s2ipt: A Lightweight Network Intrusion Detection/Prevention System

Keywords:

Abstract:

based on IPtables

Gerardo Canfora', Antonio Pirozzi'? and Aaron Visaggio'
| Department of Engineering, University of Sannio, Via Traiano, 3, 82100 Benevento BN, Italy
2KOINE srl, Via Porta Rufina 13, Benvento 82100, Italy

Intrusion Detection System, Intrusion Prevention System, IPtables, Snort, NIDS, NIPS, Application-level
Control Flow, Netfilter.

Since each organization has its own security culture and background, there is not an out-of-the-box solution
that fits all the possible security requirements. There may be some contexts in which it is necessary to monitor
and prevent certain application-level attacks with less impact on pre-existent configuration. For example, there
may be some constraints on processing resources of some embedded devices. Starting from this consideration,
we developed s2ipt, a python-powered tool which aims to implement a lightweight Netfilter-based network
intrusion detection and prevention system (IDS/IPS) by translating Snort community rules into iptables rules-
set. s2ipt utilizes the netfilter string matching module to detect application-level attacks. Netfilter reduces
the impact on a system, has less memory and CPU footprint, which makes it suitable to run even on low-cost
devices than a solution like Snort. s2ipt allows iptables to detect application layer attacks in a transparent way,

in fact it only adds new application layer ruleset leaving the existing ones unchanged.

1 INTRODUCTION

One of the most powerful and widespread firewall,
already integrated within Linux machine, is iptables
(ipt,). Iptables is a stateful packet filter firewall em-
bedded in the most UNIX installations, and is based
on Netfilter module; however it lacks the functional-
ity of inspecting the Application layer data. Another
network defence technology is Snort (sno,), a widely
deployed network intrusion detection and prevention
system (IDS/IPS). The two technologies are comple-
mentary since iptables can be adopted to a lower level
than Snort, while Snort can perform filtering at appli-
cation level. For this reason the two technologies can
be integrated, obtaining the following benefits: ipta-
bles could inherit the rich set of rules from Snort, and,
differently from Snort, can be adopted as a firewall on
thin devices like wearable devices and Arduino con-
trollers. Moreover, as authors in (Zhong, 2016) claim,
to elicit attack path patterns by modeling and mining
the traces of analysts’ data triage operations is feasi-
ble and necessary, thus technologies that capture such
information must be developed and adopted by or-
ganizations. This paper presents a tool called s2itp
which aims to adapt Snort ruleset to iptables, which
is made possible by the string matching support of

462

Canfora, G., Pirozzi, A. and Visaggio, A.
s2ipt: A Lightweight Network Intrusion Detection/Prevention System based on IPtables.
DOI: 10.5220/0006431904620467

Netfilter which adds content inspection capabilities to
iptables.

s2ipt allows iptables to detect application layer at-
tacks in a transparent way, in fact it only adds a new
application layer ruleset leaving the existing ones un-
changed. Since this tool produces a low system foot-
print, it is suitable also for low-powered devices. s2ipt
combines logging, network based intrusion detection
and prevention system within a packet filter firewall.

The usage of Snort rules in scenarios with poor
computational resources is scarcely discussed in liter-
ature: at the best knowledge of the authors only Ar-
ney and Wang (Arney and Wang, 2016) investigate
the relationship between the number of enabled rules
maintained by Snort and the amount of computing re-
sources necessary in low-powered systems as the [oT
devices. The paper proceeds as follows: section 2 il-
lustrates the solution in detail; section 3 shows a val-
idation of the tool; and, finally, section 4 draws the
conclusions.

2 SOLUTION

Establishing a correspondence between a Snort rule
and an Iptables’ one is not always possible. For this

In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 462-467

ISBN: 978-989-758-259-2

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

s2ipt: A Lightweight Network Intrusion Detection/Prevention System based on IPtables

reason s2ipt performs a “best-effort” translation, i.e.
at the best of the possibilities offered by the Iptables’
syntax. Unfortunately Snort provides for functions of
a higher level than Iptables, as well as a regular ex-
pressions engine, which are not available in Iptables.

A Snort rule is formed by a two elements-
structure: header(options), where the first part is
fixed, while the second one is variable and depends
on the options of the rule. The header includes the
following fields:

e action: indicates the action to take when the
packet specified by the rule is intercepted;

e protocol: indicates the protocol the packet is as-
sociated to (Snort supports TCP, UDP, IMCP, and
IP);

e Source IP: indicates the source IP;

e Source port. indicates the number of the source
port;

e Operator: indicates the direction of the packets
and three modes are considered: from source to
destination, and in both the directions between the
source and the destination;

e Destination IP: indicates the destination IP;

e Destination Port: indicates the number of the des-
tination port;

All the options within a Snort rule are expressed in
the form: keyword:value where keyword: represents
the type of option, and value the corresponding value.
These options can be classified into four categories:

e General: provides information about the rule
without effects on the rule’s execution;

e Payload: allows to find data within a packet’s pay-
load, and different rules of this kind can be corre-
lated to form a one only rule;

e Non-Payload: allows to look for information out-
side the payload;

o Post-detection: lets to define mechanisms to be
triggered after the rule matching;

Iptables rules can be defined by command line
within a Linux operating system with this structure:
iptables[-t(table-name)] (command) (chain-
name)\ (parameter-l) (optiono-1)\ (paramter-
n){oprtion-n) where:

e (table-name) indicates which table the rules must
be applied to;

e (command) indicates the action to perform;

e (chain-name) indicates the chain to modify, create
Of remove;

e the pairs (parameters)-{options) represents the
parameters and the corresponding values of the
options associated, which define how a packet
which triggers a rule must be handled.

The high flexibility allowed by the Iptables syntax
makes a rule’s length and complexity to significantly
vary with regards to its goal. Finally, in order to cre-
ate a valid Iptables rule, three key further parameters
must be defined:

o Packet type, which is the type of packet to be mon-
itored;

e Packet source/destination, which is the packet’s
source or destination that must be filtered;

e Target, which defines the type of action to perform
when the rule is matched.

2.1 Translating Algorithm

The approach used for the translation is based on a
“best effort” philosophy, due to the lack of a perfect
correspondence between the Snort syntax and the Ipt-
ables syntax. When the correspondence between a
Snort rule and an Iptables rule is complete, the algo-
rithm translates the rule from a syntax to the other
one. When there is not a complete correspondence,
the algorithm rephrases the semantics into the syntax
allowed by Iptables. If this attempt fails, the trans-
lation of the entire rule fails. As first step, the al-
gorithm translates the header of the Snort rule, and
than it copes with the single options. The translation
strategies adopted are the following:

e Action: although the Snort sintax supports eight
different types of action, s2ipt takes into account
only the rules with the alert.

e Protocol: in this case there is a 1:1 mapping with
the Iptables option Iptables -p protocolname
where all the protocols supported by Snort can be
made explicit;

e Source/destination IP: for specifying the IP ad-
dresses, sources and destinations, the commands
-s IPaddress and -d IPaddress are respec-
tively used. Nevertheless, the Snort syntax pro-
vides for static variables tagged as SHOME_NET
and $EXTERNAL_NET (representing the local
network and the the external network), which are
not supported by Iptables, and are not translated
by the algorithm. Snort lets specify the multiple
IP addresses, classes of IP addresses (in CIDR no-
tation) and the negation of a certain IP address.
All these options are supported by Iptables (and
thus translated by s2iptf) except for the negation
of multiple IP addresses;

463

SECRYPT 2017 - 14th International Conference on Security and Cryptography

e Source/destination port: Snort supports three dif-
ferent fields for the number of source/destination
ports. Iptables makes use of ——sport value and
-—dport value options. In this case there is not
a direct correspondence, but we adopted a trick.
Iptables allows the definition of the port num-
bers, like Snort. Additionally, Iptables lets to de-
fine an interval, separating the extremes with a
colon. For defining any port (corresponding to
any in Snort), the user must omit the port num-
ber in Iptables. Iptables allows to exclude a spe-
cific port number, as well as Snort, but for indicat-
ing a set of port numbers, Iptables requires the -m
multiport module before the commands for the
specification of the port numbers;

e Operator: there is not a correspondence for
the Snort’s direction tag in Iptables, where the
same information is represented by the concept of
chain. In the case of s2ipt, a custom chain is cre-
ated, which is referred to by the Iptables engine,
as discussed later in the paper.

Once the header is translated into a Snort rule,
the algorithm examines the options, analyzing them
singularly, trying to accomplish the translation. Even
if not all the Snort options can be translated in Ipta-
bles rules as they are not supported, the most common
ones can be mapped.

All the Snort options that s2ipt can translate into
the Iptables format are listed along with the adopted
assumptions and strategies:

e Content: allows to find a specific byte sequence
within a payload, applying the Boyer-Moore algo-
rithm. The Iptables extension that performing the
’string-matching” can be selected with the com-
mand -m string -string "string" -- algo
bm, where string is the string to search within the
payload. Snort allows the search of hexadecimal
value that can be accomplished with Iptables op-
tion -m string --hex-string;

e Uricontent: allows to handle data codified in
URLSs, transferred on HTTP. S2ipr manages this
option as well as the previous one;

e Offset: searches for a content within the payload
starting from an offset location. Iptables allows
the same option with the command --from;

e Depth: forces that the packet matching does not
overcome a certain number of bytes after the pay-
load. In Iptables this option is specified through
the command --to followed by the number of de-
sired bytes. This and the following option can be
present in more than an instance within a Snort
rule. This is not allowed by Iptables, with the

464

additional constraint tha the number of bytes in-
dicated by —-from be smaller than that indicated
by —--to. In such case, 2s2ipt sums the values of
the depth (--to) fields, considering the minimum
value of the offset (--from) field;

TTL: allows to match a packet relying on the TTL
value within the IP header. Both Snort and Ipt-
ables allow to specify a value of TTL smaller or
greater than, and equals to a certain number;

Tos: indicates the bit within the Type of Service
field in the IP header. This option is supported
by Iptables with the command -m tos --tos
value;

Flow: this Snort option allows to define a spe-
cific state of a connection: for instance the combi-
nation of from_client and established lets to an-
alyze only the packets on the client side of a
TCP connection after the three-way handshake
was completed. Iptables lets to filter the state
of a TCP connection with -m state --stat
CONNECTION_STATE command. Differently from
Snort, Iptables allows to check only five states
(INVALID, ESTABLISHED, NEW, RELATED
and UNTRACKED). For this reason we made the
decision to consider in s2ipt only the Snort rules
referring to the ESTABLISHED;

Ip_proto: resctricts the scope of rule on the basis
of the protocol field of the IP header.Iptables lets
to specify the same option with the command -p
followed by the type of the desired protocol;

Pcre: stands for Perl Compatible Regular Expres-
sion and lets Snort to apply regular expressions
of high complexity. Since Iptables does not sup-
port any kind of regular expression, for this option
the algorithm must use mainly the best-effort ap-
proach. s2ipt is able to translate only a little subset
of all the possibile variants of Snort’s pcre. The al-
gorithm can translate only those rules whose pcre
option contains constant values, as it begins the
aforementioned content. Another case that allows
the transaltion in Iptables rule is represented by
static patterns defined by numeric values.

The complete algorithm of translation includes

four main phases:

e Pre-processing: the tool carries out a preliminary

evaluation of the rules for excluding those that can
not be translated because of a missing correspon-
dence between the Snort and the Iptables sintax.
The remaining rules are gathered in two sets: one
contains the part concerning the header and the
other contains the part concerning the option;

s2ipt: A Lightweight Network Intrusion Detection/Prevention System based on IPtables

Header-

translation

Snort community
rules

Regole
Iptables

Figure 1: s2ipt. Translation process.

e Header translation: all the fields of the Snort
rule’s header are properly translated in the corre-
sponding Iptables rule(s);

e Options translation: all the options of the Snort
rule’s are properly translated in the corresponding
Iptables rule(s);

e Synthesis: the result of the translation is trans-
formed into a string used as Iptables command.

The translation process is depicted in Fig. 1
2.2 Best-effort Policy

The lack of a complete correspondance between the
Snort and Iptables sintax lead us to define a “best-
effort” policy which consists into the generation of
an Iptables rule which is similar to the corresponding
Snort rule, but that is not an exact translation. The
policy is defined in this way:

e if the Snort rule contains an action different from
alert, the rule is not translated;

o if the number of Snort options within an input rule
is greater than the number of options that s2ipft is
able to translate, the rule is considered translated
in “’best-effort”;

e if the rule contains the pcre option, and there are
patterns that can not be translated, the rule is dis-
carded, otherwise the rule is considered translated
in “’best-effort”;

o if the rule contains the negation of a range of IP
addresses as source or destination, the rule is not
translated;

o if the the rule contains a content option, it is not
translated as it is considered too generic.

Each rule is assessed against this list of controls in
order to decide if the translation is in ”best-effort”, or
not.

2.3 Coverage of Translation

In order to obtain a first assessment of the level of the
translation coverage, s2ipt was launched getting as in-
put data the complete rules-set of the Snort commu-
nity(at 06/16/2016). In particular, compared to 3419
rules taken into account, the tool is able to correctly
translate 2860 rules, ie approximately the 84%. The
best-effort approach was applied to 2268 rules (about
80%), while the remaining 592 have been translated
1:1 by the tool. Such a high percentage in the best-
effort is essentially justified by two reasons. First,
many options are not taken as part of the algorithm
translation because they did not have corresponding
options in Iptables. Furthermore, since the Iptables
syntax does not provide for the use of regular ex-
pression patterns, whenever the algorithm meets the
pcre option in a Snort rule and manages to translate
it, s2ipt makes the conservative assumption for which
the translation is done in best-effort.

Let’s see how s2ipt translates a Snort rule;
let’s consider the following rule: alert

tcp SHOME_NET any -> SEXTERNAL_NET any
(msg:"MALWARE-BACKDOOR Infector.l.x";
flow:established, to_client; content:
"WHATISIT"; metadata:ruleset community;
reference:nessus,11157; classtype:
misc-activity; sid:117; rev:16;)

This rule tracks all the packets that refer to an
established TCP connection headed to the client ap-
plication, whose content includes the "WHATISIT”
string at application layer. a packet having these char-
acteristics will be written in the log with the tag:
"MALWARE-BACKDOOR Infector.1.x””. Such a
rule does not contain any option that is not supported
by Iptables, thus it will be straight translated by s2ipt.
In particular, the translation process will analyze the
header content as first, then it will scan all the options
of the rule. The result of the translation will be:

465

SECRYPT 2017 - 14th International Conference on Security and Cryptography

iptables -I CUSTOM_CHAIN 1 i IFACE p
tcp m state --state ESTABLISHED m string
--string "WHATISIT" --algo bm -m comment
—--comment "MALWARE-BACKDOOR Infector.l.x"
-j LOG --log-prefix [IDS-117]

where, as it is easy to observe, the options regard-
ing metadata have been ignored (metadata, refer-
ence, classtype, sid and rev), whereas the remain-
ing have been taken as they are. In particular, CUS-
TOM_CHAIN indicates a chain where the rule (IDS
or IPS) must be added and IFACE represents the in-
terested interface (ethO, wlan0O, and others).

3 VALIDATION

The goal of the validation phase is to evaluate the ef-
fectiveness of s2ipt and the accuracy of the produced
iptables rules. Since these rules are generated from
semantically equivalent Snort rules, the validation has
been focused on the analysis of the observed behavior
of the iptables firewall (configured with s2ipt) com-
pared to the corresponding Snort firewall while tra-
versed by the same traffic pattern. Three classes of
test cases were defined: port scanning, attacks against
Apache Web Server, and Web Application Fuzzing.
The results of the two systems were then observed and
compared. All the tests were carried out starting from
2860 Snort rules published by the same community
on 06.16.2016, which s2ipt was able to translate.

3.0.1 Port Scanning Test Case

This test case consisted of 12 different port scanning
techniques defined as follows:

e Syn Scan : Sending a SYN (synchronization)
packet to initiate a three-way handshake.

e Fin Scan : Sending a packet with just the TCP FIN
bit set.

e Null Scan : Sending a packet without setting TCP
flags.

e Maimon Scan : This probe is exactly the same
as NULL, FIN, and Xmas scans, except that the
probe is FIN/ACK.

e Xmas Scan : Sending a packet with all TCP flags
set. Sets the FIN, PSH, and URG flags.

e Connect Scan : Full TCP scan, trying to establish
a 3-way handshaking.

e Ack Scan: Sending a packet with only the ACK
flag set.

466

e [P Protocol Scan : IP protocol scan allows to de-
termine which IP protocols (TCP, ICMP, IGMP,
etc.) are supported by target machines.

e [ntensive Scan : Scan the most common TCP
ports. It will try to determine the OS type and
which services (and versions) are running.

e [ntensive Scan plus UDP : Same as the regular
Intense scan, but UDP ports are also scanned.

o Intensive Scan plus TCP : Same as the regular In-
tense scan, but TCP ports are also scanned.

The results given in Table 1 show the results of the
I test case (port scanning):

Table 1: Test Case I : Port Scanning.

Type of Scan. Snort Alerts | Ipt Alerts
Syn Scan 0 0
Fin Scan 0 0
Null Scan 0 0
Maimon Scan 0 0
Xmas Scan 0 0
Connect Scan 0 0
Ack Scan 0 0
IP Protocol Scan 0 0
Intensive Scan 5 11
Intensive Scan plus UDP 8 15
Intensive Scan plus TCP 8 11

Test 1: Port Scanning

Figure 2: Test Case I : Port Scanning.

As we can notice from the histograms in figure 2,
both Snort and iptables generated alerts for the fol-
lowing types of port scanning: ip protocol scan, in-
tensive scan, intensive scan plus UDP, intensive scan
plus TCP. We notice that iptables generates some
more alerts, because the best effort approach tends to
relax iptables rules that becomes more greedy.

3.0.2 Attacks against Apache Web Server

This test case consisted of attacking Apache web
server using Metasploit and then see if Snort and
iptables would be able to detect the attacks. The
first attack, also known as Apache Killer, is called
Apache Range Dos Attack CVE-2011-3192 (CVE,).
It submits a single short request to trigger these ap-
plications into replying with a large amount of arbi-
trary data, causing the service to become temporar-
ily unresponsive. The Apache Killer attack was car-

s2ipt: A Lightweight Network Intrusion Detection/Prevention System based on IPtables

ried out with the Auxiliary Metasploit module auxil-
iary/dos/http/apache_range_dos). The second attack
is against mod_isapi extension in Apache and it was
carried out with the Auxiliary Metasploit module aux-
iliary/dos/http/apache_mod_isapi.

The results given in Table 2 show the results of the II
test case (Attacks against Apache Web Server) :

Table 2: Test Case II : Attacks against Apache Web Server.

Type of Attack. Snort Alerts/pkt | Iptables Alerts/pkt
Apache Range DoS Attack 171 3/1
Apache mod isapi 2/20 3/20

Test 2: Attack to Apache Server

3
25
2
1.5
1
i
0

Apache Range DoS Attack Apache mod isapi

Alerts

Attack Type

Esnort Miptables

Figure 3: Test Case II : Attacks against Apache Web Server.

As we can see from the histograms in Figure 3,
iptables tend to generate more alerts due to the “’best
effort approach” in the translation process but the im-
portant thing is that the attack had been detected by
iptables as well as snort.

3.0.3 Web Application Fuzzing

This test case consisted of sending Random Data
against both Snort and iptables and verifying if they
would be able to detect the attack. To carrying out
this test case, ZAP Proxy was used (OWASP,). The
results given in Table 3 are related to the III test case:

Table 3: Test Case I1I : Web Application Fuzzing

\ Type of Attack. | Snort Alerts/pkts | Iptables Alerts/pkts |
| Web application Fuzzing | 1/53 ‘ 5/53 |

Test 4: Web Application Fuzzer

Esnort
Miptables

Alerts
o r N W B U o

OWASP ZAP Proxy

Figure 4: Test Case III : Web Application Fuzzing.

4 CONCLUSION

s2ipt is a tool that lets to configure the iptables fire-
wall as an NIDS/NIPS based on the Snort community
rules, in a simple and transparent way, without ob-
serving substantial changes to the environment. The
power of s2ipt lies in the combination of the posi-
tive aspects of two different types of technologies: on
one hand the power of Snort syntax and the support
contributed by his community, on the other hand the
efficiency resulting from the use of the Linux kernel
and the simplicity of iptables commands, which have
a minimal impact on system resources.

ACKNOWLEDGEMENTS

This Research was supported thanks to the contribu-
tion of Luigi Pino, Alessandro Esposito and Luciano
Ocone of the Department of Engineering of Univer-
sity of Sannio.

REFERENCES

Cve-2011-3192. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=cve-2011-31922. Accessed: 2017-02-09.
iptables. https://www.netfilter.org/. Accessed: 2017-02-09.

Snort ids. https://www.snort.org. Accessed: 2017-02-09.

Arney, C. A. and Wang, X. (2016). Active snort rules and
the needs for computing resources: Computing re-
sources needed to activate different numbers of snort
rules. In Proceedings of the 5th Annual Conference
on Research in Information Technology, pages 54-54.
ACM.

OWASP. Zap proxy. https://github.com/zaproxy/zaproxy.
Accessed: 2017-02-09.

Zhong, C., Y. J. L. P.. E. R. F (2016). Automate cyberse-
curity data triage by leveraging human analysts’ cog-
nitive process. In IEEE International Conference on
Intelligent Data and Security (IDS), pages 357-363.
IEEE.

467

