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This paper presents the design of an assessment process and its outcomes to investigate

the impact of Educational Robotics activities on students’ learning. Through data

analytics techniques, the authors will explore the activities’ output from a pedagogical

and quantitative point of view. Sensors are utilized in the context of an Educational

Robotics activity to obtain a more effective robot–environment interaction. Pupils work

on specific exercises to make their robot smarter and to carry out more complex and

inspirational projects: the integration of sensors on a robotic prototype is crucial, and

learners have to comprehend how to use them. In the presented study, the potential of

Educational Data Mining is used to investigate how a group of primary and secondary

school students, using visual programming (Lego Mindstorms EV3 Education software),

design programming sequences while they are solving an exercise related to an ultrasonic

sensor mounted on their robotic artifact. For this purpose, a tracking system has been

designed so that every programming attempt performed by students’ teams is registered

on a log file and stored in an SD card installed in the Lego Mindstorms EV3 brick.

These log files are then analyzed using machine learning techniques (k-means clustering)

in order to extract different patterns in the creation of the sequences and extract

various problem-solving pathways performed by students. The difference between

problem-solving pathways with respect to an indicator of early achievement is studied.

Keywords: educational robotics, educational datamining, learning analytics, STEMactivities assessment, learning

process identification

INTRODUCTION

Educational Robotics (ER) has been widely used to support integrative STEM education because
of its power to realize engaging multidisciplinary activities about science, technology, engineering,
and mathematics, but also arts, language, and humanities (Mubin et al., 2013; Scaradozzi et al.,
2019a,b). Furthermore, ER can also support inclusive education (Daniela and Lytras, 2019) and
computer science and robotics literacy at all ages (Burbaite et al., 2013; Štuikys et al., 2013; Berry
et al., 2016; Damaševicius et al., 2017; Vega and Cañas, 2019). Even if many studies explored ER to
motivate students to learn, not all of them reported an evaluation of activities; those who focused on
the evaluation of ER activities adopted qualitative (Denis and Hubert, 2001; Liu, 2010; Elkin et al.,
2014), quantitative (Atmatzidou andDemetriadis, 2016; Kandlhofer and Steinbauer, 2016; Cesaretti
et al., 2017; Scaradozzi et al., 2019c), or mixed methods approaches (Kim et al., 2015; Chalmers,
2018). In fact, in an ER activity (a lesson characterized by one or more ER exercises), students
design, build, program, debug, and share their robotic artifacts; ER is based on the constructionist
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approach proposed by Papert (1980): when pupils create personal
and meaningful products, they “build” knowledge in their
mind. This kind of educational activity is characterized by a
workflow, modeled by Martinez and Stager (2013) with the
“Think Make Improve” (TMI) cycle, where three different phases
are repeated cyclically:

• At the beginning, the educator proposes a problem to solve
so students usually start thinking and designing their solution
(“Think” phase);

• Then learners build their product: in an ER activity, it could
be a hardware (a prototype) or software (a sequence of
instructions) creation (“Make” phase);

• At the end of the construction phase, students start the robot,
observe and analyze its behavior, debugging errors or trying
to optimize the performance of the artifact (Improve phase):
pupils have to examine carefully the feedback of the robot in
order to decide the next designing or programming steps (so
the cycle starts again with the Think phase).

The evaluation of a product created during a constructionist
activity can be a challenging and time-consuming activity
(Berland et al., 2014). Moreover, it is often based on the
final product and not on the process underlying the designed
task (Blikstein, 2011). However, new data mining and machine
learning technologies allow researchers to capture detailed data
related to problem-solving and programming trajectory of a large
number of learners (Blikstein et al., 2014).

Recent studies (Berland et al., 2013; Blikstein et al., 2014;
Chao, 2016; Wang et al., 2017; Bey et al., 2019; Filvà et al.,
2019) have mostly applied machine learning techniques to
data gathered from students during programming activities
without the presence of physical robots, obtaining good results
in the identification of different patterns in specific coding
tasks (Table 1 summarizes machine learning techniques and
features selected in these studies). Berland et al. (2013) and
Chao (2016) used a k-means algorithm to discover patterns
in the programming activity of novice programmers; the first
study identified three general patterns (Tinkering, Exploring, and
Refining) and presented a positive correlation between the quality
of the programming sequences designed by the students and
two of the emerged patterns (Tinkering and Refine). The second
study represented the students’ programming activity using
five indicators and identified four clusters (sequent approach,
selective approach, repetitious approach, and trial approach);
the study showed that the performance was lower for learners
in the trial approach cluster compared to the sequent and
repetitious approach clusters. Blikstein et al. (2014) proposed two
experiments using different machine learning techniques, trying
to discover patterns in data collected from 370 undergraduate
students and to predict their midterm and final exam grades.
They obtained best results modeling students’ programming
trajectories using hidden Markov models and demonstrated
that the group in which a student was clustered into was
predictive of his or her midterm grade. Wang et al. (2017)
used log data from Code.org1 and applied a long short-term

1https://code.org

memory recurrent neural network to predict students’ future
performance, obtaining good results in terms of accuracy and
recall. Bey et al. (2019) identified three clusters in a dataset
created collecting programs from 100 students registered on
a 3-week course on the essential of Shell programming; they
applied unsupervised clustering techniques (Hopkins statistic
methods) for automatically identifying learners’ programming
behavior. Filvà et al. (2019) used the k-means technique on data
generated by students’ clicks in Scratch (and not on handpicked
features), with the objective of categorizing learners’ behavior in
programming activities: they identified three different patterns
and a strong correlation between these behaviors and the
evaluation given by some teachers involved in the research
project, using a rubric for programming assessment.

However, only one research study (to the best of our
knowledge) applied machine learning to data collected during
ER activities (Jormanainen and Sutinen, 2012); they did not
collect data related to the programming sequences designed by
the students but related to the pupils’ interactions with the
essential elements of the visual programming environment. Their
system, using trees algorithm (J48 implementation), classified the
students’ activities into four classes, differentiating the observed
students’ group’s progress with the purpose of identifying
pupils with difficulties during the robot programming task.
Ahmed et al. (2018) presented an interesting system that gives
feedback to pupils in real time while they are programming
the Lego Mindstorms EV3 robot2; they implemented a system
(ROBIN) so that the Lego Mindstorms EV3 robot provided
reflective feedback to pupils, transforming it into a learning
companion: using ROBIN, students obtained advices based on
the sequences created on the programming environments and
based on the exercise proposed by the educator. But in this
research project, the researchers did not train their system using
machine learning techniques but using deterministic rules. The
promising results obtained using machine learning techniques
on data gathered from students during programming activities,
and the lack of this type of study in the field of ER (Scaradozzi
et al., 2019b), have prompted the research described in this
paper. Thanks to an upgrade of the Lego Mindstorms EV3
programming blocks (implemented by the authors), it was
possible to register some log files containing the programming
sequences created by 353 Italian primary and secondary school
students (organized in 85 teams) during the resolution of a
robotics exercise related to the ultrasonic sensor. Integrating
sensors allowed learners to obtain an interaction between the
robot and the environment, but to effectively use these devices,
they had to understand some key concepts about robotics and
computer science, such as how to acquire and store data, how to
cyclically repeat an acquisition (using loops), and how to create
algorithms to obtain different robot’s behaviors depending on the
values detected by sensors (using conditional statements). The
authors inputted the collected log files into k-means algorithms,
with the purpose of verifying if there are different problem-
solving patterns emerging from this dataset and of examining
the interrelationships between the different problem-solving

2https://education.lego.com/en-us/middle-school/intro/mindstorms-ev3
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TABLE 1 | Features and machine learning techniques of recent studies carried out in constructionist environments.

Paper Features selected in the experimentation Machine learning techniques

Blikstein et al. (2014) [1st experiment]

Code update differential, characterized by: number of lines added, lines

deleted, lines modified, characters added, characters removed,

characters modified.

[1st experiment]

Simple regression between exam grades and average size of the code

updates per student.

[2nd experiment]

Code update differential

[2nd experiment]

X-means clustering algorithm.

[3rd experiment]

Code update differential

[3rd experiment]

X-means clustering algorithm.

[4th experiment]

Code update curves (combination of frequency and size in changes

made by students).

[4th experiment]

Dynamic time warping and scaled dynamic time warping distance (to

calculate the difference between two given code update curves).

[5th experiment]

Modeling of a student’s trajectories as a hidden Markov model (HMM).

[5th experiment]

k-medioid and hierarchical agglomerative clustering (to compute the

different states of the HMM). Expectation maximization algorithm to

compute both the transition and emission probabilities in the

state diagram.

Berland et al. (2013) Measures of individual program states (measures calculated for each

program state) considering five features: action, logic, unique

primitives, length, coverage.

X-Means clustering algorithm

Jormanainen and

Sutinen (2012)

Six events: add statement, add command to code, remove line, upload

program to robot, compiling errors, sum of all these events.

Decision trees, decision tables, Bayesian networks, and multilayer

perceptrons to predict the students’ progress. To measure the

accuracy of the tested algorithms, they used the 10-fold

cross-validation method.

Chao (2016) Related to computational practice (five measures): sequence, selection,

simple iteration, nested iteration, testing.

Ward’s minimum variance method (to identify number of clusters),

followed by the k-mean cluster analysis (on the identified

cluster number).

Wang et al. (2017) [1st experiment]

A student’s trajectory consists of all the program submissions, which

are represented as ASTs (that contain all the information about a

program and can be mapped back into a program). These ASTs are

converted into program embeddings using a recursive neural network.

[1st experiment]

Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN).

[2nd experiment]

Same features of their 1st experiment, from ASTs they calculated

program embeddings.

[2nd experiment]

LSTM RNN

Bey et al. (2019) Number of submissions, average time between two submissions,

average number of changes, percentage of syntactical errors, time

standard deviation (the standard deviation of the average time between

two submissions), code standard deviation (the standard deviation of

the average number of changes).

Mixture Gaussian Clustering algorithm

Filvà et al. (2019) Clickstream K-means cluster analysis

patterns and a performance indicator showing the students’ team
capability to reach a working program solution.

METHODS

Procedure
At the first stage of this research project, authors implemented
a software modification to the Lego Mindstorms EV3 Education
Software blocks; thanks to this software development, every time
that students tested their program on the robot LegoMindstorms
EV3, a “track” of the coding sequence was written in a log file
stored in the SD card mounted on the robot. Fourteen schools
participated in the experimentation, and the same protocol was
performed for each of them. Firstly, an educator of TALENT srl
(an Italian innovative startup involved in the research project)
installed on the computers of the school the official Lego

Mindstorms EV3 Education software and the update designed
by the authors. An “Introduction to Robotics” course was then
realized, taught in collaboration with TALENT; Constructionism
(Papert, 1980) and problem-based learning (Savery, 2006) were
the pedagogical approaches underlying the proposed course:
during each lesson, students designed and created programming
solutions to problems related to the robot. After a first part
dedicated to the robot’s actuators, the ultrasonic sensor was
explored. An exercise was proposed by the instructor to the
students: learners had to program the robot so that it stopped
at a given distance from the wall, trying to be as precise as
possible; they also had to consider a constraint: the maximum
available time to design and test their coding solution (20min
for higher secondary school classes; 30min for lower secondary
and primary school classes). There are some elements that make
this exercise quite tricky for novice students in robotics: they
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FIGURE 1 | Three possible solutions for the exercise designed using the Lego Mindstorms EV3 software blocks: “Switch case” (A), “Wait” (B), and “Handmade

condition” (C).

have to think about how to set the condition related to the
ultrasonic sensor, how to use the iteration (loop block), and how
to compensate the braking distance (the robot does not stop
immediately when the EV3 brick sends the command “turn off”
to the motors). Figure 1 shows three possible solutions to this
problem: the simplest sequence (B) in terms of the number of
blocks contains the Wait block; it makes the program wait for a
condition becoming “true” before continuing to the next block in
the sequence. The intermediate solution (A) contains the Switch
block; this block is a container that can comprehend two or
more sequences of programming blocks; a test at the beginning
of the Switch determines which Case will run, and in this case,
the test is designed on the ultrasonic sensor. The most complex
solution (C) contains a “handmade” condition, created using a
Sensor block (the yellow one) and a Compare block (the red
one). Students’ teams involved in the experimentation were free
to design and test their programming solution (usually close to
one of the sequences presented in Figure 1): the educator only
explained the general meaning and the parameters of the useful
blocks, and then the pupils started to work on their program.

At the end of the exercise, all the log files generated by the
tracking system were downloaded from the SD card by the
TALENT’s educator and stored in the cloud storage.

The authors fed the collected log files (transformed into
vectors thanks to a parsing system developed in Python) into a k-
means algorithm, whose results provided clusters that represent
different types of sequences designed by the students to solve
the exercise. Then, for each team of the students involved
in the experimentation, the number of sequences belonging
to each cluster was calculated in order to get new features
that characterized the students’ programming activity (all the
programming actions carried out by the participants with the
intention to obtain the desired robot’s behavior). These new
features were used again as input data for a k-means algorithm,
and different problem-solving behaviors emerged from this last
step. An expert robotics educator defined for each log file the first
working sequence created by the students’ team, which allowed
the educator to observe in which stage of the problem-solving

process learners created their first working sequence. A working
sequence is a program that can solve the exercise previously
presented, and the conditions to be met are: correct conditional
statement on the ultrasonic sensor and motors turned on using
the right modality. Then, applying the formula:

Indicator of early achievement =
n◦ of the first working sequence

total tests number

Finally, a one-way non-parametric ANOVA (Kruskal–Wallis)
test was conducted to examine the differences in the indicator
according to the different problem-solving behaviors, which
emerged from the machine learning technique. Moreover, the
post-hoc Dunn test (Dunn, 1964), appropriate for groups with
unequal numbers of observations (Zar, 2010), was employed to
examine the significance of all possible pairwise comparisons
among clusters.

Participants
FromMarch 2018 to September 2019, a total of 353 students from
14 Italian primary and lower/higher secondary schools (located
in the Emilia Romagna and Marche regions) were involved in
this study. Sixty-two students divided into 19 teams [Average
Age (AA) = 17.29, Standard Deviation (SD) = 0.55] from
school 1 were involved. School 2 had 22 students involved,
divided into six teams (AA = 11.45, SD = 0.50). School 3
had 24 students involved, divided into six teams, but valid
data were collected only from two of them (AA = 10.08, SD
= 0.65). School 4 had 21 students involved, divided into five
teams (AA = 11.70, SD = 0.47). School 5 had 19 students
involved, divided into seven teams (AA = 11.63, SD = 0.83).
School 6 had 25 students involved, divided into five teams
(AA = 15.92, SD =0.28). School 7 had 24 students involved,
divided into six teams, but valid data were collected only from
three of them (AA = 12.00, SD = 0.46). School 8 had 23
students involved, divided into five teams (AA = 12.43, SD =

0.94). School 9 had 30 students, divided into six teams (AA =

9.63, SD = 0.53). School 10 had 26 students involved, divided
into six teams (AA = 12.54, SD =0.51). School 11 had 19
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students involved, divided into five teams (AA = 10.21, SD
= 0.98). School 12 had nine students involved, divided into
three teams (they were from lower secondary school, but no
personal data were available). School 13 had 23 students involved,
divided into six teams (AA = 11.87, SD = 1.29). School 14 had
26 students involved, divided into eight teams (AA = 10.24,
SD= 0.83).

Data Preparation
Students’ teams designed 3,292 programming sequences to solve
the robotics exercise previously described. Some technical steps
are performed to transform these sequences into matrices; after
this transformation, the following 12 indicators are calculated
for each programming sequence. A function designed in Python
realizes the parsing of the log file to calculate these 12 values.

• Motors: how many Motor blocks are contained in
the sequence;

• Loops: how many Loop blocks are contained in the sequence;
• Conditionals: how many Conditional and Sensors blocks are

contained in the sequence;
• Others: how many blocks are contained in the sequence

belonging to different categories than Motors, Loops,
and Conditionals;

• Added: how many blocks have been added, compared to the
previous sequence;

• Deleted: howmany blocks have been deleted, compared to the
previous sequence;

• Changed: how many blocks have been changed, compared to
the previous sequence;

• Equal: howmany blocks have remained unchanged, compared
to the previous sequence;

• Delta Motors: the amount of change in Motor blocks
parameters, compared to the previous sequence (calculated
only for blocks of the “Changed” category);

• Delta Loops: the amount of change in Loop blocks parameters,
compared to the previous sequence;

• Delta Conditionals: the amount of change in Conditional
blocks parameters, compared to the previous sequence;

• Delta Others: the amount of change in Other blocks
parameters, compared to the previous sequence.

The authors decided to calculate the first four indicators (Motors,
Loops, Conditionals, Others) because they represent the features
of a sequence designed using the LegoMindstorms EV3 software;
moreover, they are key concepts in ER and computational
curricula (Grover and Pea, 2013; Scaradozzi et al., 2015, 2019b;
Allsop, 2019). Furthermore, as previously stated, an ER activity
is characterized by a cyclical procedure for improving the
programming sequence: for this reason, it is essential to calculate
the differences between two contiguous sequences, represented
by the last eight parameters (Added, Deleted, Changed, Equal,
Delta Motors, Delta Loops, Delta Conditionals, and Delta
Others). Each programming sequence designed by the learners
is thus represented using these 12 indicators, and it can be
considered as a point in the problem-solving trajectory (Berland
et al., 2013) carried out by the students’ team.

RESULTS

Clusters resulting from the application of k-means algorithm
on programming sequences designed by the students’ teams are
shown in Table 2. Fourteen clusters were identified applying
the Elbow Method (Kodinariya and Makwana, 2013), and their
relation to teams’ behavior is briefly reported.

Cluster 1: the team tested the same programming sequence
several times (characterized by four blocks, similar to solution
B in Figure 1); 32.99% of the sequences are categorized in
this cluster.
Cluster 2: the team changed the condition and the threshold
value for the ultrasonic sensor throughout the programming
attempts (programming sequence similar to solution B
in Figure 1); 3.25% of the sequences are categorized in
this cluster.
Cluster 3: the team heavily changed the condition and the
threshold value for the ultrasonic sensor (i programming
sequence similar to solution B in Figure 1); 2.13% of the
sequences are categorized in this cluster.
Cluster 4: the team refined the threshold value for the
ultrasonic sensor and some parameters in a Motors block at
the same time (in a programming sequence similar to solution
A in Figure 1); 6.71% of the sequences are categorized in
this cluster.
Cluster 5: the team refined both some parameters in a Motors
block and some parameters in Others blocks (programming
sequence similar to solution A in Figure 1); 0.18% of the
sequences are categorized in this cluster.
Cluster 6: the teammodified some parameters in a Loops block
(in a programming sequence similar to solutionA in Figure 1);
0.03% of the sequences are categorized in this cluster.
Cluster 7: the team heavily modified some parameters in a
Motors block and refined the threshold value for the ultrasonic
sensor (in a programming sequence similar to solution A or
B in Figure 1); 1.64% of the sequences are categorized in
this cluster.
Cluster 8: the team tested the same programming sequence
(characterized by 11–12 blocks, similar to solution A or C
in Figure 1 with the addition of Others block); 4.19% of the
sequences are categorized in this cluster.
Cluster 9: the team tested the same programming sequence
(characterized by eight to nine blocks, similar to solution A
or B in Figure 1); 24.14% of the sequences are categorized in
this cluster.
Cluster 10: the team refined the threshold designed for the
ultrasonic sensor (programming sequence like solution A in
Figure 1) and added two blocks; 4.04% of the sequences are
categorized in this cluster.
Cluster 11: the team refined both the threshold for the
ultrasonic sensor and some parameters in a Motors block and
deleted two blocks (in a programming sequence similar to
solution A in Figure 1); 4.04% of the sequences are categorized
in this cluster.
Cluster 12: the team refined both the threshold designed for
the ultrasonic sensor and some parameters in a Motors block
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) (programming sequence similar to solution B in Figure 1,

but with only one Motors block); 6.35% of the sequences are
categorized in this cluster.
Cluster 13: the team refined both the threshold for the
ultrasonic sensor and some parameters in a Motors block (in a
programming sequence similar to solution B in Figure 1, with
two Motors blocks); 9.39% of the sequences are categorized in
this cluster.
Cluster 14: the team refined both the threshold designed for
the ultrasonic sensor and some parameters in a Motors block
(in this case, the sequence is extremely complex, characterized
by 11–12 blocks, similar to solution C in Figure 1); 0.91% of
the sequences belong to this cluster.

Figure 2 presents the silhouette scores (Rousseeuw, 1987) for
the 14 clusters identified by the k-means algorithm. Table 3
shows the Pearson correlation between these clusters and the
indicator of early achievement: only cluster 3 shows a statistically
significant positive correlation (Pearson coefficient correlation=

0.411, p < 0.0001); so teams that heavily changed the condition
and the threshold value for the ultrasonic sensor did not obtain a
working sequence in the first part of their work.

As previously stated in the section Procedure, after having
clustered the students’ programming sequences, the percentage
of sequences belonging to each cluster was calculated for each
group. Thus, the problem-solving process for each team was
represented using a vector with 14 elements, the percentage of
coding sequences in cluster 1, the percentage of coding sequences
in cluster 2, etc. A matrix (size: 85 × 14) created considering
these 14 features calculated for the 85 teams was then used
as inputs for a k-means algorithm, with the aim of grouping
teams with similar behavior. Applying again the Elbow Method
(Kodinariya and Makwana, 2013), 10 different problem-solving
pathways emerged (Table 4):

• Pathway 1: Prevalence of sequences belonging to cluster 9 and
cluster 4; these teams designed a complex sequence (type A
or C in Figure 1), generally refining the parameters, with a
very low percentage of large changes in the condition or in the
threshold for the ultrasonic sensor and implementing a quite
high number of trials (18 teams in this cluster, 21.18%).

• Pathway 2: 17% of sequences belonging to clusters 3 and 4;
these teams applied high changes in the condition and in the
threshold designed for the ultrasonic sensor (eight teams in
this cluster, 9.41%).

• Pathway 3: Prevalence of sequences belonging to cluster 13;
these teams designed a compact sequence (type B in Figure 1)
generally refining the threshold designed for the ultrasonic
sensor and some parameters in a Motors block (eight teams
in this cluster, 9.41%).

• Pathway 4: Prevalence of sequences belonging to cluster 1;
these teams designed a compact sequence (type B in Figure 1)
sometimes (14%) refining the threshold designed for the
ultrasonic sensor and some parameters in a Motors block,
sometimes (8%) applying high changes to the condition or to
the threshold related to the ultrasonic sensor or to the Motors’
parameters; a very high number of trials characterized this
cluster (22 teams in this cluster, 25.88%).
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FIGURE 2 | Silhouette scores for the 14 clusters (presented in the section Results) identified by the k-means algorithm.

• Pathway 5: Prevalence of sequences belonging to clusters 8 and
4; these teams designed a very complex sequence (type A or
C in Figure 1), using also Others blocks and generally refining
the parameters of the programming blocks (three teams in this
cluster, 3.53%).

• Pathway 6: Relevant percentage (32%) of sequences belonging
to clusters 10 and 11; these teams repeatedly deleted and added
blocks to their sequence (similar to type A or B in Figure 1); a
low number of trials characterized this cluster (13 teams in this
cluster, 15.29%).

• Pathway 7: Prevalence of sequences belonging to clusters 8
and 4; the team designed a complex sequence using also four
Others blocks (type A in Figure 1), generally refining the
parameters, without any sequence with large changes in the
condition or in the threshold for the ultrasonic sensor; this
team also experimented some simple sequences (cluster 1, type
B in Figure 1) (one team in this cluster, 1.18%).

• Pathway 8: Prevalence of sequences belonging to cluster
14; these teams designed the most complex sequences (type
C in Figure 1), generally refining the parameters, without
any sequence with large changes in the condition or in
the threshold for the ultrasonic sensor (two teams in this
cluster, 2.35%).

• Pathway 9: Relevant percentage (32%) of sequences belonging
to clusters 10 and 11; the team repeatedly deleted and added
blocks to their sequence (similar to type A in Figure 1)
and repeatedly changed parameters in the programming
blocks (36% of sequences in cluster 4); a low number
of trials characterized this cluster (one team in this
cluster, 1.18%).

• Pathway 10: the lowest number of trials (18) and a relevant
percentage (11%) of sequences in cluster 7 (high changes in
Motors parameters) characterized these teams (nine teams in
this cluster, 10.59%).
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TABLE 3 | Pearson correlation coefficient between clusters (see Table 2) and the

indicator of early achievement.

Cluster Correlation P-value

Cluster 3 0.411 < 0.0001

Cluster 13 0.124 0.259

Cluster 2 0.122 0.266

Cluster 11 0.014 0.897

Cluster 1 −0.006 0.956

Cluster 12 −0.009 0.936

Cluster 6 −0.024 0.826

Cluster 5 −0.024 0.826

Cluster 14 −0.037 0.735

Cluster 8 −0.049 0.654

Cluster 9 −0.057 0.602

Cluster 10 −0.082 0.453

Cluster 4 −0.088 0.421

Cluster 7 −0.122 0.267

Trials −0.128 0.243

Figure 3 shows the silhouette scores for the 10 pathways
presented above; Figure 4 is obtained after applying a two-
dimensional principal component analysis (PCA): it presents
the distribution of the identified pathways implemented by
the students’ teams along two principal components, calculated
according to the PCA approach.

Figure 5 presents the age-related differences between the
students’ teams involved in the experimentation, within these
10 pathways: the majority of the higher school students adopted
pathways 1 (a complex sequence with some refinements of
the programming parameters) and 6 (a complex sequence with
considerable variation to the condition set for the ultrasonic
sensor); the majority of the lower school students adopted
pathways 3 (a compact sequence with a refinement of the
programming parameters) and 4 (a compact sequence with
considerable variation to the condition set for the ultrasonic
sensor); the majority of the primary school students adopted
pathway 4 (a compact sequence with considerable variation to
the condition set for the ultrasonic sensor).

Figure 6 shows the distributions of the indicator of early
achievement in the 10 selected cluster. Excluding those problem-
solving behaviors that were shown by less than three groups
(styles 7, 8, 9) from the analysis, significant differences (chi-
square = 25.54, p = 0.0002711, df = 6) were found among the
seven different clusters of group behavior. Pairwise comparisons
using Dunn’s test for multiple comparisons of independent
samples with Bonferroni’s P-value adjustment method showed
that significant differences could be found between clusters 1 and
4 (p= 0.014), 2 and 5 (p= 0.035), and 4 and 5 (p= 0.016).

DISCUSSION

This brief research report presents an innovative application
of machine learning techniques in the field of ER, for the T
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FIGURE 3 | Silhouette scores for the 10 pathways (presented in the section Results) identified by the k-means algorithm.

FIGURE 4 | Representation of the identified pathways implemented by the

students’ teams along two principal components, calculated according to the

PCA approach.

identification of different problem-solving pathways and the
analysis of how students learn to utilize sensors during an ER
activity. The k-means algorithm identified 10 “pathways” that
marked the students’ teams’ programming activity, during the
resolution of specific exercise related to the ultrasonic sensor.
Analyzing the pathways presented in the previous section, two
main approaches to programming emerged: some teams modify
the blocks’ parameters implementing small changes, moving
toward their objective by “small steps” (pathways 1, 3, 5); other
teams design high changes (frequently modifying the symbol in
the condition for the ultrasonic sensor, applying considerable
variation to the threshold set for the ultrasonic sensor, repeatedly
deleting/adding blocks, etc.) to their programming blocks from
one test to another (pathways 2, 4, 6). The majority of the
groups showing the first incremental approach (pathways 1, 3,
5) reached a working sequence during their first testing stage
(an indicator of early achievement <0.4), unlike the teams with
the “high changes approach” (pathways 2, 4, 6). This is a similar
result compared to Blikstein et al. (2014), who identified that a
“steadier incremental steps” strategy of programming correlated
to a better performance in the resolution of the exercise.
Pathway 4, with the highest number of trials (57) (Table 2),
contains teams that did not obtain a working sequence in their
first part of their work, and this result is similar to Chao (2016)
but opposed to Filvà et al. (2019).
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FIGURE 5 | The age-related differences between the students’ teams involved in the experimentation, within the 10 problem-solving pathways.

FIGURE 6 | Distributions of the indicator of early achievement in the 10

selected pathways.

Future work of this study includes the analysis of more
extensive set of challenges in order to obtainmore general results.
The dataset considered in this paper is quite small (in particular,
for pathways 7, 8, and 9): ER is an approach characterized
by teamwork, so despite having involved 353 primary and
secondary school students in the experimentation, we obtained
valid data from 85 teams (participants were divided into teams
of three to four members who worked together to design
software solutions). The promising results of this preliminary
study have encouraged the authors to involve new classes in
the experimentation in order to continue the validation of the
approach. The authors intend also to utilize a recurrent neural
network, in particular, the long short-termmemory autoencoders
(a structure specifically designed to support sequences of input
data Hochreiter and Schmidhuber, 1997), in order to translate the
programming sequences created by the students into fixed-length
vectors (compress representation of the input data), maintaining
a high level of information content. As a result, these vectors

obtained from the autoencoders compression will be used as
input features for supervised and/or unsupervised algorithms.
Another possible approach that the authors intend to use for the
same task (dimensionality reduction) is the PCA.
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