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Highlights

• Operation sharing among jobs is quite common in important applica-
tions and calls for a special scheduling paradigm, whose relation to
ordinary precedence-constrained scheduling is explicated.

• A general formulation of common operation scheduling to minimize the
weighted number of tardy jobs is provided.

• The formulation, in the shape of set covering, has exponentially many
inequalities; the complexity of their recognition and separation is in-
vestigated.

• A branch-and-cut algorithm is devised and tested, features of difficult
problems are identified, a comparison with the state-of-the-art algo-
rithm for this problem is discussed.
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Abstract

Common operation scheduling (COS) problems arise in real-world applications,

such as industrial processes of material cutting or component dismantling. In

COS, distinct jobs may share operations, and when an operation is done, it is

done for all the jobs that share it. We here propose a 0-1 LP formulation with

exponentially many inequalities to minimize the weighted number of tardy jobs.

Separation of inequalities is in NP, provided that an ordinary minLmax schedul-

ing problem is in P. We develop a branch-and-cut algorithm for two cases: one

machine with precedence relation; identical parallel machines with unit operation

times. In these cases separation is the constrained maximization of a submodular

set function. A previous method is modified to tackle the two cases, and compared

to our algorithm. We report on tests conducted on both industrial and artificial

instances. For single machine and general processing times the new method defi-

nitely outperforms the other, extending in this way the range of COS applications.
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1. Introduction

1.1. Common Operation Scheduling

Common Operation Scheduling (COS) problems [1] call for finding an
optimal arrangement of the operations required by a set of jobs under the
condition that, when an activity is done, it is done for all the jobs that re-
quire it. A COS model may not only envisage economy-of-scale aspects (that
is, when some of the operations required by a job realize pre-conditions to
the accomplishment of other jobs), but also situations depending on the very
nature of the process optimized. To quote three applications, COS problems
were identified in movie shooting [9, 14], progressive network recovery [35]
and pattern sequencing in stock cutting [7]. Prior to formally introducing the
problem, let us give more examples from maintenance logistics and manufac-
turing (in Section 2 we will focus on stock cutting with a detailed real-world
example).

Example 1. (Maintenance logistics)
A company sends m teams to visit n sites (e.g., power plants) for maintenance
operations that require testing a set J of r functionalities. Functionality j is
implemented in a subset Nj of the sites, and its test is fully accomplished when
done in the whole Nj: so, an operation is a visit to a single site (where more
functionalities are checked), and a job is the test of a single functionality in
all the relevant sites. Functionality j should be tested in the whole set of sites
within a given date dj, and a team completes the visit of site i in one day.
The company wants to assign sites to teams so as to minimize the complete
functionality tests not terminated by the due date.

Example 2. (Manufacturing)
A mechanical assembly process produces a set J of final products (jobs)
through a set N of operations. The operations must obey precedence con-
straints, described by a directed acyclic graph G = (N,A). Jobs then corre-
spond to terminal nodes of G. Operations are of three types: preparation, as-
sembly, disassembly3 suggesting the practice of Design for Dismantling (DfD).

3Disassembly processes in the automotive sector gained importance after EU Directives
2000/53/EC (§2 and §13) and 2005/64/EC (§2 and §15) [12, 13]
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Figure 1: Precedence graph in dismantling operations: jobs 1 and 2 share the
operations on the encircled parts.

See also Toyota Vehicle Recycling Report 2016 [33]. and are characterized by
processing times pi. An assembly (a disassembly) operation is the immediate
successor (predecessor) of more than one operation. As disassembly produces
more parts from a single one (see Figure 1), those parts can possibly form
distinct final products: that is, distinct jobs (terminals) share the operations
lying on a common path of G.

Thus, in a COS model one has a set J of r jobs that require, alto-
gether, a set N of n operations, and those required to complete j ∈ J
form a subset Nj ⊆ N . Different permutations of N complete the jobs
of J in different times. For instance, let J = {1, 2, 3}, N = {a, b, c}. Then
N1 = {a, b}, N2 = {a, c}, N3 = {c}, N4 = {b} encode a problem with four
jobs and three operations to do: the operation sequence abc completes job 1
and 4 first, then jobs 2 and 3 in the same time instant; cab, instead, completes
job 3 first, then job 2 and finally jobs 1 and 4.

In both the above examples, we deal with a non-preemptive deterministic
problem: Example 1 has a focus on parallel machines with unit processing
times, Example 2 on precedence relations and non-unit processing times (the
reader is referred to [27] for definitions and notation). In general, we consider
a set Qm of m uniform machines with speeds s1, . . . , sm: hence pi/sk is the

4
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processing time of operation i on machine k. A particular case is Pm (identical
machines), where sk = 1 for k = 1, . . . ,m. All operations are available
from time 0 on, and a precedence relation among the operations is possibly
encompassed, as in Example 2, requiring that some operations cannot start
before the completion of some other. A strict precedence constraint between
jobs j, k ∈ J implies Nj ∩ Nk = ∅: the constraint can be reduced to a
precedence relation on N by simply imposing that all the operations of Nj

precede all those of Nk.
Let f : IRr → IR be a non-decreasing function of the job completion times

Cj (in this case f is called regular). Stating that job j is completed as soon
as all the operations of Nj are done, means that Cj is the largest among the
completion times of the operations in Nj. The problem has the following
generic expression:

Problem 1. Schedule N on Qm, that is, give each operation a machine and
a starting time, so that precedence relations among operations are respected
and f(C1, . . . , Cr) is minimized.

With the notation of [27], Problem 1 is denotedQm|cos, prec|f(C1, . . . , Cr).
In applications, regular objective functions are often related to the due
dates dj of the jobs, and may include such terms as the job tardiness Tj =
max{Cj − dj, 0}, or 0-1 variables uj indicating that j is not completed on
time. Typical examples are the maximum lateness Lmax = maxj{Cj−dj}, the
weighted tardiness

∑
wjTj, and the weighted number of tardy jobs

∑
wjuj

where uj = 1 if Tj > 0 and uj = 0 otherwise. The latter is the case dealt
with in this paper.

1.2. Relation to studied problems

Common operation scheduling clearly generalizes the associated ordinary
scheduling problems: it suffices setting Nj = {j} for all j ∈ J . Also, the COS
paradigm includes popular graph ordering problems, such as Bandwidth
and Optimal Linear Arrangement, see [17]: for instance, Bandwidth
on graph G = (V,E) is a COS problem with unit operations N = V , two-
operations jobs J = E and the objective of minimizing the largest job flow-
time. Conversely, for regular f and any machine environment α,

P = α|cos, prec|f(C1, . . . , Cr)

can easily be transformed into

P ′ = α|prec|f ′(C1, . . . , Cs)

5
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with f ′ regular:

• P ′ has job set J ′ = J ∪N, s = r + n;

• Every job in N ⊆ J ′ has the same duration as the corresponding oper-
ation, and every job in J ⊆ J ′ has duration 0;

• j ∈ J ⊆ J ′ is preceded by all the jobs in Nj, and precedence in N is
the same as for the corresponding operations;

• f ′(C1, . . . , Cr, . . . , Cs) = f(C1, . . . , Cr), i.e., f ′ does not depend on
Cr+1, . . . , Cs.

P ′ has a noticeable form: Woeginger [36] studied it for α = 1, f ′ =∑
wjCj (weighted completion time), no precedence relation in N , pi = 1 for

all i ∈ N , pj = 0 for all j ∈ J and wk = 1−pk for all k ∈ J ′, showing that this
apparently artificial problem cannot be better approximated (in polynomial
time) than the more general case with arbitrary precedence, weights and job
durations. With the above transformation we recognize, on the one hand,
that Woeginger’s problem is not so artificial; on the other hand, consider-
ing the potential of COS to express complex scheduling or graph ordering
problems, one can judge the complexity result not so surprising.

Instead of weighted completion time, Arbib et al. [1] focussed on the
weighted number of tardy jobs

∑
wjuj and proved that 1|cos, pi=1|∑wjuj

is NP-hard also when restricted to jobs with two operations each, identical
due dates and unit weights. They reformulated the problem as weighted
Stable Set on a special graph G with two types of nodes: assignment
nodes, corresponding to operation-slot pairs in N2, and on-time nodes, cor-
responding to jobs in J . The edges of G are as follows:

• two nodes in N2 are adjacent iff the associated pairs share either an
operation, or a slot: this part of the graph is a grid with horizontal and
vertical cliques;

• a node (i, t) ∈ N2 and a node j ∈ J are adjacent iff i ∈ Nj and t > dj.

In [1], the structure of G is investigated in order to get valid inequalities, and
the notion of minimal cover — introduced in the next section — is also used
to obtain optimality cuts.

6
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The stable set formulation can easily be extended to Qm|cos, prec, pi=
1|∑wjuj (basically, adding a grid for each machine and suitable arcs to ex-
press precedence), and its efficiency is not questioned for unitary operation
times. But, being time-indexed, is unfit for general pi: the extension would
in fact require pi nodes per operation, thus becoming unmanageable for rel-
atively small differences among processing times (see §6.3 and Section 7 for
numerical evidence).

1.3. This contribution

The present paper concentrates as [1] on the minimization of the weighted
number of tardy jobs, that is:

f(C1, . . . , Cr) =
∑

j∈J
wjuj (1)

with wj > 0 for all j ∈ J . We provide a methodological framework for solving
Problem 1 with objective (1) — in the following, Problem 1-(1) — insisting
on two special cases:

• 1|cos, prec|∑wjuj: single machine with precedence relation and gen-
eral processing times;

• Qm|cos, pi=1|∑wjuj: m uniform parallel machines and unit process-
ing times;

for which we propose an exact formulation with exponentially many con-
straints, to be solved by branch-and-cut.

Both cases generalize the simpler 1|cos, pi=1|∑wjuj tackled in [1]. Es-
pecially the processing time generalization is important for applications. Ar-
bitrary pi are in fact typical of industrial applications where processing times
depend on operation complexity (cuts in cutting processes, disassembly in
dismantling processes etc.) and sub-operation number (e.g. pattern run
lengths): to deal with pi, model 1|cos, pi=1|∑uj and algorithm [1] become
inefficient or inaccurate, as they must replicate each unit operation i a large
number of times, see §6.3 below.

The paper is organized as follows. In Section 2 we develop an industrial
application and explain how pattern sequencing in stock cutting can be for-
mulated as a COS problem. In Section 3 we introduce the notion of cover
in order to formulate Problem 1-(1) as Set Covering. The range of ap-
plicability of this formulation is surveyed, evaluating the complexity of cover
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check and separation. In Section 4 we provide a polynomial-time cover cer-
tificate for 1|cos, prec|∑wjuj and Pm|cos, pi=1|∑wjuj. The certificate is
used in Section 5 to formulate the separation of cover inequalities as a combi-
natorial optimization problem in NP. Separation complexity is discussed, and
separation algorithms — exact and heuristics — are proposed. A detailed
description of a branch-and-cut algorithm is provided in Section 6, along
with a numerical example. Section 7 is devoted to testing the algorithm on
P2|cos, pi=1|∑wjuj and 1|cos|∑wjuj, comparing it to the stable set model
[1], and discussing advantages and disadvantages of the proposed approach.

2. An industrial application: cut sequencing

In a stock cutting problem — see e.g. [10] for a survey — one wants
to obtain the best way to cut given objects (small items) from large plates
(stock items). A solution is generally described as a set N of n cutting pat-
terns, where pattern i ∈ N specifies the way a single stock item has to be
cut. A pattern is replicated a number of times on stock items, either taken
individually or in packs (to minimize slitter set-ups, cuts sharing the same
pattern are normally repeated consecutively and/or implemented on packs
of plates). In this way, each pattern produces a specific set of small items.
Figure 2 reproduces a guillotine cutting pattern computed for a machine de-
veloped by SCM Group [30], a major Italian company of automated machine
tools for wood working: this pattern produces the part codes 10, 30, 39, 44
and 49 by cutting a plate of size 2,550× 2,100 mm.

The sequence in which cuts are done has an impact on production, and
the problem of finding a good sequence has a longstanding tradition in
the cutting stock research community with papers dating back as to the
late ’60s/early ’70s [25, 26]. In mid ’80s, Johnston [18] included setup
cost, delivery dates and work-in-progress limitations among the most rel-
evant factors in the pattern sequencing stage. Work-in-progress has been
in the spotlight for long time, and particularly open stack minimization
[37, 21, 6, 5, 24, 29, 15, 38, 22] (list of references are ranked by date). In
these papers, pattern sequencing is solved stand-alone, that is after an op-
timal cutting stock solution has been found. Other approaches integrate
cutting and sequencing [24, 38, 28, 8, 2, 4, 3], and the most recent focus
has moved back again on due-date related objectives: the minimization of
the total (weighted) tardiness [28, 2], of the maximum lateness [8, 3], of the
total number of tardy jobs [2]. Although an integrated approach is seem-

8
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Figure 2: A pattern implemented by a woodcutting machine (courtesy of SCM
Group).

ingly preferable for solution quality, there are cases in which it cannot be
implemented and the two problems must be solved separately.

This is what normally happens in the furniture industry: trim-loss mini-
mization is in fact provided as a black box algorithm by machine producers
(e.g., the SCM Gabbiani series), while the machine user takes care of process
scheduling. As a general practice, the implementation of a production plan
starts from the orders to be fulfilled, their due-dates, and their bill of material
(BOM), and follows three consecutive steps: (i) identification of the small
items (types and amounts) to be produced to fulfill the orders; (ii) generation
of the patterns according to which those items will be cut, trying to minimize
trim loss and identification of the patterns that contribute to produce each
single order; (iii) determination of an optimal pattern sequence with respect
to order due-dates. Step (i) is of no special complexity, as it just requires
to explode the BOM. Step (ii) is the typical output of a 2-dimensional stock
cutting problem. Step (iii) is a COS instance: the lots ordered correspond
to jobs and the patterns to operations. Figure 3 shows a small subset of the
patterns forming a real production plan: items belonging to different lots are
indicated in different colors.

The output time of a lot depends on the time required to implement

9
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Figure 3: Part of a production plan (courtesy of SCM Group).

the cuts of the relevant items, and on the sequence in which patterns are
implemented. The cut time depends in turn on various factors, of which the
so-called pattern run-length (i.e., the number of stock sizes cut according
to that pattern) is just one element. Other factors are machine-dependent.
Referring to a generic machine saw produced by SCM Group, we quote:

• the handling time thand, needed to manipulate and possibly rotate the
current piece to be cut and to place it in the initial position;

• the speed spush at which the machine pushes the piece up to the correct
position for cut;

• the cut speed scut, that may vary according to how many pieces (pack
size) are simultaneously cut in a pack.

For example, in the pattern of Figure 2 one first makes full width hor-
izontal cuts (2,550 mm) at positions 105, 495 and 1,309 mm, then rotates
the lowest piece obtained and cuts it at position 2, 550− 2, 451 = 99 mm for
a further cut length of 390 mm, and so on. Once a cutting plan has been

10
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elaborated, and before execution, one can evaluate by simulation the time
required by the machine to implement each pattern.

The data so obtained form the input of a COS problem that can have
different goals. In §6.3 we give a small numerical example with the objective
of minimizing the total number of tardy jobs, with patterns and times taken
from a real cutting stock solution. Computational experiments on this type
of real-world instances are discussed in §§7.1, 7.3.

3. Formulation as Set Covering

In this section we formulate Problem 1-(1) as Set Covering with ex-
ponentially many constraints. For any C ⊆ J , let

NC =
⋃

j∈C
Nj dC = max

j∈C
{dj}

Definition 1. A subset C of J is said to be a cover of J if some job of C is
late in any schedule of NC.

In general, every superset of a cover is a cover too: so if J contains a
cover, then J is a cover itself.

Definition 2. A cover C is said to be minimal if C − {j} is not a cover for
all j ∈ C.

For instance, take C = {1, 2, 3} with N1 = {a, b}, N2 = {a, c}, N3 =
{b, c}, pi = 1 for all i ∈ NC = {a, b, c} and dj = 2 for all j ∈ C. For m = 1
no on-time schedule of C exists, since the total processing time of NC exceeds
dC . Hence, C is a cover. However, C it is not minimal, because B = {1, 2}
cannot be completed before pa + pb + pc = 3 > 2 = dB and therefore is a
(minimal) cover properly contained in C.

For any j ∈ J , define 0-1 variable uj so that uj = 1 if and only if j is
tardy, and consider the following integer program.

min
∑

j∈J
wjuj (2)

∑

j∈C
uj ≥ 1 ∀C minimal cover (3)

uj ∈ {0, 1} (4)

11
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According to Definition 1, inequality (3) states that not all the jobs in a
minimal cover C can be done on time. Conversely, let U be the support set
of u = (u1, . . . , um) fulfilling (3), (4), and let S = J \ U . If S cannot be
scheduled on time, then S is a cover by Definition 1. But by (3), U hits
all the minimal covers C, and then also a cover contained in S. Therefore
S ∩ U 6= ∅, a contradiction. Hence, J \ U can be scheduled on time and, by
minimizing w(U) =

∑
j∈U wj, program (2)-(4) formulates Problem 1-(1).

A drawback of (2)-(4) is that inequalities (3) are exponentially many in
r, thus cannot be listed off-line for large r. The formulation has then to
be dealt with by branch-and-cut, separating infeasible solutions as long as
they are encountered during computation. On-line separation of an infeasible
solution ū means finding a cover C such that

∑

j∈C
ūj < 1 (5)

A question then arises on the complexity of recognizing C ⊆ J as a cover.
To answer, we can solve an Lmax minimization COS problem, observing that
the transformation into ordinary scheduling is in this case more direct than
the general one given in Section 1:

Proposition 1. Qm|cos, prec|Lmax is equivalent to Qm|prec|Lmax.

Proof. Let Ji = {j ∈ J : i ∈ Nj} contain all the jobs that require operation
i ∈ N . Associate with each i ∈ N the due date

di = min
j∈Ji
{dj}

and schedule N to solve Qm|prec|Lmax. Then, an optimal schedule is also
optimal for Qm|cos, prec|Lmax. In fact, for the COS problem

Lmax = max
j∈J
{Lj} = max

j∈J
{max
i∈Nj

{Li}} =

= max
j∈J
{max
i∈Nj

{max{Ci −min
j∈Ji
{dj}, 0}}} = max

i∈N
{max{Ci − di, 0}}

and the latter expression gives Lmax in the problem reformulated.

Using Proposition 1 we then derive

Proposition 2. C is a cover for Qm|cos, prec|
∑
wjuj if and only if

Qm|prec|Lmax with job set NC and due dates as in Proposition 1 has an
optimal solution of positive value.

12
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Because Pm||Lmax is NP-hard (even for m = 2 and dj = 0), Proposi-
tion 2 implies that separating (3) may not be in NP. On the other hand,
a polynomial-time cover certificate exists for all those particular cases of
Qm|prec for which minimizing Lmax can be done in polynomial time: for
instance, 1|prec; P2|prec, ri, pi=1 [16]; Pm|rj, pi=p [31]; Qm|pi=1 [11]. The
first and last case will be analysed in the following section.

4. Efficient cover certificates for pi = 1 or m = 1

This section provides means to devise a practical separation algorithm
for (2)-(4) for the two cases presented in Section 1. In general, separation is
defined as a special recognition (or optimization) problem. In order to solve
this problem, a first condition is that it is in NP. In the following, we prove
this for either pi = 1 or m = 1 by showing that, for any subset C of jobs, we
can decide in polynomial time whether C is or is not a cover. The problem
is reduced to that of computing a particular submodular function defined on
operations sets.

4.1. Single machine with precedence constraints

To begin with, consider 1|prec, namely a single machine and a precedence
relation ≺ defined on N . Let C ⊆ J and assume w.l.o.g. C = {1, . . . , c}, d1 ≤
. . . ≤ dc. Let then

Dj = {i ∈ N : i ≺ h, h ∈ Nj}
for j = 1, . . . , c. We say that Ij = Dj ∪Nj is implied by j, that is, Ij contains
all the operations to be completed in order to finish job j. We define

IA =
⋃

j∈A
Ij Ik =

k⋃

j=1

Ij

observing that A ⊆ B ⇒ IA ⊆ IB and, consequently, I1 ⊆ I2 ⊆ . . . ⊆ Ic.
Let us recall the following

Definition 3. For given real weights p1, . . . , pn ≥ 0, the set function g(A) :
2J → IR+ defined

g(A) =
∑

i∈IA
pi

is called a weighted coverage.

13
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When pi = 1 for all i ∈ N , g(A) = |IA| is called a coverage. Weighted
coverage functions are monotone submodular [23], that is,

i) g(A) ≤ g(B) for all A ⊆ B ⊆ J

ii) g(A) + g(B) ≥ g(A ∪B) + g(A ∩B) for any A,B ⊆ J

The following theorem uses the above function g to define a cover certificate,
that is, an algorithm that answers yes if and only if C ⊆ J is a cover of J .

Theorem 1. Suppose m = 1 and pj > 0 arbitrary. Then a subset C of J is
a cover of J if and only if

g({1, . . . , k}) > dk (6)

for some k = 1, . . . , c.

Proof. Let (6) hold for some k. Then, not all the jobs of C can be scheduled
on-time, because

g({1, . . . , k}) =
∑

i∈Ik
pi = Ck

Conversely, let us show that if C does not fulfill (6) for k = 1, . . . , c, then all
the jobs of C can be scheduled on-time. Let Rk = Ik −

⋃k−1
h=1 Ih = Ik − Ik−1.

Because (6) does not hold,

g({1, . . . , k}) =
∑

i∈Ik
pi ≤ dk

for all k. In an earliest due date solution that first schedules the operations of
R1, then those of R2 and so on, precedence relations can easily be respected.
Moreover, all the jobs of C are on time since

Ck =
∑

i∈Ik
pi

for k = 1, . . . , c.
Observe that

Proposition 3. Certificate (6) can be checked in linear time.

14
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4.2. Parallel machines with unit processing times

Let us now consider the case Pm|pi = 1 of identical parallel machines, no
precedence constraints, and unit processing times. Certificate (6) is plainly
extended as follows.

Theorem 2. Inequality

dg({1, . . . , k})
m

e > dk (7)

is a linear time cover certificate for Pm|cos, pi=1|∑wjuj.

Proof. Suppose (7) does not hold for k = 1, . . . , c. Take an earliest due date
solution that distributes the operations of R1, then those of R2 . . . as evenly
as possible among the machines, starting from the least busy machine. After
the k-th distribution, the completion time of job k is

Ck = d|N1 ∪ . . . ∪Nk|
m

e = d|N
k|

m
e = dg({1, . . . , k})

m
e ≤ dk

for k = 1, . . . , c. Hence all the jobs of C are on time.

More in general, in the case Qm|pi = 1 of non-uniform machines we see
that

Theorem 3. There exists an O(n+ logm) cover certificate for Qm|cos, pi=
1|∑wjuj.

Proof. In fact, Qm|pj=1|Lmax can be solved in O(n+ logm) time [11].

5. Separation of inequalities (3)

As observed in Section 3, the set covering model (2)-(4) written with all
the inequalities (3) can be used for toy instances only: for practical problems
one must separate violated inequalities at run time. Consider a relaxation
P (C̄) of (2)-(4) that includes only the cover inequalities in some C̄, and let ū
be a (possibly fractional) solution of P (C̄). To simplify presentation, assume
dj integer.

Let us consider Pm|pi=1 and 1|prec. According to Theorem 2, a violated
inequality corresponds to a cover C such that

dg(C)

m
e > dC ū(C) < 1 (8)
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with dC as in Section 3. With integer dj the leftmost position becomes
g(C) ≥ mdC + 1. So separation can be cast into the following maximization
problem

max
C⊆J
{g(C)−mdC : ū(C) < 1} (9)

Let Jk = {j ∈ J : dj ≤ dk}. Problem (9) can be decomposed into r
constrained submodular maximization subproblems with constant dC = dk

max
C⊆Jk
{g(C) : ū(C) < 1} k = 1, . . . , r (10)

With g as in Definition 3 and all pi = 1, problem (10) is known as
Budgeted Max Coverage. Khuller et al. [19] proved that (10) can be
approximated within a ratio (1 − e−1) by a modified greedy algorithm, and
that no better approximation ratio can be achieved in polynomial time, unless
P=NP. Sviridenko [32] generalized the result to any submodular function g,
therefore including general pi’s.

Alternatively to (10), one can find a maximally violated inequality by
seeking for a cover C that minimizes

∑
j∈C ūj. Let x ∈ {0, 1}m be the

incidence vector of such a cover. Then x is an optimal solution of

min
∑

j∈J
ūjxj (11)

∑

i∈N
pizi ≥ (mdj + 1)xj j ∈ J

∑

Nj3i
xj ≥ zi i ∈ N

xj, zi ∈ {0, 1} j ∈ J, i ∈ N

where z ∈ {0, 1}n is the incidence vector of the operations of NC . The first
inequality set states that g(C) > mdC , the second allows i ∈ NC only if i
belongs to some Nj selected by C. Note that (11) does not admit x = z = 0
as a solution: in fact at least one zi must be > 0 in order to fulfil the second
constraint set and, consequently, the last constraint set triggers at least one
xj to a positive value. Finding a C maximizing the violation is NP-hard,
because for m = 1 and dj = n− 1 problem (11) becomes a general instance
of Set Covering.

Problem (11) can be reduced by ordering the jobs by non-decreasing due
date. Let nj ∈ {0, 1}n denote the incidence vector of Nj. The problem Pk
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reduced to sets Nj, j = 1, . . . , k, and to the operations in Nk = {i ∈ Nj : 1 ≤
j ≤ k} has a solution fulfilling the second and third constraints (11) only if
p ·∑k

j=1 nj is greater than mdk. Solving (11) corresponds then to solve

(Pk) min
k∑

j=1

ūjxj (12)

k∑

j=1

nijxj ≥ zi i ∈ Nk

n∑

i=1

pizi ≥ mdk + 1

xj, zi ∈ {0, 1}

for k = 1, . . . , r. In applications Pk may turn out to be relatively small and
then solvable with a limited computational effort.

Let us finally recall that separation can be done efficiently in non-trivial
special cases:

Theorem 4. If all jobs have 2 unit operations, then inequalities (3) can be
separated in polynomial time.

Proof. See [1].

6. Solution algorithm

Formulation (2)-(4) is solved by branch-and-cut, first removing constraints
(3), then re-inserting those violated by the current (integer or fractional) so-
lution.

In order to reduce search, we make use of primal solutions and dual
bounds. Dual bounds are obtained by solving the linear relaxation of the in-
teger sub-problems encountered. In the following we focus on the separation
of infeasible solutions (§6.1) and on the primal heuristic (§6.2).

6.1. Branch-and-cut

We start with a relaxation of problem (2)-(4). Each time the separation
algorithm is called, a violated inequality (3) is constructed and added to the
formulation. Violated inequalities are identified in different ways depending
on whether the current solution ū is integer or not.
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Initial covers. In principle, the root relaxation of problem (2)-(4) may con-
tain no covers at all. It appears however reasonable to start it with a suitable
cover subset. We tested a warm start using the covers generated by the con-
flict graph in [1]. In the conflict graph GC = (VC , EC), VC = J and ij ∈ EC
if and only if there is no operation sequence that makes both i and j on time.
Thus, ui + uj ≥ 1 for all ij ∈ EC , that is, EC identifies a simple set of covers
of J . Moreover, if Q = {1, . . . , q} ⊆ VC is a clique of GC , then Q identifies a
cover of the form u1 + . . .+uq ≥ q− 1. For example, a clique involving three
jobs 1, 2, 3 not only indicates that they cannot be pairwise on time but,
moreover, that any two out of these three are surely late. This is derived by
combining u1 + u2 ≥ 1, u2 + u3 ≥ 1, u1 + u3 ≥ 1 with coefficients 1

2
and then

rounding the right-hand side up, obtaining u1 + u2 + u3 ≥ d1.5e = 2.

Current integer solution. A current integer solution ū gives a set of jobs that
are supposedly on-time, but because no formulation is in general available at
the node, we need a feasibility check. In the single machine case the check
is done via Lawler’s algorithm [20], solving 1|prec|Lmax for the supposed on-
time jobs: the solution is feasible if and only if L∗max = 0. For convenience of
the reader we next describe Lawler’s algorithm as applied to our situation:

i) Let

J̄ = {j ∈ J and ūj = 0} N̄ =
⋃

j∈J̄
Nj J̄i = {j ∈ J̄ : i ∈ N̄}

and for any i ∈ N̄ let di = min{dj : j ∈ J̄i}

ii) In order to fulfill the precedence relations among operations, re-define

di = min{di, min
k:i≺k

(dk − pk)}

for any i ∈ N̄ . Observe that this update does not increase Lmax in any
feasible schedule.

iii) Schedule the operations of N̄ according to EDD first and compute the
associated value of L∗max If L∗max = 0 then ū is optimal. Otherwise,
1− ū gives the coefficients of a violated inequality (3).

In the parallel machine case, minimizing Lmax is even simpler as we deal
with unit processing times, and an optimal operation schedule is obtained as
specified in the proof of Theorem 2.
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Current fractional solution. As explained in Section 5, the separation of a
fractional solution ū requires in general to solve Max Budgeted Cover-
age problems of the form (10). Heuristic algorithms [19, 32] proved to be
ineffective; therefore we formulate the separation problem (12) and solve it
exactly.

Lifting. Inequalities (3) can be strengthened by sequential lifting. Exact lift-
ing coefficients cannot be computed efficiently, so we resort to a relaxation
that only includes the lifted cover inequalities found so far and removes in-
tegrality clauses (4). In this way, the computation of the lifting coefficient
reduces to a linear program. Deeper cuts are generally obtained by comput-
ing up-lifting coefficients in EDD sequence. A variable has generally more
chances to be up-lifted when the due-date of the relevant job is not larger
than the largest due-date of the jobs considered so far.

6.2. Primal heuristic

A primal heuristic is run at the root node of the branch-and-cut tree, in
order to find a global upper bound UB. The heuristic aims at minimizing
tardy jobs in a way compliant to the current solution at root ū, and is run
every time a violated inequality and a new solution are found. Define

J1 = {j ∈ J : ūj = 1}, N1 =
⋃
j∈J1 Nj

J̄ = {j ∈ J : ūj 6= 1}, N̄ =
⋃
j∈J̄ Nj.

Note that for j ∈ J̄ , variables ūj are either 0 or assume a fractional value.
Compute then the UB at the current node as follows:

1. Initialize UB :=
∑

j∈J1 wj

2. Associate a due date with each operation of N̄ as in steps i) and ii) of
Lawler’s algorithm in Section 6.1.

3. Order the operations of N̄ according to EDD first.

4. Try to schedule the first operation, say l, of N̄ .

5. If the schedule violates dl, define Jdl = {j ∈ J̄ : l ∈ Nj and dj = dl}.
(a) For each j ∈ Jdl , update UB := UB + wj;
(b) Update J̄ := J̄ \ Jdl ;
(c) For each operation k ∈ Nj, k 6= l and j ∈ Jdl , check if k ∈ Nh, for

some h ∈ J̄ ;
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• if k /∈ Nh, for any h ∈ J̄ , then update L := L \ {k} and go to
step (d);

• if otherwise k ∈ Nh, for some h ∈ J̄ , then go to step (d);

(d) Check if there exists some other job h ∈ J̄ such that l ∈ Nh and
dh 6= dl;

• if h ∈ J̄ , then re-compute the due date to operations in N̄
and re-order them according to EDD;

• if otherwise no such h exists, then L = L \ l and go to step 4;

Otherwise, go to step 4.

6.3. A numerical example

In this example we refer to the industrial application described in §2. We
start from a solution of a real cutting stock problem with n = 26 patterns.
These produce 49 distinct part types in various amounts distributed in r = 18
lots.

The matrix in Figure 4 represents which lots are fed by which pattern:
lots are indicated by row, black cells hit the patterns that feed each single
lot. Pattern processing times are obtained by simulating the corresponding
cuts: the total processing time amounts to 2,890 units; individual values for
each pattern are reported in the last row of Figure 4 in nominal units (actual
times are confidential). Five different lot due dates are considered, at time
600 (lots 1 and 2), 1,200 (lots 3-7), 1,800 (lots 8-11), 2,400 (lots 12-16) and
2,800 (lots 17 and 18). The weights wj of the objective function are assumed
identical.

We solved the problem with the algorithm of Section 6 and with the
Stable Set approach [1] adapted to general processing time by pseudo-
polynomial transformation of the graph. An optimum solution has 6 late
jobs, that is lots 3, 4, 5, 6, 9 and 14.

With the former approach, an integer optimum is found in 2.96 seconds
CPU after separation of 121 fractional and 19 integer infeasible solutions.
With the latter, the gap cannot be closed within the time limit: to close
it, one can divide processing times and due dates by a scaling factor, say
60, and then round to the closest integer. By doing so, processing times
range between 1 and 3, and both approaches find an optimum in fractions of
seconds. But the solution found is completely different from the one obtained
with non-scaled times, as it has no tardy job.
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pattern 
lot due 
date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

lo
t  

1       1   1             1                           600 

2             1       1                               600 

3         1   1     1   1                             1,200 

4 1                     1 1     1                     1,200 

5               1   1         1 1     1               1,200 

6                   1   1     1   1 1                 1,200 

7       1       1         1     1                   1 1,200 

8           1 1             1               1         1,800 

9                 1       1                           1,800 

10 1                   1           1 1             1   1,800 

11 1 1     1               1               1 1         1,800 

12   1             1         1                 1       2,400 

13   1                       1           1 1           2,400 

14     1           1                 1     1   1 1     2,400 

15 1   1             1   1           1 1   1     1 1 1 2,400 

16     1                                 1 1 1 1   1   2,400 

17                               1       1     1       2,800 

18 1   1     1           1                   1         2,800 
pattern 

processing time 15
7 

17
3 

13
8 78

 
78

 
10

4 78
 

78
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10
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4 

Figure 4: A lot vs. pattern matrix from an industrial case: black cells give which
pattern (column) feeds which lot (row). The last column reports lot due dates;
the last row, pattern processing times.
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7. Computational experience

We tested the branch-and-cut algorithm of Section 6 on 1|cos|∑wjuj and
P2|cos, pi=1|∑wjuj using both an artificial test bed created on purpose, and
data derived from industrial cases. The algorithm was coded in standard
C under GNU GCC MinGV compiler Version 3.81, developed within the
Code::Blocks environment. IBM Ilog Cplex Version 12.6 was adopted as LP
and MIP solver; Gomory and (0, 1

2
)-cuts were deactivated as they only slowed

runs down, while all other settings were kept at default values. The code was
optimized with -O optimization option. Experiments were run on a 4-Core 3
GHz Intel I-7 processor with 24 GB RAM and Linux Debian Kernel Version
2.6.26-2-amd64. A time limit of 7,200 seconds was allowed for each run.

Details on algorithm implementation are given in §7.2. Some of its fea-
tures were tested using the same data set as in [1]. To properly extend the
range of the computational evidence, new problems were also created with
the aim of identifying instances that are specifically challenging for the algo-
rithm proposed here. The way these new classes of instances are generated
is described in §7.1, alongwith details on a smaller testbed formed, with in-
dustrial data, by twenty real pattern sequencing problems. The outcome of
the experiments is commented in §7.3.

7.1. Features of the datasets

The main test bed for the experiments consists of an artificial dataset and
a set of real industrial problems4.

To form the artificial dataset, we made a preliminary run in order to
detect the features that make an instance significant. Generally speaking,
the completion time of any job j lies in the interval

Tj = [Cmin
j , Cmax] = [

∑

i∈Nj

pi,
∑

i∈N
pi]

where operation times pi are either unitary (P2|cos, pi=1|∑wjuj) or uni-
formly generated in the integer interval [1, 100] (1|cos|∑wjuj).

Problems are then classified by four parameters: number n of operations,
number r of jobs, density and looseness.

4All problem instances can be downloaded from ftp://bioinformatics.

iasi.cnr.it/public/Common-Operation-Scheduling-Instances/.
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The density δ of a problem is that of its operation-job matrix, that is,

δ =

∑
j∈J |Nj|
nr

We define the looseness of job j as the ratio λj =
dj−Cmin

j

Cmax−Cmin
j

: the larger

the λj, the less operations of j need to be anticipated if one wants the job
on time (clearly, λj ∈ [0, 1] because jobs with dj < Cmin

j cannot be on-time
and can therefore be dropped). Note that the due date of job j is completely
defined by the job looseness. We then define the looseness λ of an instance
as the average looseness of its jobs,

λ =

∑
j∈J λj

r

and say in particular that an instance is uniformly loose with looseness λ if
all of its jobs have looseness λj = λ.

It is reasonable to expect that the easiest instances, for a given problem
size and density, will be those for which the looseness is either (i) very small or
(ii) very large. The former will tend to have no job on time, the opposite for
the latter. To validate this intuition, we run a preliminary test with the aim of
estimating the relation between looseness and density on 132 uniformly loose
instances with 40 operations and 40 jobs. Based on the outcome obtained,
we settled the test bed described below.

The artificial dataset comprises 375 non-uniformly loose instances of dif-
ferent sizes and densities. Looseness varies in a way that differs from the first
test: each instance is constructed referring to an interval in which due dates
are uniformly generated at random with maximum looseness λmax. Specifi-
cally, dj is picked between its minimum possible completion time Cmin

j and
Cmin
j + (Cmax − Cmin

j )λmax. Randomization implies that each job j has an
individual looseness λj. The experiment setting is described below:

size: n = 40, 80, 100, r = 40, 80, 100 in five combinations n× r:

– small (S): 40× 40;

– medium-chubby (MC): 80× 40;

– medium-thin (MT): 40× 80;

– large (L): 80× 80;
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– extra large (XL): 100× 100.

δ: three values from sparser (δ = 20%) to denser (δ = 40%) matrices.

λmax: five values from very tight (λmax = 0.1) to very loose (λmax = 0.9) due
dates;

obj: wj = 1 for all j ∈ J .

For completeness, we also tested 20 instances of direct industrial deriva-
tion. Those instances were obtained, in the way described in Section 2, from
10 solutions of cutting stock problems presented by clients of the SCM Group
[30]. Jobs correspond to orders of parts, operations to the cutting patterns
that form the solution, and the technical features of the machine (Gabbiani
series) used in the production line impose the time length of each cut and of
the whole process.

These instances are classified as small, medium and large according to the
number of patterns and orders. Original instances 3.2 and 3.11, respectively
with 8 and 7 patterns, are too small and were therefore merged into a single
instance 3.2+11 with 15 patterns and 9 orders generated by random part
mixes. Similarly, instances 3.28 (small, with 26 patterns) and 3.38 (medium,
32 patterns) were merged so as to obtain the new instance 3.28+38 with
58 patterns and 20 orders. The whole cutting process duration ranges from
1,889 to 4,096 time units for small instances, and from 4,205 to 8,301 for
medium ones; the duration is 16,350 time units for problem 3.19 and 23,577
time units for problem 3.41.

We could not access the company delivery plans for those instance, so
we created due dates in two different ways: regular, i.e. equally spaced,
and random, i.e. randomly placed in the process time interval. The due
dates generated in each way were then randomly associated with jobs. The
resulting testbed has 20 instances and is depicted in Table 1.

7.2. Algorithm implementation

The final implementation of the algorithm is the result of choices made
on few possible variants. The major ones, described below, are the outcome
of tests done before setting the main testbed described in §7.1.

A first test on a subset of reference instances was done to identify the
best initial cover set before separation (see §6.1). We tested four different
options:
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instance problem op. jobs #items density due #frac. #int. time obj.
class name n r per job δ dates cuts cuts (sec) value

small 3.2+11 15 10 7.1 0.38 regular 1 4 0.010 3
random 1 2 0.010 3

small 3.29 15 10 6.6 0.33 regular 3 5 0.010 3
random 8 15 0.050 5

small 3.12 17 12 7.25 0.36 regular 3 14 0.030 2
random 0 2 0.005 1

small 3.28 26 18 6.33 0.22 regular 5 7 0.030 4
random 12 50 0.190 5

medium 3.38 32 20 5.7 0.16 regular 1 4 0.010 3
random 11 3 0.250 3

medium 3.20 39 26 7.42 0.17 regular 37 94 1.290 8
random 10 12 0.370 4

medium 3.28+38 58 20 11.4 0.18 regular 11 53 0.330 9
random 17 24 0.460 8

large 3.39 123 26 7.46 0.62 regular 1 0 0.020 19
random 1 0 0.010 18

large 3.41 123 26 23.23 0.17 regular 24 59 1.630 8
random 56 128 6.410 9

large 3.19 139 26 19.34 0.12 regular 6 10 0.5 5
random 4 4 0.860 5

Table 1: Computational results of 20 industrial instances of the pattern sequencing
problem. Number of operations, jobs, average number of pieces per job and matrix
density are indicated in columns 3-6. Each instance was run with two due date
configurations (regular, random). Fractional/integer cuts and CPU time in seconds
are reported in columns 8-10.
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i) Empty formulation.

ii) Only 2-job covers associated with arcs of the job conflict graph.

iii) Option (ii) plus cover inequalities obtained by random search.

iv) Option (ii) plus cover inequalities associated with cliques of the job
conflict graph.

The above options were compared on the basis of root gap and CPU
time, and the trade-off that emerged indicated (ii) as the best option: all the
additional strategies to enlarge the initial cover set had in fact no measurable
or monotonic effect on performance. Root gaps for the formulation presented
in the following will thus refer to an initial LP with only covers formed by 2
jobs.

Separation is invoked by a callback subroutine at each node of the branch-
and-bound tree. We noted how a less frequent invocation of the separation
callback implied additional branching work on an incomplete formulation,
with negative effect of final solution times. At each iteration of the separation
algorithm, only the most violated cut is added to the formulation. Separation
of integer solutions is done by the simple algorithms described in §6.1. As
noticed, heuristic separation of fractional solutions via the methods in [19, 32]
turned out to be ineffective, so we performed exact separation via MIP (12).

We recorded computation time with and without the lifting procedure
described in Section 6.1. We did not observe any improvement of efficiency by
lifting, as the CPU time required by each up-lifting coefficient (an LP solved
by Cplex) was not at all compensated by the cut improvement. For this
reason, all experiments reported in the following refer to the implementation
where lifting is not used.

Another preliminary test concentrates on the effects of the primal heuris-
tic of §6.2 in terms of root gap reduction, CPU time and number of nodes.
Table 2 reports such values for six problems of small and medium size with
different values of density δ and loseness λ. The primal heuristic (denoted
as p.h. in the table) is of course important to quickly determine a primal
solution, but, as far as gap reduction and CPU time are concerned, its con-
tribution does not have a straightforward interpretation: as a matter of fact,
Table 2 shows cases where CPU time increases.

A final observation regards the level of violation of the cover inequalities
generated. In general, cover violation at run time has a predictable sawtooth
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prob. op. jobs density looseness root gap CPU time (seconds) # of nodes
id. n r δ λ p.h. no p.h. p.h. no p.h. p.h. no p.h.

A 40 40 20% 0.5 0.0 % 0.0% 195.09 205.73 1806 2058
B 40 40 20% 0.9 0.0 % 0.0% 414.83 293.51 784 512
C 40 40 40% 0.9 97.37% 97.37% 90.26 97.15 496 452
D 40 80 30% 0.1 0.0 % 0.0% 45.65 43.81 243 205
E 40 80 30% 0.3 0.0 % 0.0% 117.89 132.57 1336 1381
F 40 80 40% 0.5 97.62% 97.62% 214.68 239.50 2212 2390

Table 2: CPU times, root gap and number of branch nodes with and without the
primal heuristic (p.h.) of §6.2.

Figure 5: Dynamics of cover violation for the first 500 separations in Instance C of
Table 3.

pattern, see the example depicted in Figure 5 for instance C of Table 2. This
behavior is typical of a dynamic formulation where inequalities are generated
as soon as infeasible integer solutions pop up, and was found in the all runs
described in this section. To avoid excessive tailing we set a cut-off threshold
of 0.01.

7.3. Test results

We compared the branch-and-cut method of §7.2 and the extended Sta-
ble Set approach [1] on S-instances, with operation times either unitary
(Pm|cos, pi=1) or generated as in §7.1 (1|cos).

In the parallel machines case, Stable Set outperforms branch-and-cut
in all the instances tested. On the contrary, in the single machine case with
general processing times, Stable Set does not close the gap within the
time limit in any of the problems tested. Branch-and-cut solves instead all
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S-instances in less than 1,800 seconds; the max CPU time, 1,688.09 seconds,
occurred with δ = 20% and λmax = 0.9.

A similar result is obtained for industrial instances. Table 1 reports,
in columns 8-11, the branch-and-cut performance on this test bed: most
problems were solved at optimality in fractions of seconds, and always in less
than 2 seconds. On the other hand, similarly to the example in §6.3, none of
them could be solved in reasonable time (7,200 seconds) using the Stable
Set approach [1].

Table 3 reports the general branch-and-cut performance in classes from
S to XL. Each row corresponds to a pair 〈size, δ〉 and to 25 runs, providing
values for five runs per five values of λmax on problems generated as described.
Rows are three-partitioned and give, in the order, the number of optima
found, the average CPU time observed in the five problems solved, and the
relevant standard deviation. Problems generally become harder with lower
density and looser due dates. Figure 6 shows the dependance of average CPU
time on the combination looseness-density for class S up to L instances (the
chart for class XL is basically flat for difficult instances). Evidently, problems
become in general more and more difficult as long as they get looser and
sparser. Branch-and-bound nodes are always in a manageable amount: in
class XL, their number averages around 3,000 with peaks well below 10,000.

MT-instances have more variables and seem harder than MC: in the latter
class, all problems were solved within the time limit (4,582.38 seconds in the
worst case, corresponding to λmax = 0.7 and δ = 20%). The largest CPU
times always occur for λmax = 0.9, and with this value we could never close
the optimality gap in classes L and XL.

No low-density XL-instance could be solved within a time limit of 7,200
seconds when λ ≥ 0.5. In class XL we solved slightly more than 45% of the
problems within time limit, taking 716 seconds on average (7,113.46 seconds
maximum). In class L we solved about 59% of the problems within time
limit, taking 1,313 seconds on average (6,769.10 seconds maximum). CPU
times in the two classes are distributed as in Figure 7.

We evaluated the effect of the primal heuristic in terms of solution quality
at root. It turns out that it provides solutions of good quality for problems
of small size, while its quality becomes less interesting as size increases. For
randomly generated test problems, the average difference of tardy jobs in the
optimal and the heuristic solution is 1.2 if we limit our attention to classes
S, MC, MT. The difference rises to 9.75 for L matrices and to 12.25 for XL.
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Figure 6: CPU time (seconds) with S, MC, MT and L instances, average of five
problems per each value of looseness and density.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

45	
  

50	
  

120	
   240	
   480	
   900	
   1800	
   3600	
   7200	
   unsolved	
  

pr
ob

le
m
s	
  s

ol
ve
d	
  

CPU	
  /me	
  

XL	
   L	
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Noticeably, the average increase of tardy jobs in the 20 industrial instances
of table 2 is 6, despite they are of small size and easily solvable.

Finally, we found an optimum in less than 7,200 seconds in all problems
with λmax = 0.1 or 0.3 and δ ≥ 30% and, regardless of density, in 149 cases of
150: as expected, the only unsolved case is an XL-instance with λmax = 0.3
and δ = 20%.

8. Conclusions

In this paper we addressed a family of scheduling problems (denoted as
common operation scheduling, COS), where operations can be shared among
a set of jobs with individual due dates. Potential applications range from
progressive network recovery to pattern sequencing in cutting stock, and
from maintenance logistics to disassembly processes in manufacturing. We
focussed on the minimization of the weighted sum of tardy jobs, also con-
sidered by [1] for a particular case, and developed a set covering formulation
with inequalities increasing exponentially with the number of jobs. Separa-
tion/lifting of cover inequalities was addressed and its complexity stated in
different cases.

In general, the method is able to solve problems of two types, in both
cases, with general precedence relations among operations: single machine
with general processing times (1|cos|∑wjuj), or parallel machines with unit
processing times (Qm|cos, pi=1|∑wjuj).

A primal heuristic and a branch-and-cut algorithm were then proposed
and tested on a significant sample of COS problems partly derived from in-
dustrial applications and partly generated at random, identifying the main
features of difficult instances. At the same time, the algorithm in [1] (based
on a Stable Set formulation) was extended to tackle the two cases. While
for unit processing times the Stable Set approach maintains its compet-
itiveness also with parallel machines, it is of no help for general processing
times, where instead the new approach is able to solve problems with up to
100 jobs and 100 operations.

Various options were evaluated to optimize the method proposed, among
which heuristic cover separation, sequential lifting and primal heuristic. Cover
separation is a Budgeted Max Coverage problem: available heuristics
for this problem fail to be efficient separators. The procedure we adopted
for sequential lifting requires the solution of a linear program for each coeffi-
cient, but does not provide speed-up. Finally, although the primal heuristic
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size operations jobs density maximum looseness λmax

class n r δ 0.1 0.3 0.5 0.7 0.9

5 5 5 5 5
S 40 40 40% 11.55 12.36 28.90 81.83 141.44

0.72 1.32 6.77 18.39 43.61
5 5 5 5 5

S 40 40 30% 1 16.08 65.81 221.99 373.25
1.40 3.53 19.19 74.42 159.10

5 5 5 5 5
S 40 40 20% 9.32 39.23 252.19 858.10 756.25

1.00 11.53 97.08 348.10 558.76
5 5 5 5 5

MC 40 80 40% 35.21 23.63 62.47 247.95 877.08
6.54 4.95 14.53 48.61 207.06

5 5 5 5 5
MC 40 80 30% 24.40 35.22 201.99 793.01 2369.05

6.33 1.23 49.34 199.49 1391.15
5 5 5 3 2

MC 40 80 20% 16.26 98.66 923.03 4793.21 5698.11
1.66 26.85 387.16 2366.52 2062.55

5 5 5 5 2
MT 80 40 40% 74.00 97.35 374.43 2059.62 5528.41

9.66 12.37 134.18 1010.41 2293.65
5 5 5 1 0

MT 80 40 30% 75.77 175.98 1724.68 652 –
19.70 55.42 901.18 1520.53

5 5 1 0 0
MT 80 40 20% 57.82 741.88 6628.87 – –

12.42 334.91 1277.09
5 5 5 4 0

L 80 80 40% 171.58 166.42 806.37 5911.73 –
17.63 22.30 146.01 1007.17

5 5 5 0 0
L 80 80 30% 132.61 281.46 3817.57 – –

22.92 35.46 885.26
5 5 0 0 0

L 80 80 20% 100.04 1606.63 – – –
6.66 246.06

5 5 5 0 0
XL 100 100 40% 741.58 438.81 3024.90 – –

622.09 153.46 1054.56
5 5 0 0 0

XL 100 100 30% 500.62 744.64 – – –
375.54 95.31

5 4 0 0 0
XL 100 100 20% 250.80 6477.48 – – –

26.48 879.76

Table 3: Each line reports, for a different problem size and matrix density, average
values of 5 problems generated at random. Row 1: number of optima found.
Rows 2-3: average and standard deviation of solution times. A dash means that
time limit expired before closing the gap. Times in seconds.
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provides feasible solutions in very short time, its contribution to algorithm
efficiency varies depending on the problem instance. Thus, directions for
future research may include testing different heuristics for separation, lifting
and primal solution.

Finally, an open problem is the design of an effective exact method for
the more general case of COS problems on parallel machines with general
processing times.
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