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The ERINGEN elastic constitutive relation is used in this paper in order to assess small-scale effects in nanobeams. Structural behavior
is studied for functionally graded materials in the cross-sectional plane and torsional loading conditions. The governing boundary
value problem has been formulated in a mixed framework. Torsional rotations and equilibrated moments are evaluated by solving
a first-order differential equation of elastic equilibrium with boundary conditions of kinematic-type. Benchmarks examples are

briefly discussed, enlightening thus effectiveness of the proposed methodology.

1. Introduction

Assessments of stress and displacement fields in continuous
media are a subject of special interest in the theory of
structures. Numerous case studies have been examined in
the current literature with reference to beams [1-6], half-
spaces [7, 8], thin plates [9, 10], compressible cubes [11],
and concrete [12, 13]. Several methodologies of analysis have
been developed in the research field of geometric continuum
mechanics [14, 15], limit analysis [16-19], homogenization
[20], elastodynamics [21-25], thermal problems [26-28],
random composites [29-32], and nonlocal and gradient
formulations [33-38]. A comprehensive analysis of classical
and generalized models of elastic structures, with special
emphasis on rods, can be found in the interesting book by
[EsAN [39]. In particular, IESAN [40-42] formulated a method
for the solution of SAINT-VENANT problems in micropolar
beams with arbitrary cross-section. Detailed solution of the
torsion problem for an isotropic micropolar beam with
circular cross-section is given in [43, 44]. Experimental
investigations are required for the evaluation of the behavior
of composite structures [45].

In the context of the present research, particular attention
is devoted to the investigation of scale effects in nanostruc-
tures; see, for example, [46-55] and the reviews [56, 57].
Recent contributions on functionally graded materials have
been developed for nanobeams under flexure [58, 59] and
torsion [60].

Unlike previous treatments on torsion of gradient elastic
bars (see, e.g., [61]) in which higher-order boundary condi-
tions have to be enforced, this paper is concerned with the
analysis of composite nanobeams with nonlocal constitutive
behavior conceived by ERINGEN in [62]. Basic equations
governing the ERINGEN model are preliminarily recalled in
Section 2. The corresponding elastic equilibrium problem of
torsion of an ERINGEN circular nanobeam is then formulated
in Section 3. It is worth noting that only classical boundary
conditions are involved in the present study. Small-scale
effects are detected in Section 4 for two static schemes of
applicative interest. Some concluding remarks are delineated
in Section 5.

2. Eringen Nonlocal Elastic Model

Before formulating the elastostatic problem of a nonlocal
nanobeam subjected to torsion, we shortly recall in the
sequel some notions of nonlocal elasticity. To this end, let us
consider a body &% made of a material, possibly composite,
characterized by the following integral relation between the
stress t;; at a point x and the elastic strain field e;; in % [62]:

= [ KW ) B (<) e (K)av.

The fourth-order tensor [Eijhk(x'), symmetric and positive

definite, describes the material elastic stiffness at the point
!

X € %A.



The attenuation function K depends on the Euclidean
distance |x’ — x| and on a nonlocal dimensionless parameter
defined by

eya
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where ¢, is a material constant, a is an internal characteristic
length, and [ stands for external characteristic length.

Assuming a suitable expression of the nonlocal modulus
K in terms of a variant of the BESSEL function, we get the
inverse differential relationship of (1) between the nonlocal
stress and the elastic deformation

2
(1 ~ (ea) vz) ti; = Eijncenk (3)

with V? the Laplacian. Note that (3) can be conveniently used
in order to describe the law between the nonlocal shear stress
field 7; on the cross-section of a nanobeam and the elastic
shear strain y; as follows:

d*r;
Ti— (eoa)2 dx = Uy (4)

where x is the axial direction and g is the shear modulus.

3. Torsion of Nonlocal Circular Nanobeams

Let Q be the cross-section of a circular nanobeam, of length
L, subjected to the following loading conditions depicted in
Figure 1:

my,
distributed couples per unit length in the interval [0,L],

©)
My,

concentrated couples at the end cross-sections {0,L}.

The triplet (x, y, z) describes a set of Cartesian axes originat-
ing at the left cross-section centre O.
Equilibrium equations are expressed by

th:—mv in [0,L], (6a)
dx
M, = M, at {0,L}, (6b)

where M, is the twisting moment.
Components of the displacement field, up to a rigid body
motion, of a circular nanobeam under torsion write as

s, (x,yz) =0,
Sy (x, yz) = -0 (x) z, (7)
s, (%, y2) = 0(x) y,

where 0(x) is the torsional rotation of the cross-section at the
abscissa x. Shear strains, compatible with the displacement
field equation (7), are given by

do
Yyx (x’ Y Z) = _Ex%

(8)
V@md=ﬁw,
zZX d.x
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where
do
X (x) = T (x) 9)

is the twisting curvature. The shear modulus ¢ is assumed to
be functionally graded only in the cross-sectional plane (y, z).
The elastic twisting stiffness is provided by

k, = J;) U (yz + zz) dA, (10)

where the symbol - is the inner product between vectors.

The differential equation of nonlocal elastic equilibrium
of a nanobeam under torsion is formulated as follows. Let us
preliminarily multiply (4) by Rr = {-z, y} and integrate on
Q

2 d‘l’
J Rr - 7dA - (eya) J Rr- —dA= J yRr - pdA, (11)

o o dx? o
with the vector y = {y,, y,,} given by (8).

Enforcing (6a) and imposing the static equivalence con-
dition

M, = JQ (szy - Tyxz) dA, (12)

we get the relation

dm do
M, (x) + (eoa)2 d_xt (x) = kta

(x). (13)
This equation can be interpreted as decomposition formula of
the twisting curvature y; into elastic (x;),, and inelastic (y,),
parts

Xt = (Xt)EL + (Xt)m’ (14)
with
M
(Xt)EL = k_t’ (ISa)
t
(605‘)2 %

= b
(Xt)m Kk, dx (15b)

Accordingly, the scale effect exhibited by the torsional rota-
tion function of a nonlocal nanobeam can be evaluated by
solving a corresponding linearly elastic beam subjected to the
twisting curvature distortion (,),, (15b).

4. Benchmark Examples

Let us consider a nanocantilever and a fully clamped
nanobeam of length L subjected to the following quadratic
distribution of couples per unit length:

m 2
m, = Ex . (16)

The cross-sectional torsional rotation is evaluated by fol-
lowing the methodology illustrated in the previous section.
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FIGURE 1: Sketch of a nanobeam under torsion.
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F1GURE 2: Torsional rotation 6 for the nanocantilever versus & for
increasing values of 7.
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F1GURE 3: Dimensionless torsional rotation 8" for the fully clamped
nanobeam versus & for increasing values of 7.

The nonlocality effect is assessed by prescribing the twisting
curvature distortion equation (15b)

ega)’ 2m
R
on corresponding (cantilever and fully clamped) local
nanobeams. Let us set & = x/L and 6" (§) = kt/(mLz)G(f).
Torsional rotations 6" versus & of both the nanobeams are
displayed in Figures 2 and 3 for selected values of the nonlocal
parameter T := eya/L.

5. Concluding Remarks

The basic outcomes contributed in the present paper are listed
as follows:

(1) Size-effects in nanobeams under torsion have been
evaluated by resorting to the nonlocal theory of
elasticity.

(2) Exact torsional rotations solutions of cross-sections of
functionally graded nanobeams have been established
for nanocantilevers and fully clamped nanobeams
under a quadratic distribution of couples per unit
length.

(3) It has been observed that the stiffness of a nanobeam
under torsional loadings is affected by the scale
parameter and depends on the boundary kinematic
constraints. Indeed, as shown in Figures 2 and 3,
contrary to the nanocantilever structural behavior,
the fully clamped nanobeam becomes stiffer for
increasing values of the nonlocal parameter.
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