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Abstract. A classical n-firm oligopoly is considered first with linear demand
and cost functions which has a unique equilibrium. We then assume that the

output levels of the firms are bounded in a sense that they are unwilling to make

small changes, the output levels are bounded from above, and if the optimal
output level is very small then the firms quit producing, which are realistic

assumptions in real economies. In the first part of the paper, the best responses

of the firms are determined and the existence of infinitely many equilibria is
verified. The second part of the paper examines the global dynamics of the

duopoly version of the game. In particular we study the stability of the system,

the bifurcations which can occur and the basins of attraction of the existing
attracting sets, as a function of the speed of adjustment parameter.

1. Introduction. Assume n firms produce the same product or offer identical ser-

vice to a homogeneous market. Let xk denote the output of firm k, s =
n∑
k=1

xk the

output of the industry. If p(s) is the inverse demand function and Ck(xk) is the
production cost of firm k, then its profit is given as

Πk = xkp(s)− Ck(xk) (1)

In this way a n-person game is defined, where the firms are the players, the set of
non-negative real numbers is the strategy set of each player, and the payoff of player
k is given by equation (1). This game is one of the most frequently studied models in
mathematical economics. A comprehensive summary of the earliest results is given
in [16], their multiproduct generalization with case studies are discussed in [17].
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The studied models were mainly linear making equilibrium and stability analysis
relatively simple. The attention recently turned to the analysis of nonlinear models
due to the drastically improved computational power. The authors of [3] offer a
review of the most recent development in this area.

In this paper, we first consider the baseline Cournot model with no output ad-
justment constraints (called model I), in which case there is a unique equilibrium.
Next, we consider the case (called model II) when it is difficult (costly) for firms to
make output adjustments. Thus, we introduce the additional assumption that the
firms are not willing to make very small output adjustments, since the small profit
increase is insufficient to offset all required fixed adjustment costs in the production
process such as difficulties in modifying input contracts or in coordination between
divisions within a firm. This “stickiness” in outputs is analogous to the literature
on “sticky prices” ([9], [22]) whereas the sticky price is reflected in the speed of
adjustment parameter and ours is reflected in the modified best response function.
We further assume that the amount of output in each time period is bounded from
above due to limited resources, such as physical capacity of the plant, so the output
adjustments are also bounded from above. It’s also assumed that firms are not
willing to produce at a very low output level to avoid fixed operation and mainte-
nance costs. These additional assumptions result in nonlinear, discontinuous best
response functions and infinitely many steady states of the dynamic system.

We investigate in particular the dynamics in the duopoly case. We are partic-
ularly interested in the attractivity of the fixed point meaning that the trajectory
converge to that fixed point. The interesting dynamics occur when the set of fixed
points is no longer attracting, at this point, 2-cycles are the only possible attrac-
tors; in particular, at least one periodic point (or both) must take on the values
introduced in the constrained model II.

The dynamics of model II are particularly interesting from a mathematical point
of view as well. Indeed, the model is described by a discontinuous two-dimensional
piecewise linear map, with several borders crossing which the system changes its
definition, although limited to a rectangular absorbing region of the production
phase plane (x1, x2). The dynamics associated with piecewise smooth systems is a
relatively new research area, and several papers have been dedicated to this subject
in the last decade ([27], [7]). This growing interest in nonsmooth dynamics is
from both the new theoretical problems with constraints and the applied fields.
In fact, many models are described by constrained functions, leading to piecewise
smooth systems, continuous or discontinuous. We recall several oligopoly models
with different kinds of constraints considered in the books [19] and [3], nonsmooth
economic models in [6], [18], [10], [24], financial market modeling in [12], [25], [26],
Shelling segregations models in [20], [21], and modeling of multiple-choice in [4],
[11], [5].

Model II considered in the present paper is characterized by several constraints,
leading to several different partitions of the phase plane in which the system changes
definition. Moreover, the definitions in some regions are degenerate, as mapped into
points or segments of straight lines. When the existing 2−cycle has a periodic point
colliding with a border of the regions, then a border collision occurs, which in our
case is always a persistent border collision, as it is simply transformed in a 2−cycle
belonging to different partitions (see [14], [15], [23]).
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The structure for the rest of this paper is as follows. Section 2 introduces the
model set-ups and Section 3 analyzes the steady state. In Section 4 we investi-
gate the dynamics of the affine duopoly model I, while Section 5 is devoted to the
piecewise linear and discontinuous model II. In particular, in subsection 5.1 the
symmetric case is fully described, while the proper argumentations are given for
the general case in subsection 5.2. Section 6 concludes.

2. Mathematical models.

2.1. The baseline Model I. Assume linear demand, p(s) = a − bs and hetero-
geneous cost functions, Ck(xk) = ckxk + dk, k = 1, ..., n. The profit of firm k is
therefore quadratic,

Πk = xk(a− bxk − bsk)− (ckxk + dk), (2)

which is a strictly concave function in xk. sk =
∑̀
6=k
x` denotes the output of the

rest of the industry from firm k ’s perspective. The profit maximizing quantity x∗k
is derived by simple differentiation,

∂Π

∂xk
= a− 2bxk − bsk − ck = 0,

leading to

x∗k =
a− ck − bsk

2b
. (3)

It is well known that there is a unique equilibrium of this static game.
The dynamic extension of this model with discrete time scales and adjustments

toward best responses can be modeled by the discrete system defined as:

xk(t+ 1) = xk(t) +Kk [x∗k(t+ 1)− xk(t)] (4)

for k = 1, 2, ..., n where Kk > 0 for any k is the speed of adjustment parameter of
firm k. The usual assumption that Kk < 1 models firms with “cautious” behavior,
however, more “aggressive” firms may select Kk > 1 counting for the continuation
of the trend in rival firm’s output levels. We also assume that the best response of
firm k in the next period, x∗k(t + 1) depends only on the aggregated output of the
rest of the industry in the current period, sk(t):

x∗k(t+ 1) =
a− ck − bsk(t)

2b
. (5)

2.2. Model II with output adjustment constraints (fixed capacity). As-
sume next that the firms do not want to make adjustment below a certain threshold
εk (“sticky output” constraint) from an initial output level, xk, and cannot produce
outputs greater than a specified (fixed) positive threshold Lk (capacity limit con-
straint), or smaller than a given small threshold, lk. That is, if the optimal output
falls below this threshold, firm will simply choose not to produce. Based on these
additional conditions, the modified best response of firm k becomes

R̃k (sk, xk) =


xk if |x∗k − xk| ≤ εk
Lk if x∗k ≥ Lk
0 if x∗k < lk
x∗k otherwise

(6)

Fig.1 illustrates this function. It can be shown that the two restrictions on
a firm’s responsiveness to rivals’ behavior imply that the firm’s reaction curve is
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Figure 1. Best response function of firm k as given in (6).

still downward sloping although it now has points of discontinuity, always in the
form of downward jumps, and is thus no longer globally linear in rivals’ output. It
follows that the resulting oligopoly game is of strategic substitutes, so that a pure-
strategy Nash equilibrium always exists as a consequence of the general properties
of submodular games that satisfy a common aggregation property, namely that each
firm’s profit function depends only on own output and on total rivals’ output (see

[13] and [1], [2]). We could develop a best response dynamic model based on R̃k,
however, there is no guarantee that the new output levels xk(t + 1) would satisfy
the constraints posed in (6). Instead we use a two step process. In the first step,
we apply the best response dynamics based on the unconstrained reaction function
(3), and then in the second step we enforce condition (6) on the computed output
levels.

Therefore, the corresponding dynamic model now has the form,

xk(t+ 1) =


xk(t) if |x̃k(t+ 1)− xk(t)| ≤ εk
Lk if x̃k(t+ 1) ≥ Lk
0 if x̃k(t+ 1) < lk

x̃k(t+ 1) otherweise

(7)

where
x̃k(t+ 1) = xk(t) +Kk [x∗k(t+ 1)− xk(t)] , k = 1, 2, ..., n. (8)

Notice that the function defined in (7) is discontinuous and nonlinear making the
equilibrium and stability analysis different with respect to the linear baseline model
I.

3. Steady states. Consider first the baseline model I defined in (4): an output
vector (x̄1, · · · , x̄n), where x̄i = xi(t+ 1) = xi(t), is a steady state if and only if for
all k,

a− ck − b
∑
` 6=k x̄`

2b
= x̄k
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implying that

x̄k =
a− ck − bs

b
. (9)

Summing up equation (9) for all k = 1, 2, ..., n, we have

s̄ =
na−

∑n
`=1 c` − nbs̄
b

that is,

s̄ =
na−

∑n
`=1 c`

(n+ 1)b
. (10)

Then from (9) and (10) we can derive the equilibrium output levels of the firms:

x̄k =
a+

∑n
`=1 c` − (n+ 1)ck

(n+ 1)b
. (11)

The attractivity analysis of the linear system in (4) will be given in the next section.
Here we only remark that in order to have a fixed point with positive coordinates,
we assume that the following condition (hn) holds:

(hn) : a > (n+ 1)ck −
n∑
`=1

c` for k = 1, 2, ..., n . (12)

Due to the additional constraints, the steady states of model II is different from
(11). An output vector (x̄1, · · · , x̄n) is a steady state of the system if and only if
for all k, ∣∣∣∣a− ck − b

∑
` 6=k x̄`

2b
− x̄k

∣∣∣∣ ≤ εk
Kk

(13)

which can be rewritten as
a− ck
b
− 2

εk
Kk
≤
∑
` 6=k

x̄` + 2x̄k ≤
a− ck
b

+ 2
εk
Kk

. (14)

Note that the steady state of model I in (11) clearly satisfies these relations which
means that the equilibrium quantities in the baseline model will always be one of
the solutions in the models with the additional constraints. There are infinitely
many steady states in model II since (14) is satisfied by a bounded polyhedron,
denoted ER (Equilibria Region, or region of fixed points) as in Figure 2 for the case
n = 2. In particular, ER belongs to the positive orthant assuming a small enough
εk and by condition (hn) in (12).

Example 1. Consider a Cournot duopoly, i.e. n = 2, then the relations in (14)
can be rewritten as

a− c1
b
− 2

ε1
K1
≤ x2 + 2x1 ≤

a− c1
b

+ 2
ε1
K1

(15)

and
a− c2
b
− 2

ε2
K2
≤ x1 + 2x2 ≤

a− c2
b

+ 2
ε2
K2

. (16)

Fig.2 illustrates the set of feasible solutions of the duopoly example. The equilib-
rium region ER is determined by the intersections of the straight lines of equations

x2 = −2x1 +
a− c1
b

+
2ε1
K1

(17)

x2 = −2x1 +
a− c1
b
− 2ε1
K1

(18)
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Figure 2. Set ER of fixed points for model II.

and

x2 = −1

2
x1 +

a− c2
2b

+
ε2
K2

(19)

x2 = −1

2
x1 +

a− c2
2b

− ε2
K2

(20)

The region ER includes the unique equilibrium, E, of the baseline model. From
(11), E = (xE1 , x

E
2 ), and {

xE1 = a+c2−2c1
3b

xE2 = a+c1−2c2
3b

(21)

Note that E belongs to the positive quadrant R2
+ as long as condition (hn) is met,

that is,

(h2) : a+ c2 − 2c1 > 0 and a+ c1 − 2c2 > 0 . (22)

In the next two sections, we consider in detail the dynamic behavior of the
duopoly models I and II, respectively, assuming that condition (h2) in (22) holds.
We show that the system with the bounded output adjustments, due to the con-
straints of the model, is in some sense more stable than the baseline model. The
intuition behind this observation is that despite the stability condition of E and of
ER is the same in both models, model II has bounded dynamics even when ER is
not attracting.

4. Stability analysis and dynamics of Model I. Let us explicitly rewrite the
best response dynamics for n = 2: a point (x1, x2) is mapped into (x′1, x

′
2) by{

x′1 = f1 (x1, x2) = (1−K1)x1 − K1

2 x2 + a−c1
2b K1

x′2 = f2 (x1, x2) = (1−K2)x2 − K2

2 x1 + a−c2
2b K2

(23)
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which is a linear, or more precisely, an affine model. We can refer to it as a linear
model, following the common usage in dynamical systems, as it is topologically
conjugate with a linear model after a change of variable setting the fixed point of
(23) into the origin. Its fixed point, E = (xE1 , x

E
2 ), has been given explicitly in (21).

Notice that its position in the phase plane (x1, x2) does not depend on K1 and
K2 while the stability of the equilibrium E clearly depends on K1 and K2. From
the Jacobian determinant of the linear map in (23), we find that the characteristic
polynomial is given by

P (λ) = λ2 − trλ+D (24)

where

tr = 2− (K1 +K2) (25)

D = 1− (K1 +K2) +
3

4
K1K2.

The sufficient stability conditions of E are:

P (1) = 1− tr +D =
3

4
K1K2 > 0 (26)

P (−1) = 1 + tr +D = 4− 2(K1 +K2) +
3

4
K1K2 > 0

D < 1 :
3

4
K1K2 < (K1 +K2)

While P (1) > 0 is always satisfied, condition P (−1) > 0 is satisfied iff

1. K1 <
8
3 and K2 <

16−8K1

8−3K1

2. K1 >
8
3 and K2 >

16−8K1

8−3K1
.

Meanwhile, condition D < 1 is satisfied iff

1. K1 <
4
3 and K2 > 0

2. K1 >
4
3 and K2 <

4K1

3K1−4 .

These conditions can be summarized in Fig.3. We denote by S the stability
region of the fixed point E, which is bounded by an arc of hyperbola (denoted F
in Fig.3). At the bifurcation curve F of equation K2 = 16−8K1

8−3K1
one eigenvalue is

equal to −1.
For values of (K1,K2) outside of the stability region S, the fixed point is either

a saddle or a repelling node. Recall that in a linear model when the equilibrium is
a repelling node then all the trajectories, apart from the fixed point, are divergent;
when the equilibrium is a saddle, all the trajectories are divergent except for the
fixed point and its stable set, which is the eigenvector associated with the stable
eigenvalue. We now determine the eigenvalues and eigenvectors of the linear system,
model I, which will also be useful for the dynamic analysis of model II. In general,
given a 2x2 Jacobian matrix

J =

[
J11 J12
J21 J22

]
with J12 6= 0, J21 6= 0 and real eigenvalues, we can find the eigenvalues, λ±, and
the eigenvectors, e±, with slopes m± by solving the system,[

J11 J12
J21 J22

] [
1
m±

]
= λ±

[
1
m±

]
,
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Figure 3. Stability region of model I in the parameter plane
(K1,K2) in yellow. In (b) the enlargement of (a) is shown.

or, equivalently, {
J11 +m±J12 = λ±

J21 +m±J22 = λ±m±
,

so to find

m± =
J22 − J11 ±

√
(J22 − J11)2 + 4J12J21

2J12
(27)

λ± = J11 +m±J12.

For the specific duopoly model, by substituting J11 = 1 −K1, J12 = −K1

2 , J21 =

−K2

2 and J22 = 1−K2, we obtain:

m± =
K2 −K1 ∓

√
(K2 −K1)2 +K2K1

K1
(28)

λ± = 1− K2 +K1

2
±
√

(K2 −K1)2 +K2K1

2
.

It can be seen that

m+ =
(K2 −K1)−

√
(K2 −K1)2 +K2K1

K1
< 0,

while

m− =
(K2 −K1) +

√
(K2 −K1)2 +K2K1

K1
> 0.

The eigenvalue λ− = 1−K2+K1

2 −
√

(K2−K1)2+K2K1

2 becomes unstable when crossing

the value λ− = −1 and the bifurcation occurrs for K2 = 16−8K1

8−3K1
. If K1 > 2, the

system is unstable regardless of the value of K2.
If K1 < 2 , the system is stable only if K2 is small enough, i.e. when the point

(K1,K2) belongs to region S (the yellow region in Fig.3). If K2 is large enough, i.e.
(K1,K2) is outside region S, then the fixed point E is a saddle since the eigenvalue

λ+ = 1− K2+K1

2 +

√
(K2−K1)2+K2K1

2 never bifurcates.
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For K1 > 2, λ+ also becomes negative and unstable when crossing the value
λ+ = −1 for K2 = 16−8K1

8−3K1
. This occurs on the right side of the vertical asymptote,

that is, on the right branch of the hyperbola in Fig.3a. For (K1,K2) in the gray
region in Fig.3a, both eigenvalues are negative with λ± < −1, and E is therefore a
repelling node.

In the special case of equal speed of adjustments K = K1 = K2, the eigenvectors
e± have constant slopes m±, as in fact we have:

m+ = −1 (associated with the eigenvalue λ+ = 1− K

2
)

m− = +1 (associated with the eigenvalue λ− = 1− 3K

2
)

The fixed point E is globally attracting if K < 4
3 . At K = 4

3 (see the point Q in the

enlargement of Fig.3b), one eigenvalue (λ−) becomes −1. For K > 4
3 the eigenvalues

are λ± < −1, and E is a repelling node.

5. Stability analysis and dynamics of Model II. In the duopolistic competi-
tion, a point (x1, x2) is mapped by model II into (x′1, x

′
2) = T (x1, x2) where

x′1 =


x1 if |x̃1 − x1| ≤ ε1
L1 if x̃1 ≥ L1

0 if x̃1 < l1
x̃1 otherwise

(29)

x′2 =


x2 if |x̃2 − x2| ≤ ε2
L2 if x̃2 ≥ L2

0 if x̃2 < l2
x̃2 otherwise

(30)

and {
x̃1 = f1 (x1, x2) = (1−K1)x1 − K1

2 x2 + a−c1
2b K1

x̃2 = f2 (x1, x2) = (1−K2)x2 − K2

2 x1 + a−c2
2b K2

(31)

We can rewrite the piecewise linear map more explicitly as follows:

x′1 =


x1 if

∣∣a−c1−bx2

2b − x1
∣∣ ≤ ε1

K1

L1 if x̃1 ≥ L1

0 if x̃1 < l1
x̃1 if l1 ≤ x̃1 < L1 and |x̃1 − x1| > ε1

(32)

x′2 =


x2 if

∣∣a−c2−bx1

2b − x2
∣∣ ≤ ε2

K2

L2 if x̃2 ≥ L2

0 if x̃2 < l2
x̃2 if l2 ≤ x̃2 < L2 and |x̃2 − x2| > ε2

(33)

As shown in the previous section there is no unique fixed point but instead a whole
region ER of fixed points, which includes the equilibrium E of the baseline model.
By its definition, the map takes on different values depending on the position of
a point (x1, x2) in the phase plane. We can thus subdivide the phase plane into
regions Rj j = 1, 2, ..., in each of which the map takes different definitions. These
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regions Rj are bounded by segments of the straight lines satisfying the following
equations:

(ra) : x̃1 = L1 (34)

(rb) : x̃1 = l1

(rc) : x̃2 = L2

(rd) : x̃2 = l2

that is, in explicit form:

(ra) : (1−K1)x1 −
K1

2
x2 +K1(

a− c1
2b

) = L1 (35)

(rb) : (1−K1)x1 −
K1

2
x2 +K1(

a− c1
2b

) = l1

(rc) : (1−K2)x2 −
K2

2
x1 +K2(

a− c2
2b

) = L2

(rd) : (1−K2)x2 −
K2

2
x1 +K2(

a− c2
2b

) = l2

Let us denote R1 the region bounded by segments of all the four lines, in which the

map is defined as in the linear model I except for the region ER of fixed points.
Consider the regions of interests which are defined as1

R1 = {(x1, x2) |l1 < x̃1 ≤ L1 and l2 < x̃2 ≤ L2}
R2 = {(x1, x2) |l1 < x̃1 ≤ L1 and x̃2 < l2}
R3 = {(x1, x2) |x̃1 < l1 and l2 < x̃2 ≤ L2}
R4 = {(x1, x2) |x̃1 < l1 and x̃2 < l2}
R5 = {(x1, x2) |l1 < x̃1 ≤ L1 and x̃2 > L2}
R6 = {(x1, x2) |x̃1 > L1 and x̃2 > L2}
R7 = {(x1, x2) |x̃1 > L1 and l2 < x̃2 ≤ L2} .

(36)

The map in each region is defined as

(x1, x2) ∈ R1\ER : (x′1, x
′
2) = (x̃1, x̃2) = (f1 (x1, x2) , f2 (x1, x2))

(x1, x2) ∈ R2 : (x′1, x
′
2) = (x̃1, 0) = (f1 (x1, x2) , 0)

(x1, x2) ∈ R3 : (x′1, x
′
2) = (0, x̃2) = (0, f2 (x1, x2))

(x1, x2) ∈ R4 : (x′1, x
′
2) = (0, 0)

(x1, x2) ∈ R5 : (x′1, x
′
2) = (x̃1, L2) = (f1 (x1, x2) , L2)

(x1, x2) ∈ R6 : (x′1, x
′
2) = (L1, L2)

(x1, x2) ∈ R7 : (x′1, x
′
2) = (L1, x̃2) = (L1, f2 (x1, x2)).

(37)

From the definition of the map, the rectangle

D = [0, L1]× [0, L2] (38)

is absorbing, as it follows immediately from (32) and (33) that any point of the
plane is mapped in D in one iteration and an orbit cannot escape from it. D is
therefore the region of interest.

In general, depending on the values of the parameters, only a few of the regions
Rj for j = 1, 2, ... may have a portion, or subregion, present in D, or Rj ∩D 6= ∅, as

1There are other possible regions. However, we focus on these seven regions since we are only
interested in the positive quadrant of the phase plane, R2

+.
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shown in Fig.4. In Fig.4a only two regions have points in D, while in Fig.4b there
are four regions.

Figure 4. Regions of the phase plane, at the parameter values
L1 = L2 = 9, l1 = l2 = .01, ε1 = ε2 = 0.1, c1 = c2 = 0.2, a = 10,
b = 1, and K1 = 0.9, K2 = 1.3 in (a), K1 = 1.2, K2 = 1.5 in (b).
Inside region R1 segments of the 4 lines determining region of fixed
points ER are also shown, together with the eigenvectors of the
fixed point E inside ER.

Since we assume ε1 and ε2 are small enough, ER is internal to the positive
quadrant and in the R1 region. Therefore, the fixed points are surrounded by a
region where the mapping is the same as in the baseline model. Fig.4 also shows the
segments which are intersecting to give the region ER of fixed points (and E ∈ ER),
and segments of the eigenvectors e+ and e− of E, which are also invariant lines for
the linear map defined in R1\ER.

A fixed point p is stable if there exist a neighborhood U1(p) and a neighborhood
U2(p), U1(p) ⊂ U2(p) such that any initial condition (i.c. for short henceforth) in
U1(p) has the trajectory inside U2(p). Meanwhile, p is attracting if it is stable and
the trajectory with any i.c. in U1(p) converges to p. It is clear that each fixed
point belonging to ER can be stable but not attracting. Since ER is surrounded by
points with the same mapping as in model I, we have that as long as the K1 and K2

belong to the stability region S, determined for model I, the neighborhoods U1(p)
and U2(p) exist for any p ∈ ER and any i.c. in U1(p) has the trajectory converging
to a point in ER. Thus ER consists of points which are stable but not attracting,
while the invariant set ER itself is an “invariant attracting set”. We therefore have
shown that the stability region of model II in the parameter space (K1,K2) is the
same as for model I, and we can state the following

Proposition 1 (local stability). Let (K1,K2) ∈ S(stability region of model I), then
the invariant set ER of model II is attracting.

In addition, similar to the fixed point E being globally stable when (K1,K2) is
in S, ER is globally attracting for the same (K1,K2) range. As remarked above,
any point of the plane is mapped in one iteration in the rectangle D in (38). Clearly
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when E is stable then all the points in R1 with a trajectory in R1 will end in ER.
When any of the regions Rj satisfying Rj ∩ D 6= ∅ exists, its points are mapped
on the borders of D and the mappings on these border points are the same as in
model I and therefore are contractions. For example, considering Fig.4a when ER
is attracting and R2 ∩ D 6= ∅. Then all the points of R2 ∩ D are mapped into the
x1−axis, on the border of D, obtaining a point (x′1, x

′
2) = (f1 (x1, x2) , 0) which can

either be in R1 or in R2 again. The contraction f1 is applied until the point enters
R1; thus ER is globally attracting. We will not provide a rigorous proof of the
global attractivity of ER when (K1,K2) ∈ S because of the many possible cases to
comment, but in all scenarios the reasoning is the same.

When the parameters K1 and K2 are outside of the stability region and E is a
saddle, the points around ER behave as in the linear map thus the stable set of
ER can be defined, and ER can declassified as an “unstable” invariant set hav-
ing the same properties of a saddle. This means that there are points (a set of
positive Lebesgue measure) in the phase plane whose trajectories ultimately end in
ER, which constitute the stable set of ER. Meanwhile there are also points in a
neighborhood of ER that diverge away from the neighborhood. Clearly when E is a
repelling node then locally all the points around ER diverge, and ER can be defined
as a locally repelling invariant set. Similarly we can explain the dynamic behavior
at the bifurcation value, when the parameters K1 and K2 are on the boundary F
of the stability region, and one eigenvalue is λ− = −1. The related eigenvector e−
leads the points in R1 to a segment of cycles of period 2 (while the other eigenvector
e+ is inside the stable set of ER).

Fig.4b shows an example where E is a saddle. In this case, the eigenvector e−
associated with the eigenvalue λ− < −1 plays an important role at the bifurcation
value (when λ− = −1). That is, when λ− = −1, the points of the eigenvector
e− belonging to R1\ER include two segments filled with 2-cycles (stable but not
attracting). In general the 2-cycle at the external side of these segments has one
point on some border, which can be either a border of the region D or a border
line rk (k ∈ {a, b, c, d}). This determines which regions will contain the attracting
2-cycle which exists after the bifurcation (when λ− < −1).

It is worth noting that the map is defined either by constant values or by linear
functions (as explicitly reported in (37)). Therefore, when the invariant set ER
is unstable, the map cannot have an attracting set in one single region, that is,
the possible attractors are obtained only by the piecewise definition of the map,
and must necessarily have points in two different regions. In our specific model
II, the system can only have 2-cycles as invariant stable sets. In addition, due to
the particular structure of the functions in (37), at least one periodic point of the
attracting 2-cycle must belong to the border of D (i.e. must include one of the
constants x2 = 0, x2 = L2, x1 = 0, x1 = L1), or both belong to the border of D.

As stated above, for λ− < −1 and λ+ > −1 (i.e. when E is a saddle)), besides an
attracting 2-cycle, there exists a set of points (of positive Lebesgue measure) which
are mapped into ER in a finite number of iterations, which is called stable set of
ER, W s(ER). Clearly, this stable set includes segments of the eigenvector e+ of E,
at least the portions in region R1, as well as all the other points in a neighborhood
of e+ belonging to the invariant curves of model I crossing ER, that is, points which
are mapped (also in model II) into ER, where they will be fixed.



DYNAMIC OLIGOPOLIES WITH ADJ. CONSTRAINTS 77

To comment on the existence of some border collision bifurcations which char-
acterize the 2-cycles when ER is unstable, we start with the symmetric case and
establish a few properties before analyzing the general case.

5.1. Model II in the symmetric case.

Property 1 (first symmetry). Let L ≡ L1 = L2, l ≡ l1 = l2, c ≡ c1 = c2 and ε ≡
ε1 = ε2. Let the speed of adjustment parameters have the values (K1,K2) = (ξ, η)
and let {(a (t) , b (t)) , t > 0} be the trajectory associated with the initial condition
(a (0) , b (0)). Then {(b (t) , a (t)) , t > 0} is the trajectory associated with the initial
condition (b (0) , a (0)) when the parameters have the values (K1,K2) = (η, ξ).

That is, via the change of variable x2 := x1 and x1 := x2 we have the same
dynamics when K1 and K2 are interchanged.

As a particular case of Property 1 we have another property when K1 = K2 (on
the diagonal of the two-dimensional parameter plane in Fig.3):

Property 2 (second symmetry). Let L ≡ L1 = L2, l ≡ l1 = l2, c ≡ c1 = c2,
ε ≡ ε1 = ε2 and K ≡ K1 = K2. Then, besides the symmetry of the trajectories as
stated in Property 1, we have that map T is invariant on the diagonal, d, of the phase
plane, and its restriction to d is a one-dimensional system x (t+ 1) = Td (x (t))
(x = x1 = x2) given in (39) and (40).

In fact, from the initial conditions x (0) = x1 (0) = x2 (0), we have x (t) =
x1 (t) = x2 (t) for any integer t > 0. The iterates are given by the one-dimensional
map x (t+ 1) = Td (x (t)) defined as follows:

Td(x) =


x if |x̃− x| ≤ ε
L if x̃ ≥ L
0 if x̃ ≤ l
x̃ otherwise

(39)

where

x̃ = f1 (x, x) = f2 (x, x) = (1− 3

2
K)x+K

a− c
2b

(40)

5.1.1. Dynamics along the diagonal d. We can immediately see that as long as
0 < K ≤ 2

3 the straight line represented by x̃ = fi (x, x) in (40) has a non-negative
slope and smaller than 1. Therefore, the mapping Td has a segment of fixed points
in

ERd = [xE − 2ε

3K
,xE +

2ε

3K
], (41)

where xE = a−c
3b is the same value occurring for the fixed point in model I, and the

segment ERd is globally attracting. For K > 2
3 the straight line x̃ = fi (x, x) has a

negative slope, and the qualitative graph of the one-dimensional map Td is shown in
Fig.5. The map Td still has the segment of fixed points ERd = [xE − 2ε

3K , x
E + 2ε

3K ].
For x > pl, where

pl =
2l

2− 3K
− K(a− c)
b(2− 3K)

=
2

3K − 2
(K

a− c
2b
− l), (42)

the map is constant and equal to 0. Based on the position of the vertical intercept,
we can further analyze two cases. One is associated with K(a−c2b ) < L; here the
production limit is not binding as shown in Fig.5a, while the second case refers to
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Figure 5. Qualitative graph of the one dimensional map Td. In
(a) when fi(0, 0) = K(a−c2b ) < L, in (b) when fi(0, 0) = K(a−c2b ) >
L.

K(a−c2b ) > L, so that the upper capacity limit constraint is binding as shown in
Fig.5b. Therefore, the mapping is constant and equal to L for 0 < x ≤ pL, where

pL =
2L

2− 3K
− K(a− c)
b(2− 3K)

=
2

3K − 2
(K

a− c
2b
− L). (43)

The dynamic behavior of the one-dimensional map Td is straightforward to ana-
lyze.

Case (i) (Attractivity). For 0 < K < 4
3 , the segment ERd of fixed points is globally

attracting - and independently of the shape of the map, that is, both for 0 < K ≤ 2
3

and for 2
3 < K < 4

3 .

At the bifurcation value K = 4
3 we can have different dynamic behaviors, leading

to two different attracting 2-cycles after the bifurcation, which can be completely
described as follows.

Case (ii) (K a−c
2b < L at K = 4

3 ). At K = 4
3 we have Td(0) = 2(a−c3b ) = 2xE < L,

and pl = 2(a−c3b ) − l < Td(0). In this case the segment (xE + ε
2 , pl] is filled with

periodic points of period 2, and it is mapped in the segment [l, xE − ε
2 ). Moreover,

from pl < Td(0) we have that at the bifurcation value the points 0− Td(0), that is
0−2(a−c3b ), belong to a 2−cycle, and it is the only one surviving after the bifurcation.

In fact, for K > 4
3 the map has a global attractor, the unique 2−cycle with periodic

points 0 and Td(0) = fi(0, 0) = K(a−c2b ). This holds as K increases as long as a

border collision bifurcation occurs (at K a−c
2b = L). When K > 2bL

a−c , the globally
attracting 2-cycle is then given by the two extrema: 0− L.

Case (iii) (K a−c
2b > L at K = 4

3 ). At K = 4
3 we have Td(0) = L < K a−c

2b . In

this case the segment (xE + ε
2 , L] is filled with periodic points of period 2, and

it is mapped in the segment [2xE − L, xE − ε
2 ). In particular, the 2−cycle on the

border having periodic points L and Td(L) = 2xE − L, is the only one which will
survive after the bifurcation. For K > 4

3 the map has a global attractor, the unique

2−cycle with periodic points L and Td(L) = fi(L,L) = 2−3K
2 L+K a−c

2b . This holds

as K increases until L = pl. Therefore, for K > 2b(L−l)
3bL−a+c , the globally attracting

2−cycle is given by the two extrema: 0− L.
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The transition case between (ii) and (iii) occurs when K a−c
2b = L at K = 4

3 ,

then at the bifurcation value K = 4
3 all the points not fixed belong to 2−cycles,

that is (xE + ε
2 , L] is mapped into [0, xE − ε

2 ), and for any K > 4
3 the attracting

2−cycle is given by the two corner points (0, 0)− (L,L).

5.1.2. Dynamics outside the diagonal d. When the initial conditions for the two
firms are not the same, we need to consider the two-dimensional map T . The
region ER of fixed points includes the segment ERd of Td on the diagonal of the
phase plane (x1, x2), inside which there is also E = (xE , xE). Recall that in this
symmetric case of equal speed of adjustments K = K1 = K2 the eigenvectors e±
have constant slopes m+ = −1 (associated with the eigenvalue λ+ = 1 − K

2 ) and

m− = +1 (associated with the eigenvalue λ− = 1− 3K
2 ), corresponding to the main

diagonal d in the phase plane, which is invariant and on which the restriction is the
one-dimensional map Td described above. The intersection point Pl between the
straight lines (rb) and (rd) is given by

Pl = (pl, pl) (44)

where pl has been defined for the one-dimensional map Td in (42), while the inter-
section point PL between the straight lines (ra) and (rc) is given by

PL = (pL, pL) (45)

where pL has been defined for the one-dimensional map Td in (43).

Case (i) (Attractivity). For 0 < K < 4
3 , the region ER of fixed points is globally

attracting, independently of the shape of the map Td on the diagonal, that is, for
both 0 < K ≤ 2

3 and 2
3 < K < 4

3 . In fact, when K < 2
3 the points Pl and PL

are external to the rectangle D so that D belongs to R1; for other ranges of K,
the points Pl or PL may be internal to the rectangle D. However, the points of D
either belongs to R1 or are mapped into R1 in one iteration. For example, Fig.6a
and Fig.8a show two examples in the different Cases (ii) and (iii). We can see that
in both examples, the regions Rj ∩ D 6= ∅ with Rj 6= R1, are mapped on borders
of D belonging to R1 leading to the global attractivity of ER.

At the bifurcation value, K = 4
3 (λ− = −1), the existing 2−cycles belong to the

main diagonal and thus are related to those determined for the map Td. For K > 4
3

and λ+ > −1 the main diagonal is attracting, apart from ERd, and the existing
attractor is the 2−cycle on the main diagonal determined for the one-dimensional
map Td.

Case (ii) (K a−c
2b < L at K = 4

3 ). The intersection point between the straight lines
(rb) and (rd) is on the diagonal, given by Pl = (pl, pl) where pl has been defined in
(42) and

(fi(0, 0), fi(0, 0)) = (K
a− c

2b
,K

a− c
2b

). (46)

At the bifurcation value K = 4
3 we have (f(0, 0), f(0, 0)) = (2a−c3b , 2

a−c
3b ) = 2E, and

P = (pl, pl) = (2a−c3b − l, 2
a−c
3b − l) which is smaller than (fi(0, 0), fi(0, 0)) on the

diagonal (as (2a−c3b − l) < 2a−c3b ). Therefore the segment bounded by the points

(xE + ε
2 , x

E + ε
2 ) and P = (pl, pl) is filled with periodic points of period 2, and it is

mapped in the segment bounded by (l, l) and (xE− ε
2 , x

E− ε
2 ), and (fi(0, 0), fi(0, 0))

belongs to region R4 so that

(0, 0)− (2
a− c

3b
, 2
a− c

3b
)
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is a 2−cycle of the map belonging to the regions R1 − R4, surviving after the
bifurcation. That is, the attracting 2−cycle of the map after the bifurcation is
(0, 0)− (fi(0, 0), fi(0, 0)) :

(0, 0)− (K
a− c

2b
,K

a− c
2b

) (47)

Fig.6b shows an example of this. As discussed above, other than this attracting
cycle on the diagonal, a stable set W s(ER) consisting of points of the plane whose
trajectory ends in ER in a finite number of steps also exists (and thus W s(ER)
includes the portion of e+ in region R1).

Figure 6. Regions of the phase plane in case (ii), at the parameter
values L = 9, l = .01, ε = 0.1, c = 0.2, a = 10, b = 1, and K = 0.9
in (a), K = 1.4 in (b). Inside region R1 segments of the 4 lines
determining ER are also shown, together with the eigenvectors of
E. In (a) ER is globally attracting. In (b) the stable set W s(ER)
is shown in azure while the basin of attraction of the 2-cycle (0, 0)−
(K a−c

2b ,K
a−c
2b ) is given in red.

A border collision takes place when (0, 0) merges with PL (i.e. when pL =
0) or, equivalently, when the other periodic point reaches the extremum of D,
(K a−c

2b ,K
a−c
2b )

= (L,L). This occurs when K = 2bL
a−c , after which the 2−cycle is given by the

corner points (0, 0) − (L,L), see an example in Fig.7a. The stable set W s(ER) is
larger than ER as long as E is a saddle. At K = 4 the second eigenvalue bifurcates,
λ+ = −1, so that for K > 4 the invariant set ER becomes repelling, and all the
other points converge to the 2−cycle (0, 0)− (L,L), see an example in Fig.7b. The
attracting 2−cycle always attracts all the points not belonging to W s(ER) or ER.

Case (iii) (K a−c
2b > L at K = 4

3 ). At the bifurcation value K = 4
3 the segment on

the diagonal bounded by (xE + ε
2 , x

E + ε
2 ) and (L,L) is filled with periodic points

of period 2, and it is mapped to the segment bounded by (2xE − L, 2xE − L) and
(xE − ε

2 , x
E − ε

2 ). In particular, the 2−cycle on the border having periodic points

(L,L) and T (L,L) = (2xE−L, 2xE−L) is the only one which will survive after the
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Figure 7. Parameters as in Fig.6 and K = 1.9 in (a), K = 4.1 in (b).

Figure 8. Regions of the phase plane in case (iii), at the parameter
values L = 5, l = .01, ε = 0.1, c = 0.2, a = 10, b = 1, and K = 1.2
in (a), K = 1.4 in (b). Inside region R1 segments of the 4 lines
determining ER are also shown, together with the eigenvectors of
E. In (a) ER is globally attracting. In (b) the stable set W s(ER)
is in azure while in red is the basin of attraction of the 2-cycle
(L,L)− ( 2−3K

2 L+K(a−c2b ), 2−3K2 L+K(a−c2b )).

bifurcation. For K > 4
3 the unique attractor of the map is the 2−cycle with periodic

points (L,L) and T (L,L) = (2−3K
2 L+K a−c

2b ,
2−3K

2 L+K a−c
2b ) which belongs to the

regions R1 −R6. See an example in Fig.8b, where the stable set W s(ER) is shown
in azure and the basin of the 2-cycle in red. This holds with increasing K as long as

a border collision bifurcation occurs, when (L,L) = Pl occurring for K = 2b(L−l)
3bL−a+c

after which the attracting 2−cycle is given by the corner points (0, 0) − (L,L). At
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K = 4 the transverse eigenvalue bifurcates, so that for K > 4 the invariant set ER
becomes repelling, and all the other points converge to the 2−cycle (0, 0)− (L,L).

It is simple to comment on the transition between cases (ii) and (iii), when
K a−c

2b = L at K = 4
3 . As we have already seen, at K = 4

3 all the points not fixed

on the diagonal of D belong to 2−cycles, and then, for any K > 4
3 the attracting

2−cycle is given by the two corner points (0, 0)− (L,L).
Summarizing, we have proved the following

Proposition 2 (Dynamics in the symmetric case). Let L ≡ L1 = L2, l ≡ l1 =
l2, c ≡ c1 = c2, ε ≡ ε1 = ε2 and K ≡ K1 = K2. Then

(i) For 0 < K < 4
3 , the region ER is globally attracting.

(ii) 2(a−c)
3b < L, and

(a) K = 4
3 , the segment bounded by the points (xE + ε

2 , x
E + ε

2 ) and P =

(pl, pl) = (2a−c3b − l, 2
a−c
3b − l) is filled with periodic points of period 2;

(b) 4
3 < K < 2bL

a−c , the 2-cycle (0, 0) − (K a−c
2b ,K

a−c
2b ) belongs to the regions

R1 −R4, and attracts all the points not belonging to W s(ER);
(c) 2bL

a−c ≤ K < 4, the 2-cycle (0, 0) − (L,L) belongs to the regions R6 − R4,

and attracts all the points not belonging to W s(ER).

(iii) 2(a−c)
3b > L, and

(a) K = 4
3 , the segment bounded by the points (xE + ε

2 , x
E + ε

2 ) and (L,L) is
filled with periodic points of period 2;

(b) 4
3 < K < 2b(L−l)

3bL−a+c , the 2-cycle with periodic points (L,L) and ( 2−3K
2 L +

K a−c
2b ,

2−3K
2 L+K a−c

2b ) belongs to the regions R1−R6 and attracts all the
points not belonging to W s(ER);

(c) 2b(L−l)
3bL−a+c ≤ K < 4, the 2-cycle (0, 0)−(L,L), belongs to the regions R6−R4

and attracts all the points not belonging to W s(ER).
(iv) For K > 4 the 2-cycle (0, 0) − (L,L) attracts all the points not belonging to

ER.

5.2. Model II in the general case. In the general case, the dynamics in the
phase space are not symmetric with respect to the diagonal. However, as long as
the point E of model I is attracting, the region ER appears to be globally attracting
in the general case as well.

At the bifurcation value when λ− = −1, we have segments of 2-cycles on the
eigenvector e−, belonging to region R1, and the closest border determines which
region will have the attracting 2−cycle when λ− < −1.

Let us describe, via a few examples, how the attracting 2-cycle and the related
bifurcations can be determined.

As a first example, we consider the same parameters used in Fig.4a, with K1 =
0.9, and varying K2. The bifurcation λ− = −1 occurs at K2 = 8.8

5.3 = 1.660377... and
the closest region is R2. Therefore, when λ− < −1, there will be a 2-cycle belonging
to the regions R1 − R2. As a point in R2 is mapped into a point (x∗1, 0) we can
determine the attracting 2-cycle analytically. As T (x∗1, 0) = (f1 (x∗1, 0) , f2 (x∗1, 0))
the 2−cycle must satisfy T 2 (x∗1, 0) = (x∗1, 0) and thus

x∗1 = f1(f1 (x∗1, 0) , f2 (x∗1, 0)) (48)

leading to

x∗1 =
4

8− 4K1 −K2

(
(2−K1)

a− c1
2b

− K2

2

a− c2
2b

)
. (49)
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For K2 = 1.67 an example is shown in Fig.9a. As K2 increases, the periodic point
(x∗1, 0) approaches the border (rc) and its image T (x∗1, 0) = (f1 (x∗1, 0) , f2 (x∗1, 0))
approaches the upper boundary x2 = L2. The bifurcation occurs when (x∗1, 0) ∈ (rc)
leading to

K̂2 =
4L2(2−K1)

L2 + (2−K1)(2a−c2b − a−c1
b )

. (50)

If K1 = 0.9, we have K̂2=̃2.002. For K2 > K̂2 the 2-cycle has the periodic point
(x∗1, 0) belonging to region R5 thus the attracting 2-cycle is in the regions R5 −R2

with periodic points (x∗, 0)− ((f1 (x∗, 0) , L2) where x∗ satisfies

x∗ = f1(f1 (x∗, 0) , L2) (51)

leading to

x∗ =
a− c1

2b
− L2

2(2−K1)
(52)

An example is shown in Fig.9b. This 2-cycle (x∗, 0) − ((f1 (x∗, 0) , L2) persists for

any K2 > K̂2 (as it no longer depends on K2).

Figure 9. Phase plane at the parameter values L1 = L2 = 9,
l1 = l2 = .01, ε1 = ε2 = 0.1, c1 = c2 = 0.2, a = 10, b = 1,
K1 = 0.9, and K2 = 1.67 in (a), K2 = 2.1 in (b).

For a different value of K1, the attracting 2-cycle undergoes two border collision
bifurcations as K2 increases. As a second example we consider the same parameters
used in Fig.4b, with K1 = 1.2 and varying K2. The bifurcation λ− = −1 occurs at
K2 = 1.6

1.1 = 1.45 and leads to a 2-cycle belonging to the regions R1 − R2 given by
(x∗1, 0) ∈ R1 and T (x∗1, 0) = (f1 (x∗1, 0) , f2 (x∗1, 0)) ∈ R2 where x∗1 has been defined
in (49) (see Fig.10a). Now at this bifurcation, four regions belong to the rectangle
D, as shown in Fig.10a.

The attracting 2-cycle undergoes another border collision when T (x∗1, 0) belongs
to the straight line (rb) which also corresponds to the collision (x∗1, 0) = (0, 0) and
occurs for

K̃2 = 2(2−K1)
a− c1
a− c2

(53)
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Figure 10. Phase plane at the parameter values L1 = L2 = 9,
l1 = l2 = .01, ε1 = ε2 = 0.1, c1 = c2 = 0.2, a = 10, b = 1,
K1 = 1.2, and K2 = 1.5 in (a), K2 = 1.6 in (b), K2 = 1.836735 in
(c).

Figure 11. Phase plane at the parameter values L1 = L2 = 9,
l1 = l2 = .01, ε1 = ε2 = 0.1, c1 = 0.2, c2 = 1, a = 10, b = 1, and
K1 = 0.9, K2 = 1.7 in (a), K1 = 1.7, K2 = 0.9 in (b).

For K1 = 1.2, we find that K̃2 = 1.6 (see Fig.10b). At this collision, and after, the
attracting 2-cycle belonging to the regions R1 −R4 is given by

(0, 0)− (K1
a− c1

2b
,K2

a− c2
2b

). (54)

By increasing K2, the periodic point (K1
a−c1
2b ,K2

a−c2
2b ) approaches the upper line

x2 = L2 and the contact occurs when (0, 0) ∈ (rc) leading to K2(a−c22b ) = L2 that is

K2 =
2bL2

a− c2
. (55)
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In our example, we get K2 = 1.83673... (see Fig.10c). For any K2 > K2 the
attracting 2-cycle belongs to the regions R5 −R4 and is given by

(0, 0)− (K1
a− c1

2b
, L2) (56)

We notice that the two examples considered above for different values of (K1,K2)
= (ξ, η) are in the case described in Property 1 (as L1 = L2, l1 = l2, c1 = c2
and ε1 = ε2), so using examples with (K1,K2) = (η, ξ) we get cycles which are
symmetric with respect to the diagonal (x1 = x2) of the phase plane. For example,
for (K1,K2) = (0.9, 1.67) the attracting 2−cycle is (1.90256, 0)−(4.60026, 6.59436),
so that for (K1,K2) = (1.67, 0.9) the attracting 2-cycle is (0, 1.90256) − (6.59436,
4.60026).

However, in the asymmetric case this is clearly no longer true (For example, see
Fig.11), but the local stability is not affected (as it depends only on K1 and K2

and the eigenvalues are unchanged unlike the eigenvectors). The reasoning on the
bifurcations occurring to the periodic points of the attracting 2−cycle as a function
of the parameters is similar to the one performed in the previous examples.

As remarked above, when the invariant set ER is not attracting the 2−cycle
must have the two periodic points in two different regions, at least one periodic
point must belong to the border of the region D (with one constant xi = Li or
xi = 0) and whenever one of the periodic points crosses a border defined by the
lines (rk) the 2−cycle changes its definition. The number of lines which can be
crossed depends on the regions Rj with a portion in the absorbing rectangle D.
Ultimately the 2−cycle must have both two periodic points on the border of the
region D.

6. Conclusion. In this paper we have introduced a realistic assumption into a
well-known oligopoly model, as defined in the baseline model. If the demand and
all cost functions are linear, then the additional assumptions result in the loss
of the linearity and the continuity of the dynamic model and the uniqueness of
the steady state. Although in model II there are infinitely many steady states,
defining a whole region ER, the invariant set ER is attracting under the same
conditions of the baseline model. Clearly model II restricts and bounds the possible
output values; therefore leads to a different behavior when the invariant region
ER is not attracting. In the symmetric case all existing attracting 2−cycles are
fully determined in Section 4.2. In the general case there are many possibilities,
depending on the parameters. However, we have shown how to detect analytically
the periodic points of the attracting 2−cycle, having at least one periodic point (or
both) on the borders of the absorbing rectangle D.

The results show that with the added nonlinear constraints, we lost the ability
to predict future outputs precisely at the unique steady state; however, for a mod-
erately small speeds of adjustment K1 and K2 we can still expect the outputs in
the long run to be in a steady state set, ER. When the speeds of adjustment are
outside the stability region, the dynamics of model II become two-cyclical. For the
symmetric duopoly case, we find that firms will either be both producing nothing or
both producing at the amount that is equal to the monopoly output (in the static
model) multiplied by the speed of adjustment or at the capacity limit. This result
may first seem surprising but actually quite intuitive since firms are best responding
to the rival firm’s output level in the previous period. A firm will choose to produce
at the monopoly level, while bounded by the capacity limit and adjusted by K,
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in the current period when the rival firm produced nothing in the last period. A
similar result holds for the asymmetric case.

Without adaptive learning in the speed of adjustment parameters (as assumed
in this paper), it may be best for the government to ensure that a small enough K
is used by the firms to avoid the outcome swinging between nothing is produced or
a total amount greater than the competitive equilibrium is produced.

For the future study, we plan to examine the dynamics of the system with a
flexible capacity limit constraints, as a percentage of the current output levels.
Interestingly, the dynamics and bifurcations become much richer, leading also to
chaotic behaviors.
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