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Abstract 

The E-nose system reported is designed to address the problem of early and distributed detection of dangerous gas 
mixtures. It is made of a selection of Commercial Off-The-Shelf (COTS) sensors, facing a small volume chamber, 
whose signals are conditioned and sampled by a multifunction board connected to a personal computer. A program, 
implementing efficient Support Vector Machine and least square model algorithms, executes the gas classification, 
the concentration estimation and warns about set risk thresholds overcoming. The system training was performed in 
laboratory, over a wide range of concentrations in air of: methane, hexane, pentane, and hydrogen sulfide. Other 
boundary conditions, such as oxygen concentration, temperature and RH are also taken into account. The overall cost 
of the system can be made very low, adopting an embedded architecture approach, allowing to overcome the 
limitations of the monitoring systems deployment inside refinery plants due to the high costs of traditional GC 
systems. 

© 2012 Published by Elsevier Ltd. 
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1. Introduction 

The early and distributed detection of dangerous gas mixtures is a serious task in many industrial plants, 
especially in oil refineries where a great amount of hydrocarbons, volatile organic compounds and toxic 
gases, like hydrogen sulfide, are unavoidably emitted. Their presence, depending on mixture 
concentration values, can expose the workers to poisoning and explosion risks. The authors are 
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experienced on development and characterization of gas sensors [1] and in the development of pattern 
recognition and modeling algorithms [2,3], then, starting from a specific request from the Midland oil 
Company refinery of Aldora, Baghdad, Iraq, and considering the lack of low-cost instrumentation suitable 
for the purpose, they designed and validated the e-nose here reported. 

2. Experiments 

The schematic diagram of the developed sensing system is reported in Fig.1. To achieve good 
recognition performances, several sensors with different selectivity patterns are used and pattern 
recognition techniques was implemented in order to overcome the poor selectivity of each individual 
sensor [2,4]. 

Fig 1: Block diagram of the proposed system.

The developed system consists of five sensors, from FIGARO USA INC. Two of them are semiconductor 
type (TGS-825, TGS-2611), the other two are catalytic type (TGS-6810, TGS-6812), plus an 
electrochemical oxygen sensor (KE-50). In addition, since environmental changes have a strong effect on 
most sensors, two more devices was integrated: a temperature and humidity sensor (HTG-3535 from 
Measurement Specialties), and a pressure sensor (XFAM from Fujikura Ltd.). The gas sensors are 
installed in a custom designed chamber (Fig.2.a.). An electronic board has been designed in order to 
optimize power supply and signal conditioning of the sensors. The signals are routed to an USB 
multifunction board (NI DAQ-6008 from National Instruments) and the acquisition and data analysis 
software was developed in LabWindows/CVITM environment.  

(a)                                                                                                (b) 

Fig 2: (a) The e-nose system hardware, showing the inlet and outlet ducts for the constant mixture flux training phase that is made in 

laboratory. (b) Sensor chamber (around 30 cm3) used in the unplugged position during the testing phase. 

The training data are acquired by feeding the e-nose, with the cap in place, with a constant mixture 
flux by means of a laboratory gas control system. This apparatus is able to handle both gas bottles and 
permeation tubes, in order to generate a wide gas concentration range in a repeatable and reliable way. In 
testing phase, the chamber is open (Fig.2.b.) and the system makes use of the training parameters 
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obtained by minimizing the leave-one-out cross validation error over the training set to find out the gas 
type. It also uses the least square approach, but this time for regression, to estimate the concentration. In 
Table 1 are reported the gas concentration values employed in the training procedure, the gas mixtures 
were further humidified to change relative humidity values, in order to evaluate the humidity effect in the 
sensor response. 

Table 1. Training phase experiments performed using a constant flux laboratory gas control system. 

3. Results 

In the first analysis, we used a SVM with linear kernel, and we applied a multi-class classification by 
using the LIBSVM-2.82 package. The optimal regularization parameter C was tuned experimentally by 
minimizing the leave-one-out cross-validation error over the training set. Each classifier was trained on 
the 38-sample training set. Additionally, for the SVM classifiers, extensive cross-validation (CV) analysis 
was done to search for an effective combination of parameters. The standard randomized 10-fold cross-
validation (R8-CV), in which the data was randomly divided into ten groups, one of which was left out 
and used as the cross-validation set on each iteration. As a consequence, for consistency the results 
presented below all use classifiers evaluated with R8-CV. 
The classification results for each of the tested classifiers resulted in 100% cross-validation accuracy.  
Once the classification process has been completed, the next step is to estimate the concentration of the 
classified analyte. To this aim, we use the least square regression approach. We build a polynomial model 
of the response (sensor signal versus analyte concentration) for each sensor and each analyte. Then we 
use this approximation to find the concentration for each analyte type. For the two semiconductor type 
sensors (TGS-825, TGS-2611), the concentration dependence of the response to a single analyte exposure 
can be described by a 3° degree polynomial, while for the catalytic type sensors (TGS6810, TGS6812) a 
model of 2° degree polynomial is enough. As an example, Fig. 3.a shows the estimated response to 
Methane for the TGS2611 sensor. The optimal estimate of the concentration is, in our model, a 
combination of the outputs of the diverse sensors. We have adopted the least square regression model to 
find the optimal weights on the basis of the experimental data.  We come out in our experiments with four 
measures for each analyte sample. The weights α’s are obtained by solving the following minimization 
problem : 
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where n is the number of analyte samples, c is the true concentration, M is the number of sensors (in our 
case M = 5), c is the concentrations that have been previously calculated. 

Gas Name Concentration 
Range (ppm) 

No. of Samples 

Methane 0 – 8000 8 

Hexane 0 – 10000 10 

Pentane 0 – 12000 6 

H2S 0 – 20 8 

Oxygen 0% - 100% 6 
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(a)                                                                            (b) 

Fig. 3. (a) Estimated response to Methane for the TGS2611 sensor.(b) PCA plot; The data set for these gases is made up of samples 

in R8 space where each sample corresponds to the outputs of the sensors for a given couple (gas, concentration). 

For the Methane case, with the sensor TGS2611, we obtained the following results: 

Table 2. Results of the suggested regression model . 

Real Concentration (ppm) Estimated Concentration (ppm) Relative Error (%) 
1000 1029 2,90 
2000 1991 0,45 
3000 2986 0,47 
4000 3905 2,38 
5000 5092 1,84 
6000 6078 1,30 
7000 6921 1,13 

The PCA plot of the training phase is reported in Fig.3.b. Preliminary application in the refinery 
environment demonstrated the functionality of the system. 

4. Conclusions 

In this paper is reported the development and validation of an e-nose system for refinery environments 
based on commercial sensors. The system has been preliminary tested in a real refinery environment and 
generated interest as an innovative system that can potentially lead, thanks to its low-cost approach, to a 
wide-area monitoring of dangerous situations. 
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