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a b s t r a c t 

Parkinson’s disease (PD) is the most common neurological disorder, after Alzheimer’s disease, and is char- 

acterized by a long prodromal stage lasting up to 20 years. As age is a prominent factor risk for the

disease, next years will see a continuous increment of PD patients, making urgent the development of

efficient strategies for early diagnosis and treatments. We propose here a novel approach based on com- 

plex networks for accurate early diagnoses using magnetic resonance imaging (MRI) data; our approach

also allows us to investigate which are the brain regions mostly affected by the disease. First of all, we

define a network model of brain regions and associate to each region proper connectivity measures. Thus,

each brain is represented through a feature vector encoding the local relationships brain regions inter- 

weave. Then, Random Forests are used for feature selection and learning a compact representation. Fi- 

nally, we use a Support Vector Machine to combine complex network features with clinical scores typical

of PD prodromal phase and provide a diagnostic index. We evaluated the classification performance on

the Parkinson’s Progression Markers Initiative (PPMI) database, including a mixed cohort of 169 normal

controls (NC) and 374 PD patients. Our model compares favorably with existing state-of-the-art MRI ap- 

proaches. Besides, as a difference with previous approaches, our methodology ranks the brain regions

according to disease effects without any a priori assumption.
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1. Introduction

Parkinson’s disease (PD) is a heterogeneous progressive neuro-

logical disorder, firstly described almost two centuries ago, basi-

cally related with early death of dopaminergic neurons in the sub-

stantia nigra and characterized by both motor and non-motor fea-

tures ( Gibb and Lees, 1988; Jankovic, 2008 ). It is recognized that

age is the greatest risk factor for PD, its incidence reaches a max-

imum at about 80 years of age, thus the rising life expectancy is

expected to increase the number of patients at more than 30% by

2030 ( Dorsey et al., 2007 ). 

The slow progression is one of the most important features of

PD. The disease course can be roughly separated in two phases;

the first prodromal, usually named “premotor”, phase can last up

to 20 years and accounts for symptoms such as: impaired olfac-

tion, constipation, depression, rapid eye movement sleep behavior

disorder (RBD) and excessive daytime sleepiness (EDS) ( Singaram

et al., 1995; Gagnon et al., 2002; Chaudhuri et al., 2006 ). In fact,
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hese symptoms could double the individual’s risk of developing

he disease. 

The second phase is early characterized by insurgence of typi-

al bradykinesia, tremor and fatigue; then in the advanced stages

y psychosis, dysphagia, freezing of gait, falls and postural instabil-

ty ( Friedman and Friedman, 1993; Huber et al., 1986 ). It is known

hat the average latency between the onset of prodromal and mo-

or symptoms is about 12 − 14 years ( Postuma et al., 2012 ). Thus,

t would be of paramount importance the development of diag-

ostic strategies able to detect the disease in its prodromal phase

nd outline efficient markers. As shown in Kalia and Lang (2015) ,

 prominent role in early diagnosis should be played by RBD, EDS,

yposmia, depression and mild cognitive impairment (MCI) which

re typical of the non-motor, prodromal or very early, PD phase,

ee Fig. 1 . 

For what concerns imaging, candidate markers include positron

mission tomography (PET) ( Antonini et al., 1997; Hansen et al.,

016; Masdeu, 2017 ) or single photon emission computed tomog-

aphy (SPECT) ( Hirschauer et al., 2015; Suwijn et al., 2015; Adeli

t al., 2017 ) methods. In fact, these methodologies can accurately

etect PD. However, these methodologies are based on the detec-

ion of substantial losses of dopaminergic neurons, for example

http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.05.004&domain=pdf
mailto:marianna.larocca@ba.infn.it


Fig. 1. PD diagnosis is related to the onset of motor symptoms (time 0). The symp- 

toms characterizing the prodromal phase and the years immediately following the

diagnosis are: Rapid eye movement sleep Behavior Disorder (RBD), Excessive Day- 

time Sleepiness (EDS), Hyposmia (a reduced ability to smell and to detect odors)

and mild cognitive impairment (MCI). Accordingly, these symptoms are usually en- 

closed in models trying to forecast the disease onset.
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n the substantia nigra, whilst it would be desirable to diagnose

he disease before this degeneration has occurred in order to en-

ble early diagnosis before the onset of motor symptoms. With

his regard, it should be taken into account that PD patients could

ose up to 80% of dopamine before symptoms appear ( Miller and

’Callaghan, 2015 ). 

With this regard, the definition of new markers will play a fun-

amental role. It is clear that a single marker will not be able to

llow accurate diagnosis and monitor disease progression. Instead,

 combination of different markers should provide a more reason-

ble approach. As previously mentioned, PET and SPECT measures

re very effective in the motor phase, and they may support the di-

gnosis as well as monitor disease severity and progression. Tran-

cranial sonography is another promising approach whose clinical

pplicability is still controversial ( Bouwmans et al., 2013; Pilotto

t al., 2015 ). 

MRI markers could monitor structural changes in the brain

nd suggest increased risk for PD ( Salvatore et al., 2014 ) or be

mployed for differential diagnosis of PD syndromes ( Duchesne

t al., 2009; Marquand et al., 2013; Chagas et al., 2017 ). For

xample, voxel based morphometry (VBM) has revealed sig-

ificant gray matter reductions in PD patients with dementia

 Summerfield et al., 2005 ); MRI has also shown progressive atro-

hy in PD, an effect already detectable in the early stage of the

isease ( Beyer et al., 2007; Tessa et al., 2014 ). Thus, it would seem

hat there is still room to define effective MRI markers which out-

ine the disease process before the death of dopaminergic neurons

as triggered irreversible damages. 

Several works have investigated the applicability of ma-

hine learning strategies to MRI data with fluctuating outcomes.

ocke et al. (2011) tried without success to use VBM features for

ndividual classification using a Support Vector Machine (SVM).

owever, Cherubini et al. (2014) demonstrated that VBM fea-

ures combined with diffusion tensor imaging can effectively dis-

inguish PD patients from subjects with progressive supranuclear

alsy. More recently, a synergistic paradigm combining Kohonen

elf organizing map and SVM claimed that MRI features can reach

ccurate classification performances including subjects with no

opaminergic deficit ( Singh and Samavedham, 2015 ). Feature selec-

ion strategies seem to play a relevant role to define imaging mark-

rs accurately distinguishing PD patients from controls ( Adeli et al.,

016 ). These different approaches share a not negligible feature,

ll of them rely on the supervised selection of PD-related regions

f interest to obtain statistically significant associations between

natomy and clinical phenotype. Although these approaches reach
xcellent results, they can be limiting as they prevent the investi-

ation of novel brain regions. 

In this paper, we use MRI data from the Parkinson’s Progression

arkers Initiative (PPMI) to extract imaging markers and learn an

ccurate classification model. With this goal, we introduce a brain

onnectivity model basing on gray matter and white matter voxel

istribution. The proposed approach adopts a brain patch segmen-

ation, thus it avoids common drawbacks of voxel-wise approaches,

.g. the lack of significance due to high dimensionality of the fea-

ure space. Besides, this methodology does not depend on fully-

utomated brain segmentation algorithms, whose accuracy could

e poor, for region of interest definition. We measure how different

rain regions are correlated and for each region we measure sim-

le topological quantities; accordingly, we build a model including

trophy effects locally induced by the disease and accounting for

hole-brain modifications thanks to the network framework. 

Complex network approaches have already proven their effec-

iveness in several cases, also in neuroimaging applications. MRI

rovides a useful base of knowledge when considering the topo-

ogical organization of the brain. In fact, findings from structural

without excluding the functional) graphs point to a loss of highly

onnected areas in several brain diseases ( Tijms et al., 2013 ). Graph

heory provides two important methodological insights. Firstly, it

ssociates to each node quantitative measurements characterizing

ts role and importance within the network; secondly, it enables

 direct description of the whole brain from a global perspective,

hus letting emerge properties which affect the brain as a system

 Bullmore and Sporns, 2009 ). 

Several examples can be found for Alzheimer’s disease.

tam et al. (2007) investigated small-worldness properties and

ound that diseased brains show a loss of connectivity. Also, the

opological organization of the brain itself could be used as a

arker; in fact, an increment of the shortest path length could

enote an impaired organization ( Lo et al., 2010 ). Another ap-

roach to detect the impairment of connectivity consists in mea-

uring node-related quantities, as for example the rich-club prop-

rty ( Daianu et al., 2014 ). Finally, in previous works ( La Rocca et al.,

017 ) and Amoroso et al. (2017) , we showed how complex net-

ork measures can be used to characterize Alzheimer’s disease. Of

ourse, PD has its specificities, for example it cannot be consid-

red a disconnectivity disease. However, as previously mentioned,

tructural changes could be useful markers. It would be interest-

ng to evaluate whether PD patients show significant brain struc-

ural changes, both locally and globally, and whether complex net-

ork measures can capture these effects. In this work, basing on

ur previously mentioned works, we introduced a novel machine

earning approach to combine network and clinical features within

 unique classification score. Besides, we demonstrated its effec-

iveness on PD; as a matter of fact, we could not find any PD study

nvestigating the adoption of complex network measures. 

This work offers three main contributions: (i) we propose an

nsupervised general methodology to model brain connectivity for

oth healthy subjects and patients; (ii) we explore which regions

re significantly affected by the disease; (iii) we propose a novel

earning strategy to combine network and clinical features; (iv) we

efine an accurate diagnostic tool for PD diagnosis basing only on

RI features; (v) we highlight the existence of an optimal scale

o study PD. It is worth mentioning that previous approaches ex-

loited a priori definition of regions of interest within the brain

nd therefore they could suffer a loss of information. In brief, the

roposed approach can learn an accurate model to discriminate

ontrols and patients and can, eventually, detect possible novel

maging markers of the disease. Therefore, the use of MRI features

ecomes strategic for the development of early diagnosis tools or

 better characterization of PD in its early stages. 



Table 1

Demographic and clinical information. Mean age and standard deviation are given, for other

indicators with asymmetric distributions medians and interquartile ranges are preferred. Signif- 

icant differences between normal controls (NC) and Parkinson’s disease (PD) are reported with

the Kruskal–Wallis p -value (∗
 for p < 0.05 and ∗∗  for p < 0.01). 

Diagnosis Age ESS GDS MDS-UPDRS MoCA RBD

PD (374) 61.6 ± 9.8 3 [2, 6] 2 [1, 3] 29 [18, 41] 27 [26, 29] 5 [3, 8]

NC (169) 60.2 ± 11.5 2 [1, 4] ∗∗ 1 [0, 2] ∗∗ 27 [17, 37] ∗ 28 [27, 29] ∗∗ 5 [3, 8]
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2. Materials

Data used in preparation of this work was obtained from

the Parkinson’s progression markers initiative (PPMI) database 2 

( Marek et al., 2011 ). MRI data acquired by the PPMI for this study

consisted of MPRAGE T1 brain scans from 3T SIEMENS MAGNETOM

Trio scanners. Images were acquired with the following parame-

ters: repetition time 2300 ms, echo time 2.98 ms, flip angle 9 ° and

voxel size 1 × 1 × 1 mm 

3 , so that the equivalence 1 voxel = 1 mm 

3 

holds. 

The PPMI is a clinical study whose main goal is the identifica-

tion of PD markers in order to enhance the comprehension of the

disease and eventually help the development of disease modifying

therapies. The PPMI includes a mixed cohort of normal controls

(NC) and PD patients; the database also includes subjects without

dopaminergic deficits, namely SWEDD, that are disregarded in this

work. Data from PPMI comes from different worldwide sites, along

with structural MRI it is possible to find other imaging modalities

such as SPECT or demographic and clinical metadata, such as age,

gender and cognitive scores. NC subjects are both age- and gender-

matched with the PD patients. It is worth noting that PD patients

are de novo patients in that they are unmedicated, an important

aspect as PD therapies could not have the desired effect of modi-

fying the possible markers. More importantly, PD patients enrolled

are mostly at the first stages of the disease, according to the Hoehn

and Yahr scale ( Hoehn et al., 1998 ); in fact, Marek et al. (2011) ex-

plains that 98% of the subjects affected by the disease is in stages

1 and 2 (over 5), corresponding to mild inconvenient without dis-

abling symptoms. 

The database consisted of two populations including respec-

tively 107 male and 62 female NC, for a total of 169 subjects, and

243 male and 131 female patients, for an overall amount of 374

PD subjects. The populations are matched for age (60.2 ± 11.5 for

NC and 61.6 ± 9.8 for PD). In the following Table 1 the baseline

values for the Epworth Sleepiness Scale (ESS), the Geriatric De-

pression Scale (GDS), the Montreal Cognitive Assessment (MoCA),

the Movement Disorder Society Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) and the Rapid eye movement sleep Behavior

Disorder (RBD) are enlisted. 

ESS is a standardized simple measure for sleep propensity

( Johns et al., 1991 ). Daytime sleepiness is usually associated to

sleep disorders, but it can also be a symptom of prodromal PD

phase along with RBD. Like constipation and olfactory distur-

bance, RBD can precede the development of the motor signs of

Parkinson’s disease and longitudinal data suggest that RBD her-

alds the onset of motor symptoms in up to 40% of patients

( Chaudhuri et al., 2006 ). RBD is measured according to the screen-

ing questionnaire proposed in Stiasny-Kolster et al. (2007) . ESS and

RBD scores lie within ranges of normalcy for both NC and PD sub-

jects, however PD patients showed a small but significant incre-

ment in ESS (Kruskal–Wallis p -value < 0.01). 

GDS score is based on a questionnaire of 30 items with bi-

nary outputs ( Yesavage and Sheikh, 1986 ). For each affirmative an-
2 http://www.ppmi-info.org/data .

 

f  

r  

t

wer 1 point is scored; healthy people should score 5 ± 4, mildly

epressed and very depressed people 15 ± 6 and 23 ± 5 respec-

ively. In particular, for the present study, the shorter form was

sed ( Yesavage et al., 20 0 0 ). Accordingly, the subjects of the study

ere neither mildly nor very depressed, nevertheless PD patients

howed a significantly higher GDS score (Kruskal–Wallis p -value

 0.01). 

The motor symptoms are taken into account by the Movement

isorder Society Unified Parkinson’s Disease Rating Scale (MDS-

PDRS) ( Goetz et al., 2008 ). It is important to recall how the MDS-

D criteria assign a central role to motor symptoms to define clin-

cal PD ( Postuma et al., 2015 ); however, also non-motor manifes-

ations are present in many patients so that the related indicators

an play a fundamental role for diagnosis, even though they can-

ot capture the complexity of this heterogeneous disease. As ex-

ected, MDS-UPDRS significantly distinguishes (Kruskal–Wallis p -

alue < 0.05) the NC and PD cohorts. 

Mild cognitive impairment (MCI) is a symptom commonly

ound in PD patients; it usually occurs with the onset of motor

ymptoms and may be a harbinger of dementia. MCI condition

ould be related to early PD symptoms, such as RBD, in any case

t is known that it may be found in up to 80% of long term PD

atients ( Litvan et al., 2012 ). The Montreal Cognitive Assessment

MoCA) index is the preferred measure for accurate screening of

ognition in PD ( Dalrymple-Alford et al., 2010 ). A final MoCA score

f 26 and above is considered normal: PD and NC cohorts of this

tudy were normal on average with 27.0 ± 2.3 and 28 ± 1 respec-

ively. A small but significant difference was observed (Kruskal–

allis p -value < 0.01). 

. Methods

The proposed approach aims at using MRI data to extract novel

nd efficient PD markers for early diagnosis. MRI scans from PPMI

ere processed to be both intensity and spatially normalized.

hen, we introduced a connectivity model for each brain and ob-

ained a feature representation using measures derived from the

etwork description. Finally, we used the feature representation

o learn a supervised classification model within a nested cross-

alidation framework. Besides, as the NC and PD classes are not

alanced, we performed a stratified cross-validation by granting

or each round that the same number of subjects was sampled

or the two classes. The classification consists of three distinct

teps: firstly, Random Forest classifiers ( Breiman, 2001 ) are used

s a wrapper for feature selection; then, the important features are

sed to feed, within the same cross-validation round, a second RF

lassifier in order to obtain a classification score for each subject;

nally, an SVM classifier ( Cortes and Vapnik, 1995 ) combines these

cores and the other clinical features to discriminate the NC and

D classes. A schematic overview of the method is shown in the

ollowing Fig. 2 . 

The main goal of the method is to provide a classification score

or PD. Besides, the methodology can be used to investigate which

egions are mostly affected by the disease and rank them according

o statistical significance. 

http://www.ppmi-info.org/data


Fig. 2. Methodology flowchart. MRI scans are processed to obtain a network repre- 

sentation, in particular they are preliminarily registered to the MNI152 brain tem- 

plate with an affine transformation. Then, for each node several features are com- 

puted and a feature representation is obtained. These features evaluate the node

importance within the networks. The most informative features are selected with

Random Forest wrapper and summarized in a classification score, then a Support

Vector Machine combines these score with clinical features to distinguish NC and

PD groups. The entire classification process is performed in 10-fold cross-validation.

3
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.1. Image processing and network construction 

MRI scans were skull stripped and aligned with an affine reg-

stration using the FSL library developed by the Oxford Centre for

unctional MRI of the Brain (FMRIB), specifically the Brain Extrac-

ion Tool (BET) ( Smith, 2002 ) and the FMRIB’s Linear Image Reg-

stration Tool (FLIRT) ( Jenkinson and Smith, 2001; Jenkinson et al.,

002 ) were employed. Both the procedures were performed with

efault parameters, the reference image used for registration was

he T1 MNI152 template with 1 × 1 × 1 mm 

3 voxel size. Then, the

cans were segmented in rectangular non overlapping boxes (from

ow onwards patches ) of volume V = l 1 × l 2 × l 3 using the medial

ongitudinal fissure to separate the left and right hemispheres. Ac-

ordingly, each hemisphere was divided into an equal number of

atches. These patches were considered the nodes of a weighted

etwork having as weights the pairwise Pearson’s correlation mea-

ured between each pair of nodes throughout the whole brain. 

The number of patches, a brain can be divided into, depends

n the volume V . As typical normalized volumes of substantia ni-

ra range from 153 to 221 mm 

3 ( Kwon et al., 2012 ), we chose

 = 125 mm 

3 with l 1 = l 2 = l 3 = 5 mm. Thus, the resulting net-

orks consisted of 12219 nodes, each node of the network con-

isting of a patch including 125 voxels. To evaluate the presence

f a link between two nodes we represented each patch through a

25 −dimensional vector and measured the pairwise Pearson’s cor-

elation. This measure emphasizes how similar two patches are.

irst of all, comparing voxels’ gray level intensities, correlation

easures how much gray matter (GM), white matter (WM) and

erebrospinal fluid (CSF) distributions are matched. Moreover, as

his is a voxel-by-voxel comparison, correlation also measures if

hose distributions are spatially matched. 

Correlations were measured in absolute value, thus disregarding

eft-right symmetries, but keeping intact the informative content

bout structural modifications. 

Thus, for each subject we introduced a complex network model.

his model was investigated with measures borrowed by graph

heory, particularly concerning weighted graphs. In order to re-

ove noisy connections and avoid as far as possible the loss of

trategical links, we thresholded the networks disregarding negli-

ible correlations (| r | < 0.3). A study of the threshold cut-off is pre-

ented in Section 4.4 . 
.2. Feature representation 

The underlying hypothesis of the proposed approach is that

tructural changes of the brain, measured by correlations, affect

he connectivity patterns. We expect that these changes mostly

oncern (i) the intensity of the connections of a node, (ii) the num-

er of connections a node has and (iii) which nodes it is connected

ith. 

The first assumption holds because atrophic changes affecting a

rain region tend to weaken the correlations of that specific region

ith other healthy GM/WM regions and enforce correlations with

ther atrophic regions or regions containing mostly CSF. As GM,

M and CSF are not evenly distributed, these changes should be

etectable. The second assumption stands with the first one; as the

ntensity of connections changes, the number of connections must

hange too. Finally, the third assumption is a direct consequence

f the first two: modifying the intensity of connections and the

umber of connections is equivalent to remove some links and cre-

te new ones. Accordingly, the organization itself of the networks

hould change; these effects can be detected with some specific

omplex network measures. 

By definition, the strength of a weighted network node is the

ntensity of its connections. Here, we considered the strength s i of

 node (i.e. patch) i to detect whether structural changes of the

rain were equally distributed. 

Strength provides insight on the intensity of the connections of

 particular brain region, however without taking into account if

he number of connections is preserved. Of course, this second as-

ect should not be neglected, in fact, a node i could preserve its

trength even losing or acquiring some connections, provided that

he sum of the weights remains unchanged. To detect this effect,

e measured the inverse participation ratio Y −1 
i

which evaluates

ow unevenly the weights of the links of the node i are distributed

 Menichetti et al., 2014 ): 

 i = 

N ∑ 

j=1

(
w i j

s i 

)2

; (1) 

o detect variations in brain connectivity among nodes with the

ame degree k , which is the number of connections of a node, we

valuated also the conditional values of strength s ( k ) and inverse

articipation ratio Y −1 (k ) for each subject and for each degree k

anging from 1 to 12219: 

 (k ) = 

1

N k 

N ∑ 

i =1

s i δ(k i , k ) ; (2)

 (k ) = 

1

N k 

N ∑ 

i =1

Y i δ(k i , k ) ; (3)

here N k is node number having degree k and δ is the Kronecker

unction that is 1 when a node i has degree k and 0 otherwise.

ll these measures are based on the single subject networks. In

rder to capture inter-subject variations, we considered the degree

istribution of the whole training cohort k global , an array whose el-

ments k 
global 
i

indicate the total number of connections the node i

as in the training sample; then we recomputed all previous net-

ork measures using k 
global 
i

: 

 

′ 
i = 

N ∑ 

j=1

w i j k 
global 
i 

; (4) 

 

′ 
i = 

N ∑ 

j=1

(
w i j

s i 

)2

k global 
i 

; (5)
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Fig. 3. Classification performance in terms of area under the receiver operating

characteristics curve (AUC). The combined use of network features (NF) and clin- 

ical features (CF) reaches the highest AUC = 0.97 ± 0.02 (cyan dashed line). CF on 

their own reach an AUC = 0 . 74 ± 0 . 02 (dark green continuous line), which is rea- 

sonable for baseline subjects whose symptoms are mild. NF provide effective mark- 

ers for PD, in fact basing on these feature it is possible to diagnose PD with an AUC

= 0 . 94 ± 0 . 01 (dark red dash-dot line). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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s ′ (k ) = 

1

N k 

N ∑ 

i =1

s ′ i δ(k i , k ) ; (6)

 

′ (k ) = 

1

N k 

N ∑ 

i =1

Y ′ i δ(k i , k ) . (7)

Thus, we obtained a 8-dimensional feature representation: s ,

 

−1 , s ′ and Y ′−1 for each node and s ( k ), Y −1 (k ) , s ′ ( k ) and Y ′−1 (k )

for each degree. 

3.3. Feature selection and classification 

As explained in previous sections, each subject was described

by 12219 patches; for each patch 8 network measures were com-

puted, thus resulting in 12219 × 8 features. Firstly, we removed fea-

tures with null mean and variance, besides we removed from data

highly correlated features (| r | > 0.7) ( Hinkle et al., 2003; Mukaka,

2012 ). In fact, even if the proposed algorithm could manage all

original features, removing high correlated features definitely low-

ers computational requirements and can improve classification ac-

curacy ( Hall, 1999 ). After these processing steps, 4048 features re-

mained. To further reduce the data dimensionality a feature selec-

tion analysis was performed. There are three distinct approaches

one could choose to tackle this task ( Saeys et al., 2007 ): filter

methods are fast and scalable, but they ignore possible interactions

among the features; wrapper methods are computationally inten-

sive in that they explore the space of features by evaluating ran-

dom subsets and using supervised classifiers to find optimal con-

figurations, but they are able to take into account feature inter-

actions; embedded techniques are those for which the search for

best discriminating features is built within the model. 

We chose a hybrid approach in that we used Random Forests

for feature selection but not for the model. Random Forests are an

ensemble of classification trees, whose trees are grown by boot-

strapping training data and randomly selecting at each split a can-

didate set of features. Given f features, at each split 
√ 

f features

are randomly picked and each tree is grown unpruned to obtain

low-bias models; the main idea behind Random Forests is the use

of random variable selection resulting in low correlation of single

trees; as a consequence, the overall classifier yields a model that

can achieve both low bias and low variance ( Breiman, 1996 ). 

Random Forests are particularly suitable for the present analy-

sis where the number of variables exceeds the observations ( Díaz-

Uriarte and De Andres, 2006 ). Moreover, it is a robust and easy-

to-tune model, it does not overfit thanks to internal bagging and,

more importantly, it provides a continuous measure of feature im-

portance. For our experiments we used the implementation pro-

vided by R version 3.2.2 with the package randomForest version

4 . 6 − 10 ; a standard configuration was used: each forest was grown

with 500 trees. 

To avoid double dipping issues, feature selection, model con-

struction and its evaluation were performed within a 10-fold

cross-validation framework. Within each 10 cross-validation round,

we removed redundant (highly correlated) and poorly informative

(null mean and variance) features. Then, we built a first forest us-

ing only the training subjects and we used the out-of-bag samples

(from the training data) to evaluate feature importance in terms of

mean accuracy decrease. We selected those features exceeding the

third quartile of the importance distribution, thus remaining on av-

erage with 60 important features per cross-validation round. With

these features and within the same cross-validation round, a sec-

ond forest was built. The results of this procedure were twofold:

on one hand we selected the most discriminative features and

on the other hand we summarized the whole information con-

tent provided by the complex network measures in a unique score.
hus, this score outlined which subjects exhibit brain structural

nd topological changes significantly associated to the diagnosis.

he disruption of connectivity, the presence of brain regions with

odified centrality and with modified network properties concern-

ng for example the intensity or the uniformity of connections,

ere all included in the classification score. 

We designed this approach as the number of features deriv-

ng from the complex network description can be overwhelming if

ompared to the available clinical features of Table 1 . It is impor-

ant to remind that for each subject clinical features are provided

t the baseline. Accordingly, a diagnostic model relying on clinical

eatures of prodromal or early PD phase and structural MRI data

as designed. Finally, for the discrimination of PD patients and

ormal controls, we trained a third radial Support Vector Machine

SVM) classifier combining the classification score and the clinical

eatures and keeping fixed the training and validation sets of the

revious 10-fold cross-validation. For our analysis we used the R

ackage e1071 version 1.6–7 with the default implementation (cost

 1 and gamma = 0 . 003 ). 

. Results

.1. Classification performance 

The proposed methodology both detects which regions are

ostly affected by the disease and uses the network measures to

rovide a classification score. Besides, the use of clinical features

oncerning the PD prodromal phase or the disease onset can sup-

ort the early diagnosis. In order to evaluate the effectiveness of

he proposed procedure we used standard machine learning tech-

iques, such as the previously mentioned Random Forests and SVM

lgorithms. All the presented results were acquired with a 10-fold

ross-validation framework. We measured the informative content

rovided by our complex network approach combined with the

linical features by training an SVM classifier. Besides, we sepa-

ately evaluated the informative content of respectively the net-

ork measures, using the classification score of a Random Forest

RF) classifier, and the clinical features, training an SVM classifier.

he results are shown in Fig. 3 . 

The combined use of MRI and clinical features gives the best

erformance as summarized in Table 2 . 



Table 2

NC vs PD classification performances for feature typology. Area under the receiver

operating characteristics (AUC), accuracy (ACC), sensitivity (sens) and specificity

(spec) are reported with the relative standard deviations. Best performance (bold)

is obtained with a combined use of network and clinical features.

features AUC ACC sens spec

Network measures 0.94 ± 0.01 0.88 ± 0.06 0.85 ± 0.09 0.88 ± 0.09 

Clinical scores 0.77 ± 0.01 0.70 ± 0.08 0.65 ± 0.12 0.75 ± 0.11 

Both 0.97 ± 0.02 0.93 ± 0.04 0.93 ± 0.06 0.92 ± 0.07 

Fig. 4. The classification score distribution using (a) only clinical features and (b)

combining them with network measures. Each column of the histogram contains

the number of NC subjects (blue) and PD patients (orange) whose score lies in that

bin. Classification scores obtained using both network and clinical features show a

greatly enhanced class separation. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Classification performance in terms of area under the receiver operating

characteristics curve (AUC). The combined use of network features (NF) and clin- 

ical features (CF) reaches the highest AUC = 0.97 ± 0.02 (cyan dashed line). The 

combination of Voxel Based Morphometry (VBM) features and CF reaches an AUC

= 0 . 93 ± 0 . 06 (light green dash-dot line). Finally, Region-Of-Interest (ROI) features 

combined to CF give an AUC = 0 . 82 ± 0 . 06 (magenta continuous line). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Table 3

NC vs PD classification performances for network features (NF), Voxel Based

Morphometry (VBM) and Region-of-Interest (ROI) approach obtained with and

without the combination of clinical features (CF). Area under the receiver

operating characteristics (AUC), accuracy (ACC), sensitivity (sens) and speci- 

ficity (spec) are reported with the relative standard deviations. Best perfor- 

mance (bold) is obtained with a combined use of network and clinical features

(NF + CF). The combination with the clinical features improves the performances 

in all three cases (NF + CF, VBM + CF, ROI + CF). 

features AUC ACC sens spec

NF + CF features 0.97 ± 0.02 0.93 ± 0.04 0.93 ± 0.06 0.92 ± 0.07 

VBM + CF 0.93 ± 0.04 0.86 ± 0.06 0.88 ± 0.08 0.86 ± 0.08 

ROI + CF 0.82 ± 0.06 0.72 ± 0.07 0.74 ± 0.10 0.71 ± 0.12 

NF 0.94 ± 0.01 0.88 ± 0.06 0.85 ± 0.09 0.88 ± 0.09 

VBM 0.87 ± 0.05 0.79 ± 0.08 0.77 ± 0.12 0.77 ± 0.11 

ROI 0.70 ± 0.06 0.63 ± 0.07 0.60 ± 0.11 0.66 ± 0.11 
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Area under the receiver operating characteristics AUC = 0 . 97 ±
 . 02 , accuracy ACC = 0 . 93 ± 0 . 04 , sensitivity sens = 0 . 92 ± 0 . 06

nd specificity spec = 0 . 93 ± 0 . 07 . These results were significantly

igher than those obtained by using only the complex network

easures; in fact, we found in this case AUC = 0 . 94 ± 0 . 01 , ACC =
 . 88 ± 0 . 06 , sens = 0 . 85 ± 0 . 09 and spec = 0 . 88 ± 0 . 09 . These re-

ults were averaged on 10 0 0 cross-validation rounds and signifi-

ance was assessed with z -tests; for all comparisons we found 1%

ignificance. 

Clinical features resulted in a classification performance signifi-

antly lower than those previously reported. Thus, the information

ontent provided by the proposed model gives a significant con-

ribution. In particular, we found when using only the clinical fea-

ures: AUC = 0 . 77 ± 0 . 01 , ACC = 0 . 70 ± 0 . 08 , sens = 0 . 66 ± 0 . 12 and

pec = 0 . 73 ± 0 . 11 . Fig. 4 allows us to appreciate this effect from a

ifferent perspective. 

Classification scores based only on clinical features consistently

end to overlap and assign to PD subjects low scores. In fact, sensi-

ivity, which is basically the discriminative power for positive sub-

ects, is lower than specificity. On the contrary, the discrimination

f the two classes is greatly enhanced when introducing complex

etwork markers. 
.2. Comparison with standard methods 

In order to assess the effectiveness of the proposed approach,

e compared its classification accuracy with two standard ap-

roaches. In particular, we used FreeSurfer ( Fischl, 2012 ) to ex-

ract some structural features, such as grey matter and white

atter volumes of subcortical brain structures or the average

ortical thickness of specific regions for a total of 181 Region-

f-Interest (ROI) features. Then, we performed a standard VBM

ipeline ( Ashburner and Friston, 20 0 0 ) to detect voxels showing

 significant ( p -value < 0.05) association with the diagnosis, these

oxels provided another feature representation. Both, the ROI and

he VBM descriptions were used to feed the classification frame-

ork previously described. In this way, we obtained a direct com-

arison evaluating the informative power of the proposed method-

logy and ROI/VBM approaches, see Fig. 5 . 

The proposed method (AUC = 0.97 ± 0.02) compares favorably

ith VBM (AUC = 0.93 ± 0.04) and ROI (AUC = 0.82 ± 0.06) de-

criptions. It is worth mentioning that even when not consider-

ng clinical features, the network description remains the most

ffective (AUC = 0.94 ± 0.01) both in respect of VBM (AUC =
.87 ± 0.05) and ROI (AUC = 0.70 ± 0.06) approach. A summary of

his comparison is presented in Table 3 . 



Fig. 6. A qualitative overview of significant PD-related patches, as they are outlined by complex network measures, is represented along sagittal planes. More significant

patches have a lighter shade of yellow and little by little less significant patches have a darker shade of yellow until arriving at the no significant patches in dark yellow

(false discoveries). The negative planes belong to the left hemisphere while the positive planes belong to the right one. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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4.3. Regions of interest 

The high discriminative power shown by the features and eval-

uated in the previous section demonstrates the reliability of the

complex network measures as PD markers. Besides the diagnostic

support that these features can provide, it is interesting to evalu-

ate which regions are affected by the disease and eventually rank

them according to their statistical significance. 

For each cross-validation round we recorded which features

were selected as the most important for classification and out-

lined the brain regions related to them. Accordingly, for each cross-

validation round we counted whether or not a particular anatomic

district had been selected and tested the hypothesis that these oc-

currences had happened by chance. We also investigated the prob-

ability of making one or more false discoveries checking the family

wise error using Benjamini–Hochberg False Discovery Rate (FDR)

as correction for multiple comparisons. We observed that with FDR

( p < rank ∗ N 

−1 ∗ α), 112 patches are significant. It is worth men-

tioning that in our case the number of multiple comparisons is

N = 12219 , the threshold for the overall discovery rate for all the

comparisons was 5% and the rank is the index from 1 to N indicat-

ing the position of the p -values ordered from the smallest to the

largest. In Section 5 we discuss the comparison between the signif-

icant patches found with the proposed approach and VBM. Fig. 6

shows, with the lighter shade of yellow, some of the significant re-

gions associated to the diagnosis. 

According to the proposed method, 54% of the significant

patches involve the right hemisphere and 51% the left one; 7% of

patches pinpoint the cerebellum; brainstem regions appear in 4%

of cases. There is not a great difference between GM and WM re-

gions, in fact the GM regions selected are 63%, the WM ones 58%.

The vast majority of brain regions affected by PD lies in the Frontal

(32%), Occipital (25%) and Temporal (19%) lobes. For a complete

overview of the selected regions and the relative p -values please

refer to the Supplementary Material. Instead, we provide in the fol-

lowing Table 4 a compact overview of the first 15 selected patches.

These regions have been already detected in several PD studies

( Li et al., 2017; Warmuth-Metz et al., 2001; Kim et al., 2013; Wen

et al., 2015 ), another indirect validation of the proposed methodol-

ogy in that the selected regions consistently correspond to regions

whose relationship with the disease is established. 
.4. Robustness of the method 

The proposed approach does not require fine tuning; in fact, we

emonstrate that the results obtained with standard configurations

re stable. We evaluated the relation between the threshold used

o remove some edges from the network and the classification ac-

uracy; a wide range of thresholds was explored, see Fig. 7 . 

Threshold was varied from 0 to 0.9 with 0.1 steps and with a

xed patch volume of 125 voxels. The maximum value of the clas-

ification accuracy was obtained at 0.3 threshold. It is worth not-

ng that this value also corresponded to minimum variance. Ac-

uracy remained constant at 0.93 for a wide range of correlations

0.3, 0.5], thus confirming that the method does not require a fine

uning of threshold values. For higher threshold values, there was

 significant performance drop, suggesting that too high threshold

alues cause the loss of important links. 

As demonstrated in Section 4.1 , the proposed complex network

pproach significantly enhances the discriminative power of clini-

al features. The network measures derived from MRI data effec-

ively characterize PD patterns. To evaluate the robustness of the

nformative content provided by our method, we explored the hy-

erparameter space. Firstly, we evaluated the cost parameter which

lays a fundamental role for Support Vector Machines, see Fig. 8 . 

In fact, the cost determines how much the SVM model should

t the training data by varying the margins of the decision hyper-

lane, larger values of cost correspond to smaller margins. The re-

ults show that for a wide range of cost values the classification

erformance remains stable granting robust results. When the cost

eaches the 0.01 value the performance drops, this means that the

argins have become so large that the model cannot just fit the

ata. Moreover, we investigated the model robustness with respect

f the gamma parameter which defines how far the region of in-

uence of each training example should extend, see Fig. 9 . 

As gamma controls the variance of the model, by varying

amma one can move from a high-bias to a high-variance model.

f course, the optimal classification region stands between these

wo cases. The results show that for the present model a wide sta-

ility region exists, in fact the AUC consistently remains over the

.90 value for a gamma variation of more than 4 orders of magni-

ude. 



Table 4
The regions selected according to complex network measures and the inherent level of 

sig- nificance with respect of diagnosis. (L) and (R) denotes the left and right 

hemispheres;

cerebellum regions are denoted with c. Brodmann areas (Ba) are also outlined when ap- 
propriate.

Region p -value

(L) Temporal Lobe. Middle Temporal Gyrus. GM-WM. Ba 39. 7 . 2 · 10 −7 

(R) Temporal Lobe. Superior and Inferior Temporal Gyrus. GM-WM. Ba 22. 7 . 2 · 10 −7 

(R) Occipital Lobe. Sub-Gyral (WM). 3 . 6 · 10 −6 

(L) Occipital Lobe. Superior Occipital Gyrus GM-WM. Ba 19. 4 . 6 · 10 −6 

(R) Frontal Lobe. Middle Frontal Gyrus (WM). 5 . 3 · 10 −6 

(L-c) Anterior Lobe. Culmen (GM). 5 . 9 · 10 −6 

(R) Frontal Lobe. Medial Frontal Gyrus (WM). 5 . 9 · 10 −6 

(R) Frontal Lobe. Precentral Gyrus. GM. Ba 44. 5 . 9 · 10 −6 

(L) Limbic Lobe. Cingulate Gyrus. GM. Ba 24. 5 . 9 · 10 −6 

(R) Parietal Lobe. Precuneus (WM). 5 . 9 · 10 −6 

(L) Frontal Lobe. Middle Frontal Gyrus. GM. Ba 46. 6 . 2 · 10 −6 

(L) Brainstem. Midbrain 6 . 6 · 10 −6 

(L) Temporal Lobe. Fusiform Gyrus GM-WM. Ba 37. 7 . 2 · 10 −6 

(R-c) Posterior Lobe. Declive. GM. 7 . 2 · 10 −6 

(R) Temporal Lobe.Fusiform Gyrus. WM. 7 . 2 · 10 −6 

Fig. 7. The figure shows the accuracy as a function of the threshold that changes from 0 to 0.9. In correspondence of a threshold value of 0.3, the best accuracy and the

minimal standard deviation were reached.

Fig. 8. The classification performance in terms of AUC remains stable by varying

the cost parameter. For tiny cost values the decision hyperplane margins are too

large and the performance drops.
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Fig. 9. Varying the gamma parameter it is possible to switch from high-bias to

high-variance models, in this case however the optimal classification region extends

for more than 4 orders of magnitude.
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.5. Evaluation of the informative content 

To evaluate the goodness of complex network measures as PD

arkers it is not sufficient to demonstrate that these features al-
ow an accurate and robust classification. First of all, looking at

he classification performance it is not possible to guess if credit

hould be given to the SVM classification model or the informa-

ive content of the features. As such, we compared the classifica-



20 Table 5

A comparison between different machine learning methods (Neural Networks, 

Random Forests, Naive Bayes and Support Vector Machine classifiers) shows that the 

proposed complex network approach allows a robust diagnosis independently from 

the choice of the classifier, although Support Vector Machine reaches slightly better 

results (in bold)

for almost each metric: area under the receiving operating characteristics (AUC), accu- 

racy (ACC), sensitivity (sens) and specificity (spec).

method AUC ACC sens spec

Neural Network 0.94 ± 0.04 0.89 ± 0.05 0.90 ± 0.08 0.88 ± 0.07 

Random Forest 0.97 ± 0.02 0.91 ± 0.05 0.90 ± 0.07 0.91 ± 0.07 

Naive Bayes 0.97 ± 0.03 0.92 ± 0.05 0.91 ± 0.07 0.93 ± 0.07 

Support Vector Machine 0.97 ± 0.02 0.93 ± 0.04 0.93 ± 0.06 0.92 ± 0.07 

Fig. 10. From left to right the agreement between the scores obtained with Support Vector Machine (SVM) and those obtained by: Random Forest (RF), Naive Bayes (NB)

and Neural Network (NN) classifiers. The scores are densely distributed in top right and bottom left quadrants, where their predictions agree. Looking at the top left and

bottom right quadrants it can be noted that, when in disagreement, SVM scores tend to be slightly more accurate than other scores.
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tion performance of several state-of-the-art classifiers, specifically

we investigated Random Forest (RF), Naive Bayes (NB) and Neural

Network (NN) classifiers. For each method, we explored within a

nested cross-validation the hyperparameter space and several con-

figurations, only optimal configuration results are reported in the

following Table 5 . 

The table shows that no significant difference can be found

between different models, even if SVM would seem to perform

slightly better than the others. These results demonstrate that be-

yond the differences due to the machine learning models adopted,

the proposed approach yields an outstanding base of knowledge

for PD discrimination. 

However, this test does not evaluate the agreement between

the models. In fact, in principle two distinct models could perform

equally but misclassifying different subjects. In order to assess the

agreement between our chosen SVM model and the other models,

we investigated the relationships existing between the classifica-

tion scores. The results are presented in Fig. 10 . 

The classification scores are densely distributed in the top right

and bottom left quadrants. The top right quadrant includes sub-

jects whose classification scores exceed the 0.5 value, it is the case

of subjects diagnosed with PD from both the SVM model, which is

always reported on the x axis, and the other models, which are re-

ported instead on the y axis. Analogously, the bottom left quadrant

includes those subjects, whose classification scores are lower than

0.5, for which the models agree assigning a NC status. As expected

from previous measures, the models correctly distinguish the two

classes, in fact in the top right quadrant the vast majority of sub-

jects is shown in orange, as subjects have mostly a PD diagnosis,

and in the bottom left the vast majority is in blue, as subjects are

mainly NC. 

The top left and bottom right quadrants are the regions of dis-

agreement. In these regions, in fact, the SVM model assigns a diag-

nosis different from other models. For example, a subject belong-

ing to the bottom right quadrant has an SVM score > 0.5 and it is

accordingly diagnosed as PD but a RF score (or NB/NN) < 0.5 and it

is therefore labeled as NC. First of all, it is worth noting that these

two quadrants are sparsely populated, especially compared to the

p  
op right and bottom left ones, therefore this is a further demon-

tration of the agreement between the models; besides, SVM tends

o be more accurate. 

Keeping on with our example, in the bottom right quadrant for

ll the three cases the majority of subjects is orange, meaning that

heir true label is PD. This means that the SVM predictions is the

ight one. The same consideration holds for the top left quadrant,

here the majority of subjects is represented in blue, and, again

VM correctly labels them as NC. 

.6. Scale study and VBM 

The proposed approach depends on the size of the brain

atches used for the complex network model. In our previous stud-

es concerning Alzheimer’s disease ( La Rocca et al., 2017; Amoroso

t al., 2017 ) we observed that one key aspect of complex network

escriptions is that they let naturally emerge a dimensional scale,

hich is typical of the disease. For example, for Alzheimer charac-

erization the best results were obtained with patches having ap-

roximately a volume of 30 0 0 mm 

3 . Accordingly, in this work we

xplored a wide range of patch volumes and measured the training

lassification accuracy, see Fig. 11 . 

The classification accuracy decreases monotonically. The best

erformance was obtained with patches of 5 × 5 × 5 voxels. This re-

ult is significantly different from what we observed in Alzheimer.

oreover, when the patch volume reaches 40 0 0 voxels (we re-

ind here that for the present study voxels and mm 

3 can be in-

erchangeably used) the accuracy remains constantly around 0.73. 

We used a standard VBM pipeline to segment gray and white

atter of each MRI scan. Then we normalized each subject to the

NI152 template and extracted the t-Student maps to determine if

ome clusters of voxels ( > 30) exhibit an association with the diag-

osis. We found a good agreement with the regions detected with

ur complex network description, see Fig. 12 for an overview, but,

emarkably, the number of regions showing an association with

he clinic was consistently reduced. 

However, as explained in Section 1 , voxel-wise approaches have

n intrinsic drawback in that the need for thousands of multi-

le comparisons dramatically lowers the statistical power of com-



Fig. 11. The optimal patch dimension expresses the existence of a preferred dimension or scale for PD markers. In particular, best classification accuracy 0.95 ± 0.04 is 

obtained with smaller patches (5 × 5 × 5 voxels). For larger patch dimensions the performance drops and reaches a stable plateau. 

Fig. 12. Voxel based morphometry shows the presence of some clusters (the sagit- 

tal plane is reported), however these regions represent only a subset of those out- 

lined by our approach.
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only available datasets. Indeed, we found no significant associa-

ion after FDR correction. 

. Discussion

The PD onset is characterized by clinical symptoms which

merge when the dopaminergic deficit has reached a considerable

evel. Therapies or drugs could easily be ineffective at this stage.

his is why the identification of accurate markers, and hopefully

f a diagnostic framework, based on symptoms related to the pro-

romal or early phases of the disease is urgent. Our approach uses

omplex network measures to characterize PD patterns and de-

elop a fully-automated machine learning diagnosis support sys-

em. The proposed methodology is robust and accurate. In ad-

ition, it provides detailed information about the brain regions

ostly affected by the disease as it ranks them by associating an

asy-to-interpret level of significance; thus, this method opens the

ossibility for further comprehension of PD patterns. 
The proposed approach reaches an accurate diagnosis (AUC =
 . 97 ± 0 . 02 and ACC = 0 . 93 ± 0 . 04 ) and these results compare fa-

orably with other state-of-the-art approaches. Among the most

ecent methodologies, the joint feature-sample selection algorithm

y Adeli et al. (2016) reports an 82% accuracy and currently

chieves one of the best classification performances when us-

ng only MRI data. It is worth mentioning that other studies us-

ng structural MRI features reported interesting results, such as

alvatore et al. (2014) whose VBM-based methodology allowed an

ccuracy of 83.2%, although a significantly smaller sample includ-

ng only 28 controls and 28 PD subjects. 

It has been recently shown that accurate diagnosis (97.5%)

an be obtained when combining both MRI and SPECT data

 Adeli et al., 2017 ). However, such a study demonstrates that the

lassification accuracy almost relies on SPECT as SPECT provides a

iagnostic accuracy of 95.6% when used without MRI. Thus, MRI

ata seems to slightly contribute to diagnosis accuracy. Neverthe-

ess, as SPECT detects the substantial loss of dopaminergic neu-

ons, markers based on this imaging modalities could be better

mployed in later stages of the disease, for example when motor

ymptoms appear. 

Our work emphasizes the possibility to conveniently use com-

lex network measures as PD markers. We demonstrated that, be-

ides the high accuracy, MRI features based on complex networks

ring a significant improvement to classification based only on

linical features. Classification is balanced, in fact specificity and

ensitivity give similar results, unlike what we observed with clin-

cal features which tend to be more specific but less sensitive. This

an be expected as the subjects included in this study are all con-

idered at the baseline when the clinical symptoms are still mild. 

Previous studies have usually investigated PD patterns basing

n a restricted list of regions of interest ( Braak et al., 2003; Burke

t al., 2008 ). The reasons for such a choice are twofold: firstly, from

 clinical perspective it is known that some regions are affected by

he disease only at its later stages, as a consequence these regions

an be safely disregarded; secondly, whole brain analysis can be

oo computationally intensive and when data samples are small it

s easy to lack the statistical power required to detect small effects.

On the other hand, focusing on some regions can prevent the

etection of interesting effects in the brain regions excluded or
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decrease the discrimination power of the approach. For example,

Worker et al. (2014) found no significant cortical changes between

PD patients and controls when examining a restricted list of brain

regions. 

It is worth noting that ROI-based approaches are intrinsically

biased by segmentation errors which can prevent the methodolo-

gies to reach optimal sensitivity. This is why, even if using an ROI

approach, we preferred a whole brain description. Our complex

network approach significantly reduced the computational burden

yielded by voxel-based approaches even if the number of exam-

ined regions was higher than in ROI-based studies. Feature selec-

tion played an important role in the proposed methodology. For

each node 8 distinct features were computed and, even if these

features measured distinct properties, it was reasonable to assume

that in some cases these quantities could be highly correlated.

Thus, removing redundant features was important to reduce com-

putational complexity and to improve classification performance.

On the contrary, this can drive misleading interpretations of the

model. For example, when two correlated features are found, there

is no a priori criterion to decide which one to exclude. For this

analysis, we found that highly correlated features were always re-

lated to measures concerning the same patch. 

Our method is more sensitive than a standard VBM; as reported

in previous studies, see for example Focke et al. (2011) . In addition,

adjusting p-values for multiple comparisons, no significant changes

are observed with VBM between the NC and PD cohorts. On the

contrary, with our approach, 112 patches are significant after FDR

correction. This confirms the advantage of using the network-based

method. It is worth mentioning that FDR is a correction less strin-

gent than Bonferroni and therefore it is more appropriate for an

exploratory application like ours. Another important aspect is that

the regions outlined with the proposed methodology are consis-

tent with previous studies. Temporal and Frontal Gyri changes

have shown atrophic patterns, especially in patients with demen-

tia ( Xia et al., 2013 ); cognitive impairment seems to acquire a rel-

evant role for diagnosis also because of the inclusion of Brodmann

areas 24,37,44 and 46 as shown also in Hughes et al. (1992) and

Nagano-Saito et al. (2005) . As expected, Substantia Nigra and brain

midstem also play a relevant role for the diagnosis. We found that

most of the significant regions are not adjacent, indeed there is

no a priori reason why adjacent patches (which can often include

distinct anatomical districts) should share the same informative

content, as neurodegenerative diseases may have a diffuse effect

that involves multiple voxels not necessarily belonging to the same

anatomical region ( Burton et al., 2004 ). 

Our results outline the important role of combining MRI and

clinical features for an accurate early diagnosis. In fact, besides

the increment of the classification accuracy, it is manifest that the

use of clinical features is biased towards the NC class. We demon-

strated that classification scores based only on clinical features

were poorly sensitive, with lots of PD patients misclassified as con-

trols; this effect is reasonable as in the early phase of the disease

clinical symptoms are mild. On the other hand this result outlines

the importance of complex network markers to improve both sen-

sitivity and specificity of the classification. 

6. Conclusions

In this work, we have demonstrated how complex networks can

proficiently be used to define a novel brain connectivity and con-

sequently introduce accurate markers for PD. We evaluated the ro-

bustness and the accuracy of the proposed methodology with both

a direct evaluation, involving the measure of classification met-

rics, and an indirect check, regarding the brain regions mostly af-

fected by the disease. We validated our method on a mixed co-

hort of controls and patients from the PPMI dataset; the proposed
ethodology compares well with other state-of-the-art approaches

or what concerns NC/PD classification. In addition, our method

llowed an investigation of the brain regions related to the dis-

ase starting from a segmentation completely unsupervised over

he whole brain without the necessity to a priori focus on specific

natomical regions, a fundamental aspect when looking for novel

arkers. Our results confirm what has been found in other stud-

es and outlines new interesting aspects, specifically: (i) our work

emonstrates that MRI data, and in particular complex network

easures, provide an efficient and accurate description of PD pat-

erns; (ii) novel MRI markers combined with clinical scores typical

f prodromal PD can be used for an accurate early diagnosis; this

pproach (iii) compares favorably with state-of-the-art methodolo-

ies basing on MRI data and (iv) compares well with methodolo-

ies including other imaging modalities such as SPECT. In brief, our

ork shows that the connectivity of several brain regions is signif-

cantly related to PD. Thus, we hope this result will stimulate fur-

her investigations to better understand the disease and its mecha-

isms. These results also suggest the applicability of the methodol-

gy to support PD diagnosis in clinical practice and possibly other

isease affecting brain connectivity. Further studies could investi-

ate how to improve this methodology, for example using multi-

odal imaging data. In addition, it would be interesting to provide

 comprehensive model for the regions outlined by our approach

rom a more specifically clinical perspective. 
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