
Electronic Notes in Theoretical Computer Science 54 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume54.html 9 pages

Security Issues in Component-based Design

A. Bracciali, A. Brogi, G. Ferrari, E. Tuosto 1;2

Dipartimento di Informatica, Universit�a di Pisa

Corso Italia 40, 56125 Pisa, Italy

Abstract

We propose a behavioural extension of the concept of interface of components.

We aim to uniformly reason about correctness properties of both closed and open

component-based systems. The characterizing feature of our approach is that we

perform a local analysis over �nite fragments of interactions naturally modeling

mobility and coordination aspects. We present a semi-automatic technique that

reduces the veri�cation of security properties of protocols to the veri�cation of

correctness in component-based systems.

1 Introduction

Networked heterogeneous applications are nowadays becoming the primary

part of modern software environments. These applications (e.g., web-browsers

for cellular phones) require stationary servers and mobile devices to cooper-

ate while the application is running, and the dynamic integration of network

services is a crucial aspect. In this scenario, programming techniques adop-

t the abstraction of components to encapsulate services inside black boxes.

Services are described by means of interface description languages. Recent

developments have focussed on extending these languages in order to specify

the interaction protocols of components. Service integration is then obtained

by means of composition or coordination languages that describe the way

in which components are glued together. Moreover, networked applications

strongly emphasize the problem of security in software composition. Compo-

nents may indeed be malicious and may have been designed to steal and/or

corrupt information on the hosts where they will run.

In this paper we extend the formal framework presented in [6] to describe

and reason on systems consisting of autonomous, interacting components. In

particular, we will show how such framework can be suitably applied to analyse

security protocols, viewed as behavioural features of components.

1 This work has been supported by MURST National Project TOSCA.
2 Email: fbraccia, brogi, giangi, etuostog@di.unipi.it

c2001 Published by Elsevier Science B. V.

Bracciali et al

Our starting point is the notion of interaction pattern, which is an abstrac-

tion of the interactive behaviour of a software component, expressed with a

subset of the �-calculus [10]. Di�erently from most existing approaches based

on process algebras, we restrict ourselves to considering descriptions of �nite

behaviour of components. Indeed, we argue that trying to describe all the as-

pects of component-based programming in one shot unavoidably leads to com-

plex formulations of low practical usability. On the other hand, interaction

among components often follows recurrent �nite patterns. This simpli�cation

leads to a formal framework suitable for locally and uniformly reasoning on

properties of both static and dynamic compositions.

Following [6], we therefore introduce a simple interface description lan-

guage to specify the interaction pattern of a component. A set of interaction

patterns forms a context which may evolve either because of interactions oc-

curring within the context, or because new components dynamically join the

context.

The main contribution of this paper is to show that it is possible to treat

uniformly both composition and security issues of component-based program-

ming within the same formal framework. We propose a novel, semi-automatic

approach to the veri�cation of security protocols by extending the notion of

interaction pattern. Our approach can be summarized as follows:

� We extend interaction patterns with cryptographic primitives, in the style

of the spi-calculus of Abadi and Gordon [1].

� We express security properties of protocols by means of a revised version of

the idea of magic instance of a protocol, originally introduced in [1].

� We develop a proof technique to verify the correctness of security protocols.

The proof technique consists of two main steps:

(i) The properties to be veri�ed are �rst expressed in terms of the integri-

ty and secrecy of certain critical data exchanged among the protocol

principals. This corresponds to de�ning a magic instance of the proto-

col which �xes the values that such data are expected to assume if the

desired property holds.

(ii) Protocol correctness is then veri�ed by checking the non-existence of an

intruder capable of cheating the protocol principals with communica-

tions that cannot be accepted by the principals of the magic instance of

the protocol.

2 Interaction patterns

Interaction patterns describe both the behaviour of components in terms of

the communications they can perform, and the communication channels the

components initially o�er to the environment. We already remarked that

interaction patterns can express only �nite behaviours. The abstraction of

the composition environment is called context, i.e. a multiset of connected

2

Bracciali et al

components. If the components are completely connected, i.e. they do not

have open names, the context is closed, otherwise it is open. The full language

of interaction patterns is derived from �-calculus, the main di�erence being

the absence of recursion and of an explicit restriction operator (actually, all

local names are required to be disjoint). By communicating channel names,

the connection topology of a context may dynamically change. In this paper,

we will present many of the features of the framework only informally. Formal

semantics, composition operations, and the formal de�nition of other aspects

may be found in [6].

Suppose that we are specifying a distributed system, with a simple server,

which provides a reference (a name) to a given resource. Every time the serv-

er interacts with a possible client, it follows the same protocol: it receives a

request on a communication channel (c say, channel names are usually pre-

ceded by underscore), and then sends an answer (the name z) over the same

channel, unless it receives some sort of interruption from the same channel.

Such a behaviour can be expressed by the following interaction pattern:

(c) [in(c,query). (out(c, z).0 + in(c, break).0)]

where in(c,query) (resp., out(c, z)) is a synchronous input (resp., out-

put) action on the channel c, where query and z are the transmitted data,

and (c) denotes the channel that can be used to connect the server to other

components.

De�nition 2.1 An interaction pattern consists of a term (�X)[E], where �X is
the set of open names of E, a subset of the names occurring in the expression
E. The behavioural expression E is de�ned by the following grammar:

E ::= 0 j �:E j EjjE j E +E D ::= C j :::

� ::= in(C;D) j out(C;D) j � C ::= net j :::

A component may send and receive data (D) over channels (C) by per-

forming synchronous communication actions (in and out). As in �-calculus,

channel names can be exchanged in communications. The signature D of data

can be arbitrarily complex by allowing, for example, structures for method in-

vocations as well as encryption mechanisms (see Section 3). Input actions on a

complex term d synchronize with outputs that provide a term compatible via

pattern matching with d. The set of names C contains the distinguished name

net, which is known by every component in the system. The name net has

been introduced to model all the untrusted communications that may occur

over the net and to which every component can participate. The silent action

� denotes an internal computation a component may perform independently

of the external environment, and it can be used to explicitly describe local

choices. As usual, processes are built through the pre�x, parallel and choice

composition operators of �-calculus.

Components are then composed in a system by linking together some of

their channels. Syntactically, this consists of identifying some of the open

3

Bracciali et al

names of those interaction patterns that belong to the same context. Once an

open name has been connected, it is not anymore available to the environment,

and it is removed from the set of open names. Besides the static incremental

construction of a system, the same connecting mechanisms models also the

dynamic interplay of components that intend to join a running environment,

like, e.g., in the case of code mobility. The following example shows the

composition of components inside a context.

Example 2.2 A client, expressing a behaviour compatible with the behaviour

of the server previously illustrated, may send a request and then either accept

an answer (y is a name, used here in place of a variable, in the � style) or

autonomously decide to send a break, e.g. after a certain time out:

(s) [out(s,query). (in(s, y).0 + �.out(s, break).0)]

This illustrates the use of � to model internal (local) choices. The two in-
teraction patterns can be combined together by means of the substitution
[x/ c, x/ s], obtaining the following closed context:

f () [out(x,query). (in(x, y).0 + �.out(x, break).0)],

() [in(x,query). (out(x, z).0 + in(x, break).0)] g

The interaction patterns in the context, since their channels have been
connected, can communicate together. After the �rst communication, the
context evolves into:

f () [(in(x, y).0 + �.out(x, break).0)],

() [(out(x, z).0 + in(x, break).0)]g

Depending on the client's choice, the two components can interact in two

ways: Either the reference z or break can be communicated next. Note how,

as expected, in both cases the two components can completely execute their

tasks, being in a sense compatible and correctly composed components.

The above framework permits us to describe �nite fragments of the be-

haviour of a generic component, to compose components in a system (con-

text) by appropriately connecting them, and to observe the behaviour of the

resulting system. It is possible to uniformly model both static and dynamic

systems, by means of closed and open contexts, respectively. The two di�erent

scenarios need di�erent formulations of correctness properties.

The notion of correctness for closed contexts is quite standard, and it can

be summarised by the absence of deadlock. For each possible computation all

the interaction patterns in the context reduce to the successful pattern ()[0].

The �niteness of the interaction patterns sensibly contributes to the eÆcient

veri�cation of this property.

Open contexts may also evolve because a new pattern joins the running

system. In this case the notion of correctness has to be re�ned to cope with

the incompleteness of dynamically evolving contexts. We have introduced a

weaker notion of correctness, feasibility, which intuitively corresponds to the

absence of a deadlock which can not be resolved by the contribution of any

4

Bracciali et al

component that will eventually join the context. An open context is feasible if

and only if there exists an interaction pattern that can join the context, and

make it both closed and correct. Feasibility appears like a desirable, easy to

verify, invariant in the life of an open system. For example, a mobile compo-

nent should be accepted inside a site only if it does not spoil its feasibility.

The following example illustrates a feasible context.

Example 2.3 We showed a correct context in Example 2.2. Consider now
a context consisting only of a client not capable of generating break events;
such as:

f (s) [out(s,query). in(s, y).0] g,

the context is feasible, since even a server capable of handling break events:

(c) [in(c,query). (out(c, z).0 + in(c, break).0)]

can join the context (by the substitution [x/ s, x/ c]) making it closed and
correct. Indeed the context only evolution, where a query and a reference are
exchanged, leads to a successful context. On the contrary, if we consider the
dual situation of a feasible context with a client capable of sending a break:

f (s) [out(s,query). (in(s, y).0 + �.out(s,break).0)] g

it can not be joined by a server not capable of handling break events:

(c) [in(c,query). out(c, z).0]

since the latter would make the context not correct, as one evolution of the
context leads to a (permanently) deadlocked context, the name x, local and
not open, can not be accessed by any new component joining the context:

f () [out(x,break).0], () [out(x,answer).0] g.

3 Security properties and \magic" contexts

We now extend the setting of interaction patterns with mechanisms to express

secure communication protocols as composition of components. As a major

example we show how to specify and verify properties of security protocols.

A context must protect its data/resources from being corrupted (integrity)

or accessed (secrecy) by untrusted components. We consider components that

may be distributed over a network and use public channels to communicate to

each other. Therefore, in order to face security issues, communication requires

security protocols based on cryptography. Protocols may be implemented

as interaction patterns in contexts where malicious intruders can operate.

Intruders are interaction patterns that may dynamically join a context and

interact with the intended principals of the protocol.

We present a methodology which reduces the veri�cation of security proto-

cols to the correctness of the contexts in which the protocols are executed. In

particular we will seek for the existence of an intruder that is able to \crack"

the protocol without a�ecting the correctness of the entire context. Due to the

5

Bracciali et al

existential nature of this analysis, a weaker notion than feasibility suÆces. We

say that a context is may-correct if and only if there exists at least one com-

putation in which all the interaction patterns reduce to the successful pattern

()[0]. Given a may-correct context C, an interaction pattern is C-compatible

if and only if it can join C without spoiling its may-correctness.

The methodology presented consists in a revised use of the notion of mag-

ic instance, originally introduced in [1]. A magic instance of a protocol P,

written bP, is an instance in which some variables in P have been �xed to

ground values. Informally, if P is secure, all possible successful executions of

P in an untrusted environment should assign the �xed values to the selected

parameters, in spite of any possible interference of an intruder. The problem

of verifying the security properties of a protocol is reduced to comparing the

compatibility of an intruder with both the protocol and its magic version.

Formally, we say that P is not secure w.r.t. the properties de�ned by bP if

and only if there exists an intruder I that is P-compatible but that is not
bP-compatible. In other words, if the protocol is unsafe, an intruder I may

succeed in cheating a principal of P by forging values di�erent from the ex-

pected ones, while still preserving the may-correctness of P. On the other

hand, I cannot cheat the magic version of principals that (magically) knows

the correct values and cannot accept di�erent data (viz., bP [I deadlocks).

The methodology consists of two steps.

3.1 Speci�cation of security properties

A secure protocol does not permit unintended accesses to, or modi�cations of
its \sensible" data. In this sense, the security of a protocol is reduced to the
identity of some communicated data. Determining the data and the values
whose integrity implies the desired security property is the crucial task. To
give a avor of this step of the methodology, let us consider a simple protocol.
The protocol states that a principal A �rst sends (or better, intends to send)
a key k to principal B, then it sends B a nonce n encrypted with k:

A
4

= ()[out(net,k).out(net,fngk).0],

B
4

= ()[in(net,x).in(net,fygx).0]

where fngk, like in the spi-calculus, is the encryption of n with the key k.

Communication actions encapsulate the encryption and decryption mecha-

nisms: The attempt to receive an encrypted data by means of a key k, e.g.

in(net,fxgk), will succeed only if the sent data are encrypted with k, oth-

erwise a deadlock will occur. On the other hand, it is possible to receive an

encrypted data as is, i.e. in(net, x), without attempting to decrypt it.

To check whether the protocol fA, Bg respects the secrecy of k (that
is evidently false, since A sends k over net), we require that the value of
the variable x in the �rst input action of B is exactly k, independently of any
possible interference in the execution of the protocol. This implies that nobody
is able to forge a di�erent key for B. The corresponding magic instance is:

6

Bracciali et al

A
4

= ()[out(net,k).out(net,fngk).0]

bB
4

= ()[in(net,k).in(net,fygk).0]

3.2 Veri�cation of security properties

Once a desired security property has been expressed in terms of a magic

instance of the protocol, we can verify whether an intruder exists which can

violate the integrity of the data by (maliciously) interfering with the protocol.

Such a check is performed by a nondeterministic algorithm which given

a protocol P and a magic version bP, either returns an intruder that is P-

compatible and is not bP-compatible, or it returns none if such an intruder

does not exist. Intuitively speaking, the algorithm consists of the following

main loop:

(i) Try to construct an intruder which collects as many messages as possible

among those sent on the channels it can access.

(ii) When no message is available, nondeterministically extend the intruder

with an action sending to another component values di�erent from the

ones that have been �xed in the magic instance.

(iii) Exit the loop when
� all principals have been reduced to ()[0], and return the constructed

intruder, or
� no message can be sent in point (ii), and return none.

Sketching the execution of the algorithm in the previous example, we obtain

the following incremental construction of the intruder:

� The intruder grabs the �rst message sent by A (k) by means of the action

in(net,u).

� The intruder grabs the second message sent by A (fngk) by means of the

action in(net,v)

� No more messages are available at the moment. The intruder (who now

knows k and also n) sends k' to B, where k' 6= k is a key generated by the

intruder. The intruder then sends fmgk0 to B, which reduces to ()[0] (as

A did at the previous step).

� All principals have been reduced to ()[0]. The constructed intruder:

I = ()[in(net,u).in(net,vu).out(net, k').out(net,fmgk0)]

is returned.

It is easy to verify that fI; A;Bg is a may-correct context, while the magic

instance fI; A; bBg deadlocks after the �rst two inputs of I, since out(net,

k) and in(net, k') deadlock because of the di�erent ground values k and

k'. I is P-compatible but it is not bP-compatible, that amounts to say that

the protocol is not secure.

7

Bracciali et al

4 Concluding remarks

We have presented a uniform framework to describe both composition and

security issues of component-based programming. A semi-automatic proof

technique to verify correctness of security protocols expressed in terms of

component composition and interaction has been presented.

Several formal techniques have been recently proposed for the analysis of

security protocols (see e.g. [1,9] and the references therein). On the other

hand, a large body of foundational models address the problem of component

composition (see e.g. [2,3,4,7,11]). The distinguishing and novel feature of our

approach is to provide formal mechanisms to locally and uniformly reason on

both composition and security in open system. To the best of our knowledge,

only [12,13] address the issue of reasoning about secure composition of compo-

nents, by considering the coordination of components that may be (partially)

untrusted. Components are enclosed into wrapper programs to encapsulate

and enforce security policies.

Our recent work [5] has been devoted to extend the framework presented in

this paper in order to handle multiple sessions and authentication protocols,

and to generalise the notion of magic instance so as to allow the speci�cation

of arbitrary relations among data and principal instances. Security properties

are hence expressed in general as logic formulae rather than as magic instan-

tiations. In spite of its simplicity, the proposed logic permits to express other

classes of security properties. Current work is devoted to validate further the

proposed methodology by experimenting its application to the work-bench

examples of [8].

References

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi

calculus. Information and Computation, 148(1):1{70, 1999.

[2] F. Arbab, M. Bonsangue, and F. de Boer. A coordination language for mobile

components. In Proc. ACM Symp. on Applied Computing, ACM Press, 2000.

[3] F. Arbab, M. Bonsangue, and F. de Boer. A logical interface description

language for components. In Ant�onio Porto and Gruia-Catalin Roman,

editors, COORDINATION'2000, LNCS 1906, pages 249{266, Limassol, Cyprus,

September 2000.

[4] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A formal model

for componentware. In G. Leavens and M. Sitaraman, editors, Foundations of

Component-Based Systems, pages 189{210. Cambridge University Press, 2000.

[5] A. Bracciali, A. Brogi, G. Ferrari, and E. Tuosto. Formal intruder identikit for

open security protocols. Submitted to Foundations of Software Technology and

Theoretical Computer Science, 2001.

8

Bracciali et al

[6] A. Bracciali, A. Brogi, and F. Turini. Coordinating interaction patterns. In

Proceedings of the ACM Symposium on Applied Computing. ACM press, 2001.

[7] C. Canal, L. Fuentes, J.M. Troya, and A. Vallecillo. Adding semantic

information to IDLs. is it really practical ? In Proceedings of the OOPSLA'99

Workshop on Behavioral Semantics, Denver, Colorado, 1999.

[8] John Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature.

Unpublished, August 1996.

[9] R. Focardi and R. Gorrieri. A classi�cation of security properties. Journal of

Computer Security, 3(1), 1995.

[10] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.

Information and Computation, 100(1):1{40,41{77, September 1992.

[11] E. Najm, A. Nimour, and JB. Stefani. In�nite types for distributed objects

interfaces. In Proc. third IFIP conference on Formal Methods for Open Object-

based Distributed Systems - FMOODS'99. Kluwer, 1999.

[12] P. Sewell and J. Vitek. Secure composition of insecure components. In

Proceedings of the Computer Security Foundations Workshop, CSFW-12, 1999.

[13] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers

and causality types. In PCSFW: Proceedings of The 13th Computer Security

Foundations Workshop. IEEE Computer Society Press, 2000.

9

