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Abstract

We provide some remarks and clarifications for twice continuously differentiable strictly convex and strongly quasiconvex
functions. Characterizations of these classes and their relationships with other classes of generalized convex functions are
also examined.
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1. Introduction

It is well-known that if f : Rn −→ R is a twice continuously differentiable function on the open convex set X ⊆ Rn, then
the following results hold:

a) The function f is convex on X if and only if its Hessian matrix H f (x) is positive semidefinite at every point x ∈ X.

b) If H f (x) is positive definite at every point x ∈ X, then f is strictly convex on X.

Condition b) is therefore only sufficient for the strict convexity of a twice continuously differentiable function on an open
convex set. Consider, e. g., the function f (x1, x2) = (x1)4 + (x2)4, which is obviously strictly convex on the whole R2,
but for which H f (0, 0) is the zero matrix. We have to note that the above results a) and b) can be better precised in the
following results. See, e. g., Bertsekas (2009), Hiriart-Urruty and Lemaréchal (1993).

Theorem 1. Let X ⊆ Rn be a nonempty convex set and let f : Rn −→ R be twice continuously differentiable over an
open set that contains X.

i) If H f (x) is positive semidefinite for all x ∈ X, then f is convex on X.

ii) If H f (x) is positive definite for all x ∈ X, then f is strictly convex on X.

iii) If X is open and f is convex on X, then H f (x) is positive semidefinite for all x ∈ X.

Remark 1. Theorem 4.28 in Güler (2010) is not entirely correct, on the grounds of Theorem 1. Indeed, if f is
convex over a convex set that is not open, H f (x) may not be positive semidefinite at any point of X : take for example
X = {(x1, 0) : x1 ∈ R} and f (x1, x2) = (x1)2 − (x2)2. However, it can be shown that the conclusions of Theorem 1 also
holds if X has a nonempty interior instead of being open (i. e. X is a solid convex set).

Remark 2. Theorem 1 holds also under the assumption that f is twice Fréchet differentiable. A further weakening by
means of twice Gâteaux differentiability is made by Borwein and Vanderwerff (2010).

This paper is organized as follows.

In Section 2 we shall make some comments on the above classical results a) and b), in order to get a simple characterization
of twice continuously differentiable strictly convex functions of several variables on an open convex set X ⊆ Rn and of
twice differentiable strictly convex functions of one variable on an open interval I ⊆ R.

In Section 3 we shall make some comments on twice continuously differentiable strongly quasiconvex functions on an
open convex set X ⊆ Rn.
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2. Twice Continuously Differentiable Strictly Convex Functions

For the reader’s convenience we recall the basic characterizations of strictly convex functions.

Definition 1. Let f : X −→ R be defined on the convex set X ⊆ Rn. Then f is strictly convex on X if

∀x1, x2 ∈ X, x1 , x2, ∀λ ∈ (0, 1) : f (λx1 + (1 − λ)x2) < λ f (x1) + (1 − λ) f (x2).

Theorem 2. Let f : X −→ R be defined on the convex set X ⊆ Rn. Then f is strictly convex on X if and only if:

(i) For each x ∈ X, for each y ∈ Rn, y , 0, the function

φx,y(t) = f (x + ty)

is strictly convex on the interval
Tx,y = {t ∈ R : x + ty ∈ X} .

Equivalently, if and only if:

(ii) For each x1, x2 ∈ X, x1 , x2, the function

ψx1,x2 (λ) = f (λx1 + (1 − λ)x2)

is strictly convex on (0, 1).

Let X ⊆ Rn be open and convex and let f be differentiable on X. Then f is strictly convex on X if and only if:

(iii) For each x1, x2 ∈ X, x1 , x2,
f (x1) − f (x2) > ∇ f (x2)(x1 − x2).

Equivalently, if and only if:

(iv) For each x1, x2 ∈ X, x1 , x2,
f (x1) − f (x2) < ∇ f (x1)(x1 − x2).

Equivalently, if and only if:

(v) For each x1, x2 ∈ X, x1 , x2, [
∇ f (x1) − ∇ f (x2)

]
(x1 − x2) > 0.

For what concerns convex functions, their characterizations corresponding to (i) and (ii) of Theorem 2 are, respectively:
f is convex on the convex set X ⊆ Rn if and only if:

(i)′ For each x ∈ X, for each y ∈ Rn the function

φx,y(t) = f (x + ty)

is convex on the interval
Tx,y = {t ∈ R : x + ty ∈ X} .

Equivalently, if and only if:

(ii)′ For each x1, x2 ∈ X, the function
ψx1,x2 (λ) = f (λx1 + (1 − λ)x2)

is convex on [0, 1] .

Characterizations (i) and (ii) of Theorem 2 and the above characterizations (i)′ and (ii)′ show that the concept of convex
and strictly convex functions is genuinely unidimensional: f is convex (strictly convex) on a convex set X ⊆ Rn if and
only if the restriction of f to each line segment contained in X is a convex (strictly convex) function. It is therefore useful
to recall the main properties concerning convex and strictly convex functions of one single variable.

Theorem 3. Let φ : I ⊆ R −→ R, with I open interval.

1. If φ is differentiable on I, the function φ is convex on I if and only if its derivative φ′ is increasing on I.

2. If φ is differentiable on I, the function φ is strictly convex on I if and only if its derivative φ′ is strictly increasing
on I.
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It is well-known that:

a) A differentiable function φ : I −→ R is increasing (respectively: decreasing) on the open interval I ⊆ R if and only
if φ′(x) = 0 (respectively: φ′(x) 5 0), ∀x ∈ I.

b) A differentiable function φ : I −→ R is strictly increasing (respectively: strictly decreasing) on the open interval
I ⊆ R if φ′(x) > 0 (respectively: φ′(x) < 0), ∀x ∈ I.

The following result is less known; for the reader’s convenience we give a proof.

Theorem 4. Let f : I −→ R be differentiable on the open interval I ⊆ R. Then f is strictly increasing (resp.: strictly
decreasing) on I if and only if f ′(x) = 0 (resp.: f ′(x) 5 0), ∀x ∈ I, and there exists no subinterval of I where f ′(x) = 0 in
all points of the said subinterval. In other words, it must hold f ′(x) = 0 (resp.: f ′(x) 5 0), ∀x ∈ I and the set

A = {x : f ′(x) > 0}
(resp.: A = {x : f ′(x) < 0} )

is dense in I.

Proof.

i) The condition is necessary. It is well-known that it must hold f ′(x) = 0 (resp.: f ′(x) 5 0), ∀x ∈ I. If there would
exist an interval J ⊆ I such that, for each x ∈ J, we have f ′(x) = 0, the restricftion of f to J would be constant on J, which
is absurd.

ii) The condition is sufficient. Let us consider any pair of distinct points of I, say x′ and x′′ with x′ < x′′. Thanks to
the mean value theorem (or Lagrange mean value theorem), applied to the restriction of f to [x′, x′′], we have

f (x′′) − f (x′) = f ′(ξ)(x′′ − x′),

where ξ is a suitable point of (x′, x′′). Therefore, taking the assumptions into account:

x′ < x′′ =⇒ f (x′) 5 f (x′′)
(resp.: x′ < x′′ =⇒ f (x′) = f (x′′)),

i. e. f is increasing (resp.: decreasing) on I. From this, obviously we have also:

x′ < x < x′′ =⇒ f (x′) 5 f (x) 5 f (x′′)
(resp.: x′ < x < x′′ =⇒ f (x′) = f (x) = f (x′′)).

Hence, if f (x′) = f (x′′), the restriction of f to [x′, x′′] would be constant on [x′, x′′] and this would imply that every
x ∈ [x′, x′′] , it holds f ′(x) = 0, against the assumption that no subinterval of I exists such that the derivative of f is
identically zero on the same subinterval. It results therefore

x′x′′ ∈ I, x′ < x′′ =⇒ f (x′) < f (x′′)
(resp.: x′x′′ ∈ I, x′ < x′′ =⇒ f (x′) > f (x′′)),

i. e. the thesis. �
We can therefore formulate the following result.

Theorem 5. Let f : I −→ R be twice differentiable on the open interval I ⊆ R. Then f is strictly convex on I if and
only if {

f ′′(x) = 0, ∀x ∈ I
A = {x : f ′′(x) > 0} is dense in I.

Example 1. The function
f (x) = x2 − sin2 x

is strictly convex on R. We have indeed

f ′′(x) = 2(1 − cos 2x) = 0, ∀x ∈ R,
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but the infinitely many points where f ′′(x) = 0 are all isolated points.

The previous results provide a simple way to obtain the characterization of convex functions of several variables, which are
twice continuously differentiable on some open convex set X ⊆ Rn. First we restate a part of Theorem 1 in its “classical”
version.

Theorem 1′. Let f : X −→ Rn be twice continuously differentiable on a nonempty open convex set X ⊆ Rn. Then f is
convex on X if and only if its Hessian matrix H f (x) is positive semidefinite at each point x ∈ X.

Proof. Let x0 ∈ X, v ∈ Rn, v , 0 and consider the restriction

φ(t) = f (x0 + tv)

such that x0 + tv ∈ X. It is sufficient to note that

φ′′(t) = v⊤H f (x0 + tv)v.

�
We recall that a positive (negative) semidefinite quadratic form Q(x) = x⊤Ax (A symmetric) is positive (negative) definite
if and only if A is a nonsingular matrix (see, e. g. Hestenes (1966), Theorem 6.3). In other words, for positive semidefinite
matrices we may have x⊤Ax = 0 even if x , 0, but in this case we neverthless have Ax = 0, and being x , 0, it must hold
|A| = 0. Indeed, if y ∈ Rn and t ∈ R are arbitrary, then

(x + ty)⊤A(x + ty) = x⊤Ax + 2ty⊤Ax + t2y⊤Ay = 0.

If x⊤Ax = 0, x , 0, this implies y⊤Ax = 0. Now let y = Ax, so (Ax)⊤Ax = 0, whence finally Ax = 0. Therefore, being
x , 0, it must hold |A| = 0.

Contrary to the unidimensional case, the condition:

• “ H f (x) is positive semidefinite for every x ∈ X and |H f (x)| is not identically zero on any segment belonging to X”

is only sufficient for the strict convexity of the twice continuously differentiable function f on the open convex set X ⊆ Rn

(see Fenchel (1953), Ortega and Rheinboldt (1970)).

Example 2.

i) See also Bernstein and Toupin (1962). Suppose n = 2, X = {(x1, x2) : x2 < 0} and

f (x) = (x1)2(1 + ex2 ).

The determinant of its Hessian matrix is
|H f (x)| = 2(x1)2ex2 (1 − ex2 ),

which is positive throughout X except on the line x1 = 0 where it vanishes. It is seen that f is convex on X but not strictly
convex.

ii) Consider f (x, y) = x4 + y4, strictly convex on R2. Its Hessian matrix is

H f (x) =
[

12x2 0
0 12y2

]
and |H f (x)| = 0 on the two axes.

Necessary and sufficient conditions for the strict convexity of twice continuously differentiable functions have been estab-
lished by Bernstein and Toupin (1962) and by Diewert and others (1981). Following these last authors, we “translate” the
conditions of Bernstein and Toupin with a more convenient notation and statement.

Theorem 6. Let f : X −→ R be twice continuously differentiable on an open convex set X ⊆ Rn. Then f is strictly
convex on X if and only if: {

x0 ∈ X, v ∈ Rn, v , 0, t̄ > 0, x0 + t̄v ∈ X
}

=⇒

i) v⊤H f (x0)v = 0 and
ii) the set

{
t ∈ R : v⊤H f (x0 + tv)v > 0

}
is dense in [0, t̄] .
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Remark 3. Diewert and others (1981) prove that another (equivalent) characterization of twice continuously differen-
tiable strictly convex functions (on an open convex set X ⊆ Rn) is:

x0 ∈ X, v ∈ Rn, v , 0 =⇒ i) v⊤H f (x0)v > 0 or

ii) v⊤H f (x0)v = 0 and h(t) ≡ f (x0 + tv) + t∇ f (x0)v
attains a strict local minimum at t = 0.

The recent paper of Stein (2012) is concerned with the more general case of twice differentiable strictly convex functions
defined on a convex set X ⊆ Rn, not necessarily open.

Remark 4. Ginsberg (1973) defines the class of strongly convex functions, as those twice continuously differentiable
functions on an open convex set X ⊆ Rn for which all leading principal minors (see Section 3, after Theorem 7) of their
Hessian matrix H f (x) are positive, for each x ∈ X. Obviously, this one is a sufficient condition for f to be a strictly convex
function on X (Theorem 1), however the above definition is misleading, as in the current literature on Convex Analysis
(see, e. g., Diewert and others (1981), Avriel and others (1981), Rockafellar (1976), Vial (1982)) twice continuously
differentiable strongly convex functions (on an open convex set X ⊆ Rn) are characterized by the property:

• There exists α > 0 such that
x ∈ X =⇒ H f (x) − αI

is positive semidefinite (I is the identity matrix).

Remark 5. For the special case of quadratic functions, i. e. of the functions

φ(x) = x⊤Ax + c⊤x,

where A is a symmetric matrix of order n, some of the previous results can be stated as follows.

a) Martos (1975) proved for φ(x) what already pointed out in Remark 1: φ(x) is convex on any solid convex set X ⊆ Rn

if and only if A is positive semidefinite.

b) The quadratic function φ(x) is strictly convex on Rn if and only if A is positive definite (the same result holds with
reference to a solid convex set X ⊆ Rn). Indeed, if φ is strictly convex and h ∈ Rn, h , 0, the first-order characterization
of strictly convex functions gives

φ(x) + ∇φ(x)h < φ(x + h) = φ(x) + ∇φ(x)h +
1
2

h⊤Ah.

We have h⊤Ah > 0 for all h ∈ Rn, h , 0, that is A is positive definite. Conversely, if A is positive definite and h , 0, then

φ(x + h) = φ(x) + ∇φ(x)h +
1
2

h⊤Ah > φ(x) + ∇φ(x)h,

which implies that φ is strictly convex.

c) Martos (1975) has proved that φ(x) is quasiconvex (see Section 3) on Rn if and only if it is convex on Rn. This
shows that there is no reason to study quadratic functions that are quasiconvex, without being convex, on the whole Rn.

3. Twice Continuously Differentiable Strongly Quasiconvex Functions

First we recall some basic definitions.

Definition 2. Let f be defined on a convex set X ⊆ Rn; then f is said to be quasiconvex on X if

f (λx1 + (1 − λ)x2) 5 max
{
f (x1), f (x2)

}
for every x1, x2 ∈ X and for every λ ∈ [0, 1] or, equivalently,

f (x1) = f (x2) =⇒ f (x1) = f (λx1 + (1 − λ)x2)

for every x1, x2 ∈ X and for every λ ∈ [0, 1].

Definition 3. A function f be defined on a convex set X ⊆ Rn is said to be strictly quasiconvex on X if

f (λx1 + (1 − λ)x2) < max
{
f (x1), f (x2)

}
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for every x1, x2 ∈ X, x1 , x2, and for every λ ∈ (0, 1) or, equivalently,

f (x1) = f (x2) =⇒ f (x1) > f (λx1 + (1 − λ)x2)

for every x1, x2 ∈ X, x1 , x2, and for every λ ∈ (0, 1).

Definition 4. A function f be defined on a convex set X ⊆ Rn is said to be semistrictly quasiconvex on X if

f (λx1 + (1 − λ)x2) < max
{
f (x1), f (x2)

}
for every x1, x2 ∈ X, with f (x1) , f (x2), and for every λ ∈ (0, 1) or, equivalently,

f (x1) > f (x2) =⇒ f (x1) > f (λx1 + (1 − λ)x2)

for every x1, x2 ∈ X, and for every λ ∈ (0, 1).

Under lower semicontinuity of f we have the following inclusion diagram.

strictly convex =⇒ strictly quasiconvex

⇓ ⇓
convex =⇒ semistrictly quasiconvex

⇓
quasiconvex

In their pioneering paper on quasiconcave functions and quasiconcave programming, Arrow and Enthoven (1961) give
the following necessary conditions for a twice continuously differentiable function to be quasiconvex on the open convex
set X ⊆ Rn.

Theorem 7. Let f : X −→ R be twice continuously differentiable on the open convex set X ⊆ Rn; if f is quasiconvex
on X, then

∆r(x) 5 0, ∀x ∈ X, ∀r = 2, 3, ..., n, (1)

where

∆r(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ∂ f
∂x1

. . . ∂ f
∂xr

∂ f
∂x1

∂2 f
∂x1∂x1

· · · ∂2 f
∂x1∂xr

...
...

...
...

∂ f
∂xr

∂2 f
∂xr∂x1

. . . ∂2 f
∂xr∂xr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

See also Avriel (1972), Kemp and Kimura (1978) and, for characterizations of twice continuously differentiable quasi-
convex functions, Crouzeix (1980), Crouzeix and Ferland (1982), Diewert and others (1981). Needless to say, condition
(1) is trivially satisfied for r = 1. In the same paper Arrow and Enthoven show that the following condition

∆r(x) < 0, ∀x ∈ X, ∀r = 1, 2, 3, ..., n (2)

is sufficient for the quasiconvexity of f on X. Indeed, this condition is even sufficient for strict quasiconvexity and more:
see, e. g., Ginsberg (1973), Diewert and others (1981).

Relations (1) and (2) require a brief review on the main properties concerning quadratic forms subject to a system of
homogeneous linear constraints. Given a (real) symmetric matrix A, of order n, and its associated quadratic form

Q(x) = x⊤Ax, x ∈ Rn, (3)

we are interested in the sign of (3), but when x ∈ S , S being the set of non trivial solutions of the homogeneous system of
linear equations

Bx = 0,

where B is a (real) (m, n) matrix, with m < n. This problem has been treated by several authors; see, e. g., Chabrillac
and Crouzeix (1984), Debreu (1952), Farebrother (1977), Giorgi (2003, 2017), Murata (1977), Samuelson (1947). The
following result may be considered a generalization of the Sylvester criterion for unconstrained quadratic forms, to the
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problem under examination. We recall that, given a square matrix A, of order n, its leading principal minor (or successive
principal minor or North-West principal minor) of order k, k = 1, ..., n, is the determinant of the (k, k) matrix consisting of
the first k rows and columns of A. Its principal minor of order k is the k-th order leading principal minor of P⊤AP, where
P is some permutation matrix of order n. There are n!/k!(n − k)! possible k-th order principal minors, whereas obviously
there are in all n leading principal minors.

Theorem 8. Let us suppose that rank(B) = m and, without loss of generality, that the first m columns of B are linearly
independent. Then:

(i) Q(x) = x⊤Ax > 0 for all x , 0 such that Bx = 0 if and only if the leading principal minors of order 2m + p,
p = 1, 2, ..., n − m, of the bordered matrix

H =
[

0 B
B⊤ A

]
have the sign of (−1)m. By denoting with ∆k the k-th leading principal minor of H, we must therefore have

(−1)m∆k > 0, k = 2m + 1, ...,m + n.

(ii) Q(x) = x⊤Ax < 0 for all x , 0 such that Bx = 0 if and only if the leading principal minors of H, of order 2m + p,
p = 1, 2, ..., n − m, have the sign of (−1)m+p.

Remark 6. We note that in the previous theorem statement (ii) derives from statement (i) by observing that A is negative
definite under constraints if and only if −A is positive definite under the same constraints.

Remark 7. In some papers and books the following bordered matrix is considered:

H̄ =
[

A B⊤

B 0

]
.

In this case obviously the previous conditions (i) and (ii) have to be suitably modified, by making reference to the leading
principal minors of H̄.

Remark 8. In the case of only one constraint, of the type bx = 0, with b ∈ Rn and with b1 , 0, the previous conditions
(i) and (ii) of Theorem 8 become, respectively,

a) Q(x) is positive definite on the set of the nontrivial solutions of bx = 0 if and only if

∆3 =

∣∣∣∣∣∣∣∣
0 b1 b2
b1 a11 a12
b2 a21 a22

∣∣∣∣∣∣∣∣ < 0, ..., |H| < 0.

b) Q(x) is negative definite on the set of the nontrivial solutions of bx = 0 if and only if

∆3 =

∣∣∣∣∣∣∣∣
0 b1 b2
b1 a11 a12
b2 a21 a22

∣∣∣∣∣∣∣∣ > 0, ∆4 =

∣∣∣∣∣∣∣∣∣∣∣
0 b1 b2 b3
b1 a11 a12 a13
b2 a21 a22 a23
b3 a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣ < 0, etc.

Remark 9. We have to note that the assumption that the rank of B (rank(B) = m) is given by the first m columns of B
is essential to have necessary and suffcient conditions. In absence of this assumption, conditions (i) and (ii) of Theorem 8
are only sufficient conditions and they imply rank(B) = m. This is the case of the usual sufficient second order optimality
conditions imposed on the Lagrangian function of optimization problems with equality constraints. Consider, e. g., the
following simple example. It is obvious that the quadratic form

Q(x) = (x1)2 + (x2)2 − (x3)2

is positive definite on the constraint x3 = 0 (hence here vector b is b = [0, 0, 1]). It results ∆4 = |H| = −1, however

∆3 =

∣∣∣∣∣∣∣∣
0 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣ = 0.
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Sound and correct proofs of necessary and sufficient conditions for the positive and negative semidefiniteness of Q(x)
subject to Bx = 0 are given, e. g., by Chabrillac and Crouzeix (1984) and by Debreu (1952).

Similarly to what holds for unconstrained quadratic forms, the relation between positive (negative) definiteness of a
constrained quadratic form and positive (negative) semidefiniteness of the same constrained quadratic form, is expressed
by the following result.

Theorem 9. Let the previous assumptions on A and B be verified. Let x⊤Ax = 0 (resp. x⊤Ax 5 0) for all x , 0 such
that Bx = 0. Then x⊤Ax > 0 (resp. x⊤Ax < 0) for all x , 0 such that Bx = 0 if and only if

|H| =
∣∣∣∣∣∣ 0 B

B⊤ A

∣∣∣∣∣∣ , 0. (4)

Proof.

i) (Sufficiency). Suppose x⊤Ax = 0 for some x , 0. Then, since such x attains an optimum of the quadratic form under
the linear constraints which are linearly independent, there exists a set of multipliers λ = [λ1, λ2, ..., λm]⊤ such that{

2Ax + B⊤λ = 0
Bx = 0.

These equations can be rewritten as [
0 B

B⊤ A

] [ 1
2λ
x

]
= 0, (5)

which implies, being x , 0, that the bordered matrix of (5) is singular. This condradicts assumption (4).

ii) (Necessity). Suppose that |H| = 0. Then, there exist vectors x ∈ Rn and λ ∈ Rm such that

(x⊤, λ⊤) , 0

and [
0 B

B⊤ A

] [
λ
x

]
= 0,

that is
Bx = 0 (6)

B⊤λ + Ax = 0. (7)

If x = 0, then B⊤λ = 0, which implies λ = 0, since the linear constraints are linearly independent. Therefore x , 0. From
(6) and (7) we have

x⊤Ax = −x⊤B⊤λ = 0.

his contradicts the assumption that A is positive definite or negative definite under the constraints Bx = 0. �
Several authors have introduced the concept of strongly quasiconvex and strongly quasiconcave functions, called also
strongly pseudoconvex and strongly pseudoconcave functions. See, e. g., Avriel and others (1981), Diewert and others
(1981), Barten and Böhm (1982), Ginsberg (1973), Newman (1969), Leroux (1984).

Definition 5. A real differentiable function f defined on an open convex set X ⊆ Rn is called strongly quasiconvex (or
strongly pseudoconvex) on X if f is strictly quasiconvex on X and in addiction:

x0 ∈ X, v , 0, ∇ f (x0)v = 0 =⇒ there exist ε > 0 and α > 0 such that

(x0 + εv) ∈ X and f (x0 + tv) = f (x0) + αt2 for t ∈ [0, ε] .

Obviously strong quasiconvexity implies strict quasiconvexity. Diewert and others (1981) prove the following result.

Theorem 10. Let f be twice continuously differentiable on the open convex set X ⊆ Rn. Then f is strongly quasiconvex
on X if and only if

v⊤H f (x)v > 0 for all x ∈ X and all v ∈ Rn, v , 0, such that ∇ f (x)v = 0. (8)

On the grounds of the previous theorem, we have that if f is twice continuously differentiable on the open convex set
X ⊆ Rn and if ∇ f (x) = 0, for x ∈ X, then the thesis of Theorem 10 requires that H f (x) has to be positive definite on X; if
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∇ f (x) , 0, for x ∈ X, then H f (x) has to be positive definite on the subspace orthogonal to the gradient vector ∇ f (x). In
this last case Theorem 8 can be usefully applied. First we recall that f : X −→ R, f differentiable on the open convex set
X ⊆ Rn, is pseudoconvex on X if:

x1, x2 ∈ X, f (x2) < f (x1) =⇒ ∇ f (x1)(x2 − x1) < 0.

Pseudoconvex functions are semistrictly quasiconvex and therefore also quasiconvex, but not strictly quasiconvex and not
strongly quasiconvex. Under differentiability assumption we have the following relationships.

strongly quasiconvex ⇒ pseudoconvex ⇒ semistrictly quasiconvex ⇒ quasiconvex

⇓ ⇑

⇒ strictly quasiconvex ⇒

It turns out that (8) is a sufficient condition for a twice continuously differentiable function f : X −→ R to be pseudoconvex
and also strictly quasiconvex on the open convex set X ⊆ Rn.

Then we recall a classical result on pseudoconvexity and quasiconvexity of twice continuously differentiable functions;
see, e. g., Crouzeix (1980), Crouzeix and Ferland (1982), Diewert and others (1981), Ferland (1972), Giorgi (2013), Otani
(1983), Simon and Blume (1994).

Theorem 11. Let f : X −→ R be twice continuously differentiable on the open convex set X ⊆ Rn and let ∇ f (x) , 0
for all x ∈ X. Then f is quasiconvex on X and also pseudoconvex on X if and only if

v⊤H f (x)v = 0 for all x ∈ X and all v ∈ Rn, v , 0, such that ∇ f (x)v = 0. (9)

In other words, under the assumptions of Theorem 11, the Hessian matrix of f has to be positive semidefinite on the
subspace orthogonal to ∇ f (x), for x ∈ X.

Remark 10. Crouzeix and Ferland (1982) prove that, if∇ f (x) , 0 for all x ∈ X, then any one of the following conditions
is equivalent to condition (9):

I) Either H f (x) is positive semidefinite for every x ∈ X, or H f (x) has one simple negative eigenvalue, for every x ∈ X,
and there exists a vector b ∈ Rn such that H f (x)b = (∇ f (x))⊤ and ∇ f (x)b 5 0.

II) If we denote by M(x) the following bordered matrix (of order (n + 1)):

M(x) =
[

0 ∇ f (x)
(∇ f (x))⊤ H f (x)

]
,

then M(x) has one simple negative eigenvalue, for every x ∈ X.

III) All the principal minors of M(x) (and not only its leading principal minors) are less than or equal to zero, for
every x ∈ X.

Taking the previous theorems into account, the following results are at hand.

Theorem 12. Let f : X −→ R be twice continuously differentiable on the open convex set X ⊆ Rn and let ∂ f
∂x1
, 0 for

all x ∈ X. Let us denote again by M(x) the bordered matrix of Remark 10. Then, f is strongly quasiconvex on X if and
only if the leading principal minors of M(x) of order 3, 4, ..., n + 1, are all negative for all x ∈ X.

Theorem 13. Let f : X −→ R be twice continuously differentiable on the open convex set X ⊆ Rn and let f be
quasiconvex on X, with ∇ f (x) , 0 for all x ∈ X. Then f is strongly quasiconvex on X if and only if |M(x)| , 0, for all
x ∈ X.
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