions than
the standard one. In particular, in July, the standard profiles
show an overestimation of about 30% against the 5% of the
behavioural ones.

The overall accuracy of the behavioural and standard
approaches in reproducing the real actions has been assessed
considering their predicting capabilities along the whole year.
In detail, the percentage of hours with lights turned on and
the window open has been calculated for the three patterns

(i.e., the behavioural model, the standard approach, and the
real behaviours). Then, the percentage difference (in absolute
terms) between the two simulated patterns and the real one
has been calculated to estimate the overall discrepancy. The
results of this analysis are presented in Figure 11. It reports
the differences for the lighting and ventilation profiles deter-
mined in the north-exposed (Figure 11(a)) and east-exposed
(Figure 11(b)) rooms.

The greatest divergences are observed in the north-
exposed room for both the patterns. In relation to the two
approaches, the adoption of standard profiles (grey histo-
gram) would lead to discrepancies between 230% and
340% when simulating light switching and to gaps of 70–
120% for the ventilation pattern. The behavioural approach
(red histogram) is related to much lower differences. The
discrepancy for the lighting patterns is similar in both the
rooms and it is about 130%. The divergence of the ventila-
tion profiles ranged between 50% (east-exposed) and 90%
(north-exposed).
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Figure 10: Comparison between standard (dark blue), behavioural (light blue), and real (black) window-opening monthly behaviours in (a) a
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In summary, the adoption of behavioural rather than
standard profiles reduces the discrepancy of 58% for light
switching and 23% for the ventilation pattern in the north-
exposed room, while the reductions related to the east-
exposed room are 48% and 26% for the two profiles,
respectively.

It should be noted that, despite the important reduction
of the discrepancy achieved with the proposed methodology,
the difference between the real and the behavioural profiles
remains relevant, and it is caused by further important fac-
tors that were not taken into account during the simulation
process. Influencing physical variables (e.g., wind speed,
rainfall), occupancy patterns, and individual psychological
features are key aspects affecting human-building interac-
tions. Thus, the inclusion of those factors could make the dis-
crepancy with the reality negligible.

Despite the difference between real and simulated condi-
tions, the results presented in this section are very promising.
The implementation of behavioural models in BPS is a key
step to enhance simulation results. In fact, the improvement
of predictions would provide more accurate energy and com-
fort assessments until the early design stages of the building.

4.4. The Most Influencing Action on Energy Consumptions.
The modelling of multiple stochastic actions allows investi-
gating which one has the greatest impact in energy terms.
To perform this evaluation, it is necessary to perform n + 1

runs (with n being the number of probabilistic behaviours).
For the case study, three simulations have been separately
run. In the first one, only the lighting profiles have been mod-
elled stochastically; in the second, only the windows, while in
latter, both the actions.

Figure 12 shows the total energy consumptions derived
from the three scenarios. It clearly appears that light switch-
ing is the most influencing behaviour on the building
performance.

This result is strictly connected to the features of the
simulation model. In fact, the interaction with the lights
occurs almost along the whole year, affecting constantly
the energy demand. Conversely, window opening is fre-
quent only during the nonheating season, when no system
requires energy.

This evaluation has the aim to underline potentialities of
the behavioural modelling. In fact, recognising which action
mainly leads to the building performance, the designers
would focus their attention on that specific pattern to reduce
energy use.

4.5. Evaluation of Standard Uncertainty due to the Number of
Runs. Considering that the behavioural-based simulation fol-
lows a probabilistic approach, each simulation provides
unique results, derived from the calculation of the probability
that a certain action has been done at each step. Figure 13
highlights that both deterministic (e.g., internal loads) and
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probabilistic inputs (i.e., lighting and ventilation profiles)
affect the simulation process proposed in this study. The
inclusion of stochastic components (even if limited) creates
variability in the final outcomes (i.e., the building energy con-
sumptions). The main consequence is that each run produces
different outcomes and not fixed results. Thus, a number of
runs should be necessary to provide an accurate estimation
of the energy consumption even if it would produce a prob-
ability distribution. However, an elevated number of simula-
tions would not be feasible in terms of computational and
time requirement. The uncertainty analysis is a valuable
method to assess the uncertainty linked to models’ stochasti-
city [48]. For this reason, an uncertainty evaluation has been
performed to estimate the coverage interval achievable run-
ning one single simulation. The uncertainty can be evaluated
from N independent observation obtained under the same
conditions [49]. The uncertainty is then estimated from the
standard deviation calculated on residuals, where the average
observation is considered as the expected value. This stan-
dard deviation characterizes the dispersion about the
expected value.

In this case, N = 103runs of cosimulation were performed
to generate a population of observations. One observation is
the energy consumption calculated with a run. During each
run and at each time step, the behavioural model calculates
the probability of an action that is to be used by the simula-
tion core engine. Thus, a distribution of energy consump-
tions is generated and used to calculate the coverage
interval. The uncertainty due to the running of one simula-
tion is then considered as the deviation achieved by 99.7%
of distribution samples, applying a coverage factor of 3 (3σ).
Figure 14 shows the distribution of energy consumption
residuals obtained with the analysis.

A standard deviation of ±0.1MWhwas found on an aver-
age energy consumption of 426.6MWh. This turned out to
provide that running one simulation the uncertainty on the
energy consumption would be ±0.3MWh (3σ), confirming
the feasibility of running one simulation.

5. Conclusions

This paper presents a methodology for the human-in-the-
loop design applied to building retrofit and renovation. It

started from the target of measuring, fitting, and including
the behavioural component in the simulation environment
to enhance the predictions of building performance. To
reach this aim, three steps have been carried out: (1) mea-
surement of users’ behaviours and physical parameters; (2)
the data fitting for the development of stochastic and data-
driven behavioural models; and (3) the coupling of
behavioural functionalities and energy engine to improve
simulation outcomes. Such general workflow has been
experimentally applied to investigate its capabilities. A
one-year monitoring in a demo site allowed the develop-
ment of data-driven behavioural models to predict light-
switching and window-opening behaviours in offices. The
models have been coupled with the IESVE energy simula-
tion software through a cosimulation approach. The
outcomes achieved using the behavioural approach have
been compared to those obtained from a baseline simula-
tion, performed using profiles from standard and determin-
istic rules. A variation up to 10% has been observed for
lighting energy consumptions, while a minimal difference
(about 2%) is related to the total energy. Due to missing
information about real building performance, the compari-
son between simulated and actual behaviours has been
performed on lighting and ventilation profiles. The behav-
ioural approach, showing lower discrepancies, provides
more accurate outcomes in representing users’ actions than
the standard approach. In fact, the behavioural models
reduced the discrepancies of light-switching and ventilation
profiles up to 58% and 26%, respectively. The inclusion of
several behavioural features allows the identification of the
most influencing action on energy consumptions. For the
case study, light switching has been recognised as the behav-
iour which plays a crucial role in energy assessment.

Since the behavioural models follow a probabilistic
approach, each simulation gives a peculiar result. A number
of runs would be required to provide accurate estimations
of the outcomes. For this reason, an uncertainty analysis
has been adopted to estimate the coverage interval achievable
running one single simulation. Reducing the runs to one, an
uncertainty of ±0.3MWh (3σ) on the building energy con-
sumption has been reached.

The behavioural algorithms embedded in the simulation
software are representative of a specific and precise context
since they have been obtained from a homogeneous sample
(i.e., three offices settled in the Mediterranean climate). The
adoption of specific behavioural models is one of the main
reasons for the slight deviations between different stochastic
simulations. Increasing the availability of the experimental
data is one crucial step to generate models that could be
applied to broader contexts. This objective can be reached
using different kinds of data sources and especially those
provided by IoT devices. This approach can enhance the
robustness of the behavioural models and, in parallel, sim-
plify the overall procedure for the model development since
the long-term environmental monitoring phase could be
considerably reduced or avoided at all. The increase of data
availability would also multiply the number of possible
stochastic inputs (e.g., stochastic occupancy patterns) and
so affect the variability of the simulation results.
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Figure 13: Description of the uncertainty evaluation applied to the
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In this perspective, future studies will be directed in
investigating further probabilistic features and in testing the
methodology in different contexts. These next steps will be
targeted at increasing the applicability of the approach, cov-
ering more behavioural components. This comprehensive
methodology can be a useful aid during the building design,
retrofit, or renovation phases. The building control and man-
agement can be improved too. In particular, the embedding
of behavioural models inside model-predictive-control
(MPC) processes and within building management systems
(BMS) would support the control of the energy flows. In
parallel, the adoption of machine-learning algorithms and
model training would evolve the behavioural models adapt-
ing them to specific comfort preferences of the users, which
could change along time (e.g., different exposure, change of
the occupants).
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