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Abstract
This article performs an extensive review on condition monitoring techniques for rail vehicle dynamics. In particular, the
review focuses on applications of model-based approaches for on-board condition monitoring systems. The article cov-
ers condition monitoring schemes, fault detection strategies as well as theoretical aspects of different techniques. Case
studies and experimental applications are also summarized. All the mentioned issues are discussed with the goal of pro-
viding a detailed overview on condition monitoring in railway vehicle dynamics.
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Introduction

Modern railway vehicles adopt sophisticated systems to
monitor the vehicle dynamic behaviour in order to
identify critical conditions. The capability of feeling the
health condition has induced to define this kind of
vehicles as intelligent. Several techniques have been
developed for monitoring specific dynamics of railway
vehicles.1 Condition monitoring is a part of the area of
fault detection and isolation (FDI).2–4 Many research
activities have been conducted in order to find failure
of system components by examining the output
measurements.5,6

Figure 1 shows the block diagram of a generic condi-
tion monitoring system. The system input and the mea-
sured output are adopted in the condition monitoring
strategy.

Condition monitoring approaches can be classified
into three main groups:

� Signal processing methods;
� Knowledge-based methods;
� Model-based methods.

The main purpose of signal processing methods is to
find the distinction between faulty and fault free cases
from the system response signals without a mathemati-
cal model in the fault detection process. In signal pro-
cessing methods, measured signals can be analysed in
frequency domain, in time domain or in time–frequency
domain. Moreover, the measured signal can be pro-
cessed by means of bandpass filters, spectral analysis
and wavelet method.2,7,8 For example, filters are useful
to extract fault-relevant information from vibrational
measurements. Phase differences between rotational
and translational motions are employed in Kojima and
Sugahara9 in order to detect faults of suspension ele-
ments. In Mei and Ding,10 a multi-block partial least
squares approach is applied to build the statistical
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model using the historical normal operating data. In
Mei and Ding,11 a novel class of stochastic ARX-type
models capable of representing a faulty state of vehicle
is presented.

Knowledge-based methods are based on the heuristic
knowledge of the FDI procedure.12 In a knowledge-based
FDI, an analytical system model is unnecessary because
the method adopts only the information extracted from
the system outputs. In this way, only an empirical system
knowledge is used and the FDI is obtained in a heuristic
manner. In Scanlan and O’Leary13 and Zhao and Xu,14

knowledge-based techniques have been presented where
fuzzy logic procedures have been adopted to map the
inputs and the outputs of the dynamical systems.

Model-based approaches rely on the idea of analyti-
cal redundancy and they are based on the comparison
between the system available measurements with a
priori information represented by the system mathe-
matical model. Figure 2 shows an example of process
model-based and signal-based FDI.15

This review provides an overview of the existing
model-based condition monitoring techniques in rail-
way vehicle dynamics. Section ‘Model-based estimation
techniques’ presents on-board model-based techniques
used to estimate the dynamics of the railway vehicles.
Section ‘Applications of on-board condition monitor-
ing techniques in railway dynamics’ describes some
applications of model-based condition monitoring
systems.

Model-based estimation techniques

Model-based methodologies are useful when the math-
ematical relationship between the input and output sig-
nals of a dynamical system is known.15 The model-
based approaches identify faults in the systems through
the evaluation of residuals2 (see Figure 3).

The residuals capture the differences between the
actual system and the model. Consequently, the resi-
dual deviations from zero can be used for fault
detection.

Model-based methods are classified into three main
methods:

1. Parameter estimation method;
2. Parity equation method;
3. State observer method.

The parameter estimation method focuses on the
behaviour of system parameters related to the system
model and the measurements. Parameter estimation
can be adopted as FDI if a fault in the monitored sys-
tem is related to the variations of specific parameters.

In this case, the differences between nominal para-
meters and their estimation represent the residuals.
Figure 4 shows two types of parameter estimation:

Figure 2. An example of process model-based and signal-based
FDI.15

Figure 3. Residual evaluation in a model-based FDI system.2

Figure 1. Block diagram of a generic condition monitoring
scheme.5

2 Advances in Mechanical Engineering



method based on equation error and method based on
output error.2

The parity equation method requires a fixed state
model, which is used as the reference system for the
measurements. In the parity equation method, a parity
vector is given in order to map inconsistency in the sys-
tem measurements.16,17

Figure 5 shows two basic approaches, the output
error method and the equation error method.15

Parity equations do not need permanent excitation
and require less computational effort than parameter
estimation, but do not give the same deep insight into
the process as parameter estimation. In Isermann,15 a
combination of parameter estimation and parity equa-
tions is proposed (see Figure 6). More specifically, in
the scheme of Figure 6, parity equations are used dur-
ing normal operation to detect any fault fast; then,
parameter estimation can be applied to deepen the
information for fault detection and diagnosis.

The state observer method in FDI is probably the
most adopted approach among the model-based condi-
tion monitoring methods. In the state observer method,
residuals are obtained by comparing the estimated out-
puts with the actual measurements (see Figure 7).2

In the following paragraphs, several methods
adopted for model-based condition monitoring are
described.

Kalman filter

RE Kalman18 presented the recursive solution to the
discrete linear filtering problem. The Kalman filter is
useful to estimate the system state when only a subset
of the state is measured. The dynamical model of the
system is included in the filter design, which has to be
sufficiently detailed in order to take into account the
dynamics of all the system parts to be estimated. Figure
8 shows a block diagram of the Kalman filter and its
application.5

The mathematical model, in the scheme of Figure 8,
is used to predict the system state and the measure-
ments from the control inputs. The Kalman filter can
also be used to estimate parameters including the
unknown parameters in an augmented state vector. In
this way, the new mathematical system model, adopted
in the filter, becomes nonlinear. The extended Kalman
filter (EKF) and the unscented Kalman filter (UKF)
allow applications to a nonlinear problem.19–21 The

Figure 4. Parameter estimation for FDI: (a) equation error method and (b) output error method.2

Figure 5. Parity equation for FDI: (a) equation error method and (b) output error methods.15
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UKF is easier to implement in the practice as no analy-
tical derivatives need to be calculated.

Particle filter (sequential Monte Carlo)

Starting from the paper of Gordon et al.,22 the particle
filter (PF) (also known as Monte Carlo filter) is a
method for nonlinear non-Gaussian state estimation.
The PF is developed in the framework of recursive
Bayesian estimation which attempt to approximate the
complete probability density function (PDF) of the
state and not only the first few central moments of it
such as in EKF. The drawback of the PF is that the
computational effort increases with the number of
particles.

Rao-Blackwellised PF. One of the major drawbacks of the
PF is that a large number of samples are needed to rep-
resent the required PDF.23 A standard technique to
increase the efficiency of sampling techniques is to
reduce the size of the augmented state space by margin-
alizing out some of the variables analytically; this is an
example of the techniques called Rao-Blackwellisation.
Combining this technique with the above PF results in

Rao-Blackwellised particle filter (RBPF).24,25 RBPF
has been applied for state estimation of the jump
Markov linear systems in Doucet et al.26 and a hybrid
filter is obtained where a part of the calculations is rea-
lized analytically and the other part using Monte Carlo
methods.

Least-square approach

The recursive least square (RLS) is a time-domain filter
adopted to recursively estimate unknown parameters.27

RLS is suitable in the case of highly correlated signals28

and it is capable of identifying parameters from the
input and the output variables within a noisy system.
Some drawbacks have to be considered if the data are
not normally distributed.

Multiple-model approach

The multiple-model approach can be adopted if the
monitored system can be mathematically described with
a finite number of models.29 This method can be used
in the case of system structure variation and/or modifi-
cations of system parameters. Figure 9 illustrates the
basic concept of the multiple-model approach.29 The
overall system model-based estimation can be obtained
using each model-based filter and mode probability.

An evolved version of the multiple-model approach
is the interacting multiple-model (IMM) method.30–33

In Hayashi et al.,30 the authors proposed the IMM
where the mode probabilities and states of a railway
vehicle suspension are estimated based on the Kalman
filter (see Figure 10).

It is important to note that the IMM approach pro-
vides the most efficient way to detect mode changes
among several multiple-model approaches.

Figure 6. A combination of parameter estimation and parity
equations for FDI.15

Figure 7. State observer fault detection method.2
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Applications of on-board condition
monitoring techniques in railway
dynamics

Ngigi et al.34 presented wider opportunities for model-
based methods for parameter and/or estimation for
fault detection on-board a railway vehicle. For instance,
model-based approaches have been often adopted for
suspension condition monitoring and wheel/rail condi-
tion monitoring. In the following paragraphs, several
case studies are illustrated and collected on the basis of
the specific problem.

Suspension condition monitoring

Currently, condition monitoring strategies related to
suspensions focus on the combination of signal pro-
cessing and model-based assessments. In Goda and
Goodall,1 suspension faults with a Kalman–Bucy filter
approach is proposed. Tsunashima and Mori33 adopted
the IMM method for detecting faults of lateral damper
in secondary suspension from the measured lateral

accelerations of the bogie and the body and from the
yaw rate of the bogie. Figure 11 illustrates the concept
of fault detection of vehicle components presented in
Tsunashima and Mori.33

In Li et al.,35 the RBPF technique is adopted for the
estimation of the damping coefficients of lateral and
yaw dampers in a railway vehicle secondary suspension.
In Alfi et al.,36 a condition monitoring system, based
on the EKF, is proposed for parameter identification
applied to the lateral suspensions of the ETR500 train.
In Mori and Tsunashima,37 the IMM method is used to
monitor faults in the lateral and yaw dampers of a
bogie. The proposed method includes Kalman state
estimators, representing different failure modes, and a
mode filter adopted to identify the mode probability.

The multiple-model approach has been proposed in
Hayashi et al.38 to detect suspension failure. The
adopted railway vehicle model is schematically shown
in Figure 12 and it includes the lateral and yaw motions
of the wheelsets, the lateral and yaw motions of the
bogie and the lateral motion of the vehicle body.

In Jesussek and Ellermann,39 a hybrid EKF is devel-
oped in order to isolate the faults occurring in lateral
suspensions. Fault isolation issue for different compo-
nent faults occurring in the suspension system has been
analysed in Wei et al.40 The proposed method has been
validated by means of simulations in SIMPACK40 (see
Figure 13).

Jesussek and Ellermann41 proposed a multiple
Kalman filter in order to detect faults in the suspension
system of the vehicle. A full-scale train model, with
nonlinear wheel-rail contact and nonlinear suspension
forces, has been developed for the described techniques.
In particular, Figure 14 shows the suspension structure
of the bogies, the position of the three dampers, the
anti-yaw damper, the secondary lateral damper and the
secondary vertical damper, which are used for the fault
detection.41

Figure 8. A block diagram of the Kalman filter approach.5

Figure 9. Multiple-model approach.29
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In Xue et al.,42 the vehicle faults are estimated and
diagnosed by introducing wavelet transform, based
on the state-space method. The proposed method
monitors the state of railway vehicle suspension sys-
tem by establishing a vertical dynamic state-space
model of railway-vehicle system to identify the para-
meters of vehicle suspension system. Onat et al.43 pre-
sented the use of linear Kalman filtering scheme to
identify vertical secondary suspension of a railway
vehicle using the vertical vibrations of the vehicle due
to vertical track irregularities.

A model-based condition monitoring strategy for the
railway vehicle suspension is proposed in Liu et al.28 by
adopting an RLS algorithm.

Figure 10. Block diagram of an interacting multiple-model estimator.30

Figure 11. FDI of vehicle components using the IMM approach.33

Figure 12. Railway vehicle model adopted in Hayashi et al.38
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Wheel/rail condition monitoring

The dynamic behaviour of a railway vehicle is strictly
related to the interaction between the wheel and the rail
profiles. This dynamic interaction is nonlinear and it
depends on the complex wheel/rail contact mechanism.
In the following, many research activities, related to
wheel/rail condition monitoring systems, are presented.

A Kalman filter approach suitable to estimate a non-
linear conicity function is presented in Charles et al.44

Charles et al.45 proposed a least-square approach to iden-
tify a piecewise cubic conicity function. A simplified model
with a plan-view wheelset and a suspended mass has been
adopted for the proposed technique45 (see Figure 15).

Estimation of low adhesion, using the Kalman filter
approach, has been presented in Charles and Goodall.46

The Kalman filter approach has also been adopted
for parameter estimation of creep force47,48 and creep
coefficients.49 In Ward et al.,47 a real-time system useful
to detect local adhesion conditions and to predict wear
in the wheel/rail contact has been proposed. Four levels
of adhesion have been defined in Ward et al.47 as dry,
wet, low and very low conditions (see Figure 16).

The proposed condition monitoring scheme in
Hussain and Mei49 is a set of Kalman filters, based
on a linearized wheelset models, that describes differ-
ent characteristics of typical creep/slip curves.
Identification of the operating condition of the wheel-
set at the interface with the rail has been achieved by
adopting normalized RMS values from the residual
of each filter (Figure 17).

Figure 13. Vehicle suspension fault simulation in SIMPACK and MATLAB co-simulation environment.40

Figure 14. Suspension structure of the bogies adopted for FDI in Jesussek and Ellermann.41

Strano and Terzo 7



Condition monitoring applied to wheel-rail interface
is also particularly useful for derailment prevention.
For instance, Xia et al.50 investigated the dangerous
running conditions by adopting a model-based method
in order to estimate the ratio of lateral over vertical
wheel–rail contact forces and the ratio of the dynamic
over quasi-static vertical load.

Non-contact gap sensors have been adopted in the
study presented by Matsumoto et al.51 for monitoring
contact force, friction coefficient and derailment
coefficient.

Condition monitoring systems based on bogie vibra-
tions excited by derailment have been proposed in
Boronenko et al.52 and Hubacher and Scheiber.53 A
technique, based on nonlinear Kalman filters, for the
real-time estimation of the wheel-rail contact forces,
taking into account nonlinearities of the interaction,
has been presented in Strano and Terzo.54 In Hubbard
et al.,55 a model-based estimation technique, previously
developed in straight track, has been extended for oper-
ating in a curving scenario. Model-based methods for
the identification of geometric track irregularities from
acceleration measurements, taken on-board vehicles
travelling on the track, have been presented in De Rosa
et al.56 Obrien et al.57 presented the experimental vali-
dation of a method developed to find track longitudi-
nal profile from measured vehicle inertial responses.

Conclusion

The condition monitoring of railway vehicles has tradi-
tionally relied on signal processing and knowledge-
based techniques but, on the other hand, modelling

techniques give great potentials due to the a priori
knowledge included in the model. This review reports
the literature related to the utilization of model-based
methods for on-board condition monitoring in railway
vehicle dynamics. The review has been organized into
three sections that address specific issues: general con-
cepts of condition monitoring methods and fault detec-
tion, the main model-based approaches adopted in
railway vehicle dynamics and several case studies.
Section ‘Introduction’ described three main condition
monitoring approaches: signal processing methods,
knowledge-based methods and model-based methods.

Figure 17. Contact condition estimation scheme presented in
Hussain and Mei.49

Figure 15. Diagram of the wheelset and suspended mass
simplified railway vehicle model adopted in Charles et al.45

Figure 16. Creep curves for varying adhesion conditions
simulated in Ward et al.47
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Section ‘Model-based estimation techniques’ presented
algorithms suitable for model-based condition monitor-
ing. Several applications of fault detection and condi-
tion monitoring in railway dynamics have been
summarized in section ‘Applications of on-board con-
dition monitoring techniques in railway dynamics’ and
they have been collected in two main categories: sus-
pension condition monitoring and wheel/rail condition
monitoring.
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