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Abstract 

In general in case of crash situations the quality of collected data is very limited and several information are 
usually unreliable. Thus it is recognised that a significant effort is required in order to improve the quality of the 
crash prediction models moreover a crucial role is played by the identification of the factors influencing the crashes 
occurrence and the levels of severity estimation. In this paper two injury crash rate prediction models related to 
single-vehicle run-off-road crashes type are calibrated and in particular significant attributes estimated are identified 
not only with roadway geometric characteristics and surface conditions, but also with gender/number-of-drivers. To 
this aim a survey of injury crashes on two-lane rural roads collected in the Southern Italy was considered and 
analysed. Finally before the calibration step, a preliminary analysis of the data was provided through the estimation 
of the levels of severity by multinomial logit; in fact by this model only segments with highest values of severity are 
identified and involved in the calibration procedure.  
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1. Introduction an motivation 

Reducing crashes on highways has always been one of the most important concerns for transportation engineers 
during the processes of planning, design, construction, and maintenance. Providing a safe driving environment is 
indeed not only a responsibility, but also one of the top priorities for all highway projects (Chuo et al. 2009). Many 
authors dealt with specific crash types to identify causes, effects and appropriate countermeasures. Moreover 
collected data of crashes are very limiting in terms of information thus a significant effort to improve our ability in 
understanding the factors influencing the crashes occurrence is required. 

Srinivasan et al. (2009) showed, for example, that approximately 27% of fatal crashes on the U.S. highway 
system occurred along horizontal curves on two-lane rural highways. Approximately 70% of curve-related fatal 
crashes were single-vehicle crashes in which the vehicle left the roadway and struck a fixed object or overturned, 
and 11% of curve-related fatal crashes were head-on crashes.  

Hu and Yang (2011) have studied the Golumd–Kunlun Mountain section of the low-volume Qinghai–Tibet 
highway. Their analysis showed that 72.5% of crashes occurred on straight sections and 9.2% on curves. Vehicle 
rollover occurred in 47.5% of all accidents, mostly on a combination of vertical and horizontal curves and a small-
radius curve.  

The objective of the study presented here is to develop an injury crash rate prediction model for the only single-
vehicle run-off-road crash type, as a first approach, that was observed on the studied two-lane rural roads in the 
Salerno Province. Two injury crash rate prediction models were calibrated for maximizing the reliability and 
effectiveness of the results reflecting proper combinations of road geometric-function-environmental circumstances 
and human factors (gender/number drivers) which influenced the consequences of a crash type. First of all, each 
rural road belonging to the study network was divided into homogeneous segments according to the a constant 
curvature change rate definition; each road contained from one to three road homogeneous segments. 

A first analysis of the crash data was performed through the application of a multinomial logit formulation (Mc 
Fadden, 1974). In particular three (discrete) levels of severity were considered: (a) less than 3 injuries, (b) more than 
2 and less than 4 injuries and finally (c) more than 4 injuries and fatality. Thus a statistical model aiming to derive 
the probability of crash can be considered (Cafiso and D’Agostino, 2016) . The main assumption is that the 
probability of occurrence of the crash is higher than the probability of occurrence of all other events (the set is 
composed by all possible levels of severity). In order to estimate these probabilities a function for the probability 
distribution must be specified; in particular the function is characterised by an alternative specific constant, a vector 
of estimable coefficients and the error term accounting for unobservable factors. Depending on the considered 
distributional form of the error term a specific model may be derived. Considering this distribution as normal could 
be a most common assumption however in this case the resulting model will be a probit model which is, as well 
known, a model very complicate to be estimated (see Ben-Akiva and Lerman, 1985) then most frequently the error 
term is considered being generalised extreme value (GEV) distributed. This kind of model may be solved in a closed 
form through maximum likelihood methods; the resulting model is the multinomial logit model (McFadden, 1974). 
This considered model is characterised by the irrelevant alternatives (IIA) assumption (Train, 2003) which implies 
that unobserved factors are uncorrelated over the alternatives. Even though it may be argued that this assumption is 
very limiting in the meantime it makes the multinomial logit model particularly convenient. Based on all previous 
considerations then this model formulation was applied leading for the prediction of the levels of severity of each 
segment within each rural road in the considered network. The significant result refers to homogeneous road 
segments with highest severe degree further investigated and considered in the Injury Crash Rate Prediction (ICR) 
Model calibration. 

Furthermore, next step focused on the investigation of the more severe road scenarios, as explained before, to 
define and plan road operations for improving safety conditions: before and after safety evaluations can be used to 
check the safety benefits of improvements carried out on the roadways, within budget constraints for improvement 
or safety compliance investments for future operation. The study aims to integrate, innovate and bring new results in 
addition to those already obtained in a previous experimental analysis (Dell’Acqua, 2011, 2015; Russo et al. 2014, 
Russo et al. 2016). 

EI-Basyouny and Sayed (2006) compared two types of regression techniques for predicting crashes: the 
traditional negative binomial (TNB) and the modified negative binomial (MNB). While the TNB approach assumes 
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that the shape parameter of the negative binomial distribution is fixed for all locations, the MNB approach assumes 
that the shape parameter can vary from one location to another. 

Qin (2012) applied an alternative crash modeling approach: quantile regression (QR) in the context of a count 
data model. QR model for crash count data confirmed that crash predictors have varying impacts on the different 
areas of the crash distribution and the marginal effects of covariates provide a more direct observation of changes in 
the quantity. Kweon and Oh (2011) developed a modeling approach to identify promising road segments for safety 
improvement through speed management strategies and to illustrate how to select segments on the basis of model 
results. The study involved the application of four statistical techniques (generalized additive model, negative 
binomial model, linear model, and empirical Bayes method) in three sequential steps to data collected on a 190-km 
section of expressway in South Korea. There is a large body of research that analyzes the effect of passenger age 
and gender on young driver fatal crash risk (Hough et al. 2008), the main differences between older female and male 
drivers (Rosenbloom 2006), the weight of age and experience of drivers in driving mileage (McCartt et al. 2009).  
Islam et al. (2006) explored, for example, the differences in the severity of driver-injury between male and female 
drivers, across three different age groups for single-vehicle accidents involving passenger cars. 

The reminder of the paper is organised as follows: data collection and the whole preliminary analyses are 
described in section 2; in section 3 is discussed in more detail the methodological framework whilst section 4 
focuses on the numerical results; finally, section 5 discusses conclusions and future perspectives. 

2. Data collection and preliminary analyses 

The crash data used in this research for calibrating ICR Prediction model for the single-vehicle crashes type 
involved almost 2000 km of two-lane rural roads in Southern Italy located in the flat area with a vertical grade of 
less than 6%. The model helps to predict the number of the crashes for year for km for 108 vehicles (crash frequency 
over traffic exposure). Homogeneous road segments were defined by a constant curvature change rate (CCR in 
gon/km) defined as the sum of the absolute values of angular changes in horizontal alignment divided by total length 
of road section. Curvature Indicator CI was associated at each homogeneous road segment reflecting CCR values; 
CI is a measurement of the curvature change rate of the homogeneous road segment and it was associated a value 
between 1 and 3: 1 for low road horizontal curvature (CCR < 50gon/km); between 1 and 2 for medium road 
horizontal curvature (50gon/km ≤ CCR ≤ 300gon/km; between 2 and 3 for high road horizontal curvature (CCR > 
300gon/km). 

The road segments involved in the experimental study have a mean value of the Annual Average Daily Traffic of 
4,000 vpd/h, length of 3.5 km, mean speed of 65 km/h, mean road width (travel lanes plus shoulders) of 7.00 m with 
a minimum of 5.00 m and a maximum of 12.00 m, and a mean value for the curve radius of 200 m. Crash data, refer 
to a 5 years study period (2006-2010), and they were made available by the Administration of the Province of 
Salerno. Over the total length of the network analyzed, 998 injury crashes can be observed from 2006 to 2010, with 
1,819 injuries and 71 deaths, and a mean injury crash rate of 40 (the number of injury crashes per year per km per 
108 vehicles on the horizontal homogeneous segment of two-lane rural roads). Three main crash types was identified 
as a whole: frontal/side-head-on collisions, single-vehicle crashes (vehicle exits the roadway and either strikes a 
fixed object or overturns), and rear-end collisions. Analysis showed that frontal/side-head-on collisions occurred in 
52%, while single-vehicle run-off-road crashes occurred in 33%. Rear-end collisions made up only 15% of cases. In 
particular, focusing on “single-vehicle crashes” type as a first approach in the analysis, it was observed by analyzing 
the crash reports during the study period that 67% of crashes happened with male only drivers, 15% with female 
only drivers, and 18% with male and female drivers. In particular, the category “crashes with male and female 
drivers” refers to three identified conditions: a) one male and one female drivers; b) two females and one male 
drivers; c) two men and one female drivers. 

Table 1 shows an overview of the analyzed injury crashes varying the crash’s context (scenario) during the total 
study period, incorporating gender into the analysis, for which is shown the corresponding percentage of injury 
crashes (n), and relative minimum, mean, and maximum value of injury crash rate (ICR) during the 5-year period. 

According to the results in Table 1, it can be observed that the maximum value for injury crash rate using gender 
analysis during the specific period is when only men drivers are involved in crashes on wet road surface + daylight 
+ curve (max crash rate of 99.52). The minimum value for injury crash rate when female only drivers are involved 
in crashes for the relevant period is recorded on dry road surface + daylight + tangent segment scenario (crash rate 



 Francesca Russo  et al. / Transportation Research Procedia 27 (2017) 1088–1096 1091
4 Russo et al./ Transportation Research Procedia 00 (2017) 000–000 

of 0.53), while when female and male drivers are involved the scenario is with wet road surface + night + curve 
scenario (crash rate of 0.97). The maximum value of the crash rate when female only drivers are involved in a crash, 
as when female and male drivers are involved, is recorded for dry road surface + night + tangent segment scenario. 

     Table 1. Injury Crash Rates’ summary using Scenario, Gender analysis for single-vehicle run-off-road crashes 

Road scenario n., % Min ICR Mean ICR Max ICR 
CRASHES INVOLVING NO MORE THAN THREE VEHICLES WITH ONLY MALE DRIVERS 

Dry road surface + Daylight + Curve (DDC) 15 0.58 10.97 22.77 
Dry road surface + Daylight + Tangent segment (DDT) 16 0.58 5.55 10.11 

Dry road surface + Night + Curve (DNC) 22 0.42 24.99 26.90 
Dry road surface + Night + Tangent segment (DNT) 16 0.89 25.01 46.69 

Wet road surface + Daylight + Curve (WDC) 9 2.05 34.88 99.52 
Wet road surface + Daylight + Tangent segment (WDT) 4 1.25 11.00 33.94 

Wet road surface + Night + Curve (WNC) 11 0.83 24.24 33.92 
Wet road surface + Night + Tangent segment (WNT) 7 1.24 9.16 19.34 

CRASHES INVOLVING NO MORE THAN THREE VEHICLES WITH ONLY FEMALE DRIVERS 
Dry road surface + Daylight + Curve (DDC)     

Dry road surface + Daylight + Tangent segment (DDT) 32 0.53 10.95 15.01 
Dry road surface + Night + Curve (DNC) 13 2.52 3.20 6.90 

Dry road surface + Night + Tangent segment (DNT) 13 3.97 34.90 33.92 
Wet road surface + Daylight + Curve (WDC) 18 2.29 7.13 12.23 

Wet road surface + Daylight + Tangent segment (WDT)     
Wet road surface + Night + Curve (WNC) 13 2.18 5.39 13.54 

Wet road surface + Night + Tangent segment (WNT) 11 1.75 10.91 7.91 
CRASHES INVOLVING NO MORE THAN THREE VEHICLES WITH FEMALE+MALE DRIVERS 

Dry road surface + Daylight + Curve (DDC)     
Dry road surface + Daylight + Tangent segment (DDT)     

Dry road surface + Night + Curve (DNC) 17 3.10 6.57 16.90 
Dry road surface + Night + Tangent segment (DNT) 20 0.98 9.12 44.33 

Wet road surface + Daylight + Curve (WDC) 35 1.47 9.26 30.90 
Wet road surface + Daylight + Tangent segment (WDT) 11 3.05 11.47 25.58 

Wet road surface + Night + Curve (WNC) 17 0.97 10.18 13.75 
Wet road surface + Night + Tangent segment (WNT)     

 
A careful analysis of the database has shown that a wide variety of factors appear to influence or be associated 

with the crash dynamic. It was determined by deep examination and several statistical studies that “surface” 
(dry/wet) and “light” conditions (day/night), location of the detected crashes (tangent/circular curve element), lane 
width, horizontal curvature indicator (measurement of the curvature change rate), mean speed, gender factors and 
number of vehicles involved are significant and consistent variables to explain the effects of a crash. 

Moreover, according to the procedure preliminarily described in the introduction based on the application of 
multinomial logit for the level of severity prediction, at each homogenous road segment was associated the 
occurrence probability of three severe events in terms of the injuries number: (a) less than 3 injuries, (b) more than 2 
and less than 4 injuries and finally (c) more than 4 injuries and deaths. Therefore, only homogeneous road segments 
with highest severe degree (3) at each investigated road were selected and involved in the calibration phase of ICR 
prediction model. To maximize the reliability and effectiveness of the results in terms of Akaike information 
criterion (AIC) and Bayesian information criterion (BIC), two ICR prediction models for single-vehicle run-off-road 
crashes were calibrated: a) it was built one equation for wet road surface conditions and b) it was built one ICR 
prediction model for dry road surface conditions. 
With reference to the multinomial logit the estimation results are displayed in Table 2. In particular it must be 
observed that as expected significant attributes may be distinguished in seasons, light condition, surface conditions, 
road characteristics (i.e curve; width, tortuosity in terms of curvature indicator; vertical grade). To be more precise 
constant parameters play a role only in event two and three; road vertical grade (negative), tortuosity (positive) and 
roadway width (positive) are significant only in alternative one and two however roadway width shows the same 
magnitude whereas other attributes are higher magnitude in alternative two; the speed (positive) is significant only 
in alternative three whereas the segment length is significant in both alternative one and two (negative as expected) 
and values in terms of magnitude are quite similar; finally in terms of road condition and surface condition curve is 
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significant (positive) in alternative three whilst dry road surface is significant only in alternative two. Other relevant 
attributes refer to the light condition (night) which is significant in both alternative two and three (positive) with 
higher magnitude in alternative three. Moreover also seasons are positively significant: winter in first and second 
events with similar values, winter in all three alternatives with higher value in alternative two and similar lower 
values in alternative three. Finally, in the model are also embedded attributes related to the drivers characteristics 
such as the age which is positive and significant only in alternative two and the gender (male) which is positive only 
in alternative three. In terms of validation test all attributes are significant and the significance is shown in the 
brackets (t-test results); furthermore a more specific evaluation of the percent right was computed then a satisfying 
value of the 68% of percent right is obtained.  
 

Table 2. Estimation results of the multinomial logit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Modelling framework 

Because of crash data over-dispersion, a generalized estimating equation GEE with an additional log linkage 
equation was adopted to calibrate the ICR prediction model by involving only road homogeneous segments 
associated with high severe degrees of the occurrence probability of the event 3 as explained in the previous section.  

GEE form is like GLM, but full specification of the joint distribution are not required, and thus no 
likelihood function. GEE form is as follows in Equation 1. 

 

    T
ii xg

  

         (1) 

 
where 
 

g(μi) is the link function defined as  identity, log, logit, etc. 
xi represents a set of explanatory variables which can be discrete, continuous, or a combination 

Attributes First event Second event Third event 
Autumn Season  + 1.44  

(+1.21) 
 + 1.62  

(+ 1.14) 
 

Winter Season  + 0.775  
(+ 0.90) 

 + 1.19  
(+ 1.03) 

 + 0.78 
(+ 1.01) 

Night (Light condition)   + 0.43 
(+ 0.81) 

 + 3.29  
(+ 1.85) 

Curve    + 0.66  
(+ 0.98) 

Dry road surface   + 1.39  
(+ 2.42) 

 

Driver’s age   + 5.7  
(+0.93) 

 

Driver’s gender (male)    + 4.72 
(+ 31.05) 

Segment length  -0.13 
(-2.29) 

 -0.17  
(-2.01) 

 

Speed    + 0.07 
(+ 0.63) 

Roadway width  + 0.85 
 (+ 1.14) 

 + 0.65 
(+ 2.00) 

 

Curvature indicator  + 0.56  
(+ 0.69) 

 + 1.51  
(+ 1.56) 

 

Vertical grade  -0.34  
(-0.66) 

 -1.18  
(-1.65) 

 

Constant parameter   -3.52 
(-8.92) 

-7.91 
 (-2.52) 

Rho-square 0.690 
Adjusted rho-square: 0.610 
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In particular by using GEE, a) correlated data are modeled using the same link function and linear 
predictor setup as in the case of independent responses, b)random component is described by the 
same variance functions as in the independence case; c) covariance structure of the correlated 
responses must also be specified and modeled.  

 
Some GEE assumptions are as follows: 

 The responses are Y1,Y2, ... ,Yn are correlated or clustered; 
 Covariates can be the power terms or some other nonlinear transformations of the original 

independent variables, can have interaction terms; 
 The homogeneity of variance does not need to be satisfied; 
 Errors are correlated; 
 It uses quasi-likelhood estimation rather than maximum likelihood estimation (MLE) or ordinary least 

squares(OLS) to estimate the parameters, but at times these will coincide. 
 

The research illustrated here follows a “network” approach for the safety analysis of the investigated road 
segments: a) identification of the injury critic crash type on the studied road network with highest frequency of 
occurrence on the roadway segments during the analysis period; b) identification of “black” roadway segments for a 
specific crash type, by using a injury crash rate prediction model, where the crash injury rate is higher than on the 
rest of the roads; c) injury crash rate prediction model. 

Before moving to the calibration phase, a technique to filter anomalous injury crash rates for each of two 
subsystems of the entire dataset that returned the best results validation (I. ICRs refer to wet road surface; II. ICRs 
refer to dry road surface) was adopted. The 3σ method was used to remove anomalous injury crash rates and it 
makes it possible to check the homogeneity distribution around the mean, and the maximum deviation of frequency 
distribution is 3σ. Analyzing anomalous points it makes it possible to identify data far away mean distribution that 
should be investigated separately and by using different and proper procedure. As part of the literature review, a 
number of statistical anomaly detection approaches were developed to identify anomalous data before moving to the 
model calibration step for maximizing the goodness of fit including statistical control chart techniques (3-sigma 
outlier, moving range, SPI/CPI outlier), Grubbs, Rosner, and Dixon tests, and Tukey box plots. The ICRs values 
falling outside  ( ) are removed from two subsystems before moving to the calibration step. 
The results of the 3σ method showed that 3 values were rejected for ICRs concerning “dry road surface” scenario 
because greater than µ+3σ (equals 30), and 1 value was rejected for ICRs concerning “wet road surface” scenario 
because greater than µ+3σ (equals 50). 
A numerical code “GRCS” was performed to reflect the global mean severity of the injury crash rate at each 
substrates of the subsystem defined that reflect the seriousness of each road scenario where injury crashes happened. 
The GRCS code was assessed by analyzing the average effects on the crash outcomes related to the gender factors 
(consequences on the severity of the crashes by varying number of drivers and gender) and road crash scenario 
(dry/wet conditions of the road surface + lighting conditions + road geometric site where the crashes were happened 
+ curvature indicator CI).  
The GRCS code is shown in Table 3 and it is one of the explanatory variables of the ICR prediction model, and it is 
higher for the high injury crash rates falling within the same subsystem, and lower for those with lower injury crash 
rates. The values of the “SLEH” were set for each substrate as follows: 

 calculating for each substrate i-th of the subsystem j-th the mean injury crash rate (ICRi,j) over the period of the 
study 

 order each of twelve substrates, belonging to each of two subsystems, in increasing the mean value of injury 
crash rate (ICRi,j); 

 identification for each subsystem j-th, the highest mean injury crash rate (ICRmax,j); 
 GRCS code assignment for each i-th substrate in the j-th subsystem with code= nj for the i-th substrate in the j-th 

subsystem with highest mean injury crash rate, and for all those remaining, a value CGRCS_i = Eq. (2) is as 
follows: 

..3 devstdmean    3
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     Table 3. GRCS code determinations according to gender drivers and road crash scenarios  

   only male drivers only female 
drivers 

male+female 
drivers 

Subsystem Substrates CI range Code GRCS Code GRCS Code GRCS 

Wet road surface 

Daylight 
+ Curve (WDC) 

1 12 4.32 5.80 
1<CI<2 10.05 4.90 6.00 
2 < CI ≤ 3 8.01 5.35 6.12 

Daylight 
+ Tangent segment 

(WDT) 

1 5.90  7.90 
1<CI<2 5.01  6.80 
2 < CI ≤ 3 4.23  5.30 

Night + Curve 
(WNC) 

1 10 3.52 5.55 
1<CI<2 8.2 4.00 4.20 
2 < CI ≤ 3 7.52 4.19 3.20 

Night 
+ Tangent segment 

(WNT) 

1 3.80 4.91  
1<CI<2 3.10 4.20  
2 < CI ≤ 3 2.70 3.78  

      

Dry road surface 

Daylight 
+ Curve (DDC) 

1 5.20   
1<CI<2 4.89   
2 < CI ≤ 3 4.38   

Daylight 
+ Tangent segment 

(DDT) 

1 2.01 4.82  
1<CI<2 1.87 4.25  
2 < CI ≤ 3 1.74 3.96  

Night 
+ Curve (DNC) 

1 9.56 1.56 2.64 
1<CI<2 7.58 1.13 2.53 
2 < CI ≤ 3 6.82 1.03 2.01 

Night + Tangent 
segment (DNT) 

1 10.89 12 5.16 
1<CI<2 7.86 11.75 4.78 
2 < CI ≤ 3 7.04 10.79 4.03 

 
Akaike information criterion (AIC) and Bayesian information criterion (BIC) were mainly used to check the 

reliability of the model among many equations come out from several iterations. The preferred model was the one 
with the minimum AIC value. Hence AIC not only rewards goodness of fit, but also it includes a penalty that is an 
increasing function of the number of estimated parameters. This penalty discourages over fitting; generally, model 
selection performance improved as sample sizes increased. The ability of AIC to select a true model rapidly 
increases with the sample size and with the decrease of the standard deviation of the sample size. Under unstable 
conditions such as small sample and large noise levels AIC outperforms BIC. The choice of the model that best fits 
the data is based on the AIC available values’ comparison in small/medium samples as well as in the present study 
since the crashes are rare events, whilst on the BIC values in larger samples with high noise. 

In addition to these criteria, other goodness-of-fit measures for GEE models were used: p-value to test 
significance of the regression coefficients (only coefficients with p < 0.05 were kept in the models), deviance, 
Pearson dispersion, Wald and Pearson χ2 test. 

4. Numerical results 

GEE was adopted to calibrate ICR prediction models (see Equations 3 and 4) for each of two subsystems 
shown in the Table 3 for maximizing the effectiveness of the predicted values, reducing the residuals between 
observed and predicted ICR determinations (number of injury crashes per year per 108vehicles/km on the 
homogeneous road segment). 

The AIC value for Equation 3 was 6.10, and BIC was 256.30. The goodness-of-fit measures of the final model 
were deviance 0.02 and Pearson dispersion 0.08,while AIC value for Equation 4 was 11.32, and BIC was 105.22. 
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The goodness-of-fit measures of the final model were deviance 0.04 and Pearson dispersion 0.00054. It should be 
remembered that Equs.2 and 3 do not apply to areas near the intersections that require ad hoc models. 

 MSGRCSMW
surfaceroaddry eICR  52.029.031.0

__            (3) 

 MSGRCSMW
surfaceroadwet eICR  09.012.010.0

__              (4) 

where 

 MW is the mean width of the travel lanes plus shoulders, in m; 
 MS is the mean speed at each analyzed homogeneous roadway segment, in km/h; 
 GRCS is available in the Table 2 and it is a factor that reflects human factors and crash road scenario. 

Each explicative variable inserted into the models has a different effect on predicting the injury crash rate, as may be 
observed from the value of the coefficient and the algebraic sign. The only variable always negatively correlated to 
the ICR dependent variable is the mean width of the travel lanes. The equations 3 and 4 are to apply independently 
one by one on all investigated road homogeneous segments. Subsequently, different solutions can be considered: a) 
to sum all results derived from the application of the performed ICR prediction models for different infrastructure 
and environmental conditions for studying the global safety state on the whole road network; b) to study the crash 
injury rates for specific crash types under definite “Light” (day/night) and road “Surface” (dry/wet) conditions, 
gender/number of drivers, mean speed and roadway width, curvature indicator, by using definite equations 3 and 4. 
Equations 3 and 4 are an essential tool in assessing the best solution of road safety. The number of possible 
strategies is equal to the number of potential combination of the explanatory variables. Countermeasures for 
reducing injury crash rates can be suggested including awareness campaigns and real road structural operations. 
Awareness campaigns include direct actions on the population, such as training, pamphlets, and safety events 
tailored to the specific driver safety issues identified by age and gender. Specific awareness campaigns for male 
drivers, for example, can be implemented if critical geometric, environmental, functional circumstances are reflected 
in a higher GRCS code as shown in Table 3. For a critical scenario that involves females only (see Table 3), then 
specific strategies can be defined; such as training or posters targeted which emphasize the factors on the road that 
influence crashes and encourage a safe, prudent and attentive driving style. Disciplinary actions for unsafe driving 
can vary depending on whether a certain critical crash scenario is most frequently caused by male or female only 
drivers. Safe driving campaigns can be tailored to the specific needs of target gender depending on worst 
infrastructure features (road surface/light) that can cause high ICR and on which it should be worked since they have 
a greater impact for emphasizing hazard road factors during the campaign. 

5. Conclusions and future perspectives 

The objectives of this research are to calibrate two Injury crash rate prediction models to calculate the expected 
injury crash frequency over traffic exposure (injury crash rate) using a gender/number-of-drivers analysis of those 
involved in injury crashes on two-lane rural roads in the Southern Italy, infrastructure features and crash type 
analysis. Acceptable countermeasures can be suggested for road safety targets as structural operations and actions on 
the community with targeted awareness campaigns for safer driving that highlight major risk factors by gender and 
age. The research study confirmed that a frequent injury crash that may be due to road geometric failures is also 
strongly related to human factors such as degree of comfort, knowledge of the environment, and a driver's ability to 
perceive the coming road alignment. Knowing the critical crash (injury crashes with highest frequency of occurrence 
on a homogeneous segment during the analysis period) it is possible to identify accurate and precise 
countermeasures for those crash dynamics. So there would seem to be no need to sum all the crash types on the 
studied homogeneous segment during an examined period (frontal/side-head-on collisions or single-vehicle run-off-
road crash or rear-end collisions) as the crashes are stochastically independent events: it should be enough to 
identify the critical injury crash type with the highest crash frequency on the investigated road network and to study 
an accurate safety performance function that reflects all the features when the crash happened in order to identify 
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detailed countermeasures.  
Future developments will be carried out for improving the effectiveness of injury crash rates prediction model as 

follows: a) assessment of the difference between the after and before proportions of the injury crash rates at each 
treatment site for a specific target collision type; b) assessment of the average difference between after and before 
proportions over all n treatment sites; c) assessment of the statistical significance of the average shift in proportion 
of the target collision type; d) calibrating injury crash rates prediction models for others crash types; e) validating 
procedures. The validation procedure focuses on residuals analysis; the residual is the difference between 
observed and predicted ICR to be assessed on rural road network out of the calibration step but reflecting the 
features of the first road network used. Several parameter evaluations can be considered as follows for 
analyzing the residuals values that’s an essential tool to identify where the predictive models may miss the 
mark, over- or underestimating the real predicted ICR: a. CUmulative squared REsiduals to check the 
absence of vertical jumps called “outliers”; b) Mean Absolute Deviation; c) Mean Square Error. 
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