
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number

A Pre-filtering Approach for
Incorporating Contextual Information into
Deep Learning Based Recommender Systems

Isam Mashhour Al Jawarneh
1
, Paolo Bellavista

1
, Antonio Corradi

1
 , Luca Foschini

1
,

Rebecca Montanari
1
, Javier Berrocal

2
 and Juan M. Murillo

2

1Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
2Escuela Politécnica, Universidad de Extremadura, Caceres, Spain

Corresponding author: Isam Mashhour Al Jawarneh (e-mail: isam.aljawarneh3@unibo.it).

ABSTRACT Depending on the Internet as the main source of information regarding all aspects of our life

is becoming a trend. People seek relevant information, suggestions, and recommendations in an overloaded

online world and through social ties regarding their daily activities, including places to visit and restaurants

to try new food. The wide variety of choices that are available online causes information overloading,

which thereby complicates the selection process. Traditional recommender systems are mostly dependent

on a conventional model that is based on user-item-rating interaction without considering contextual

information. We claim that new generations of recommendation systems able to exploit context in an

innovative and efficient way is important and may statistically yield more significant rating predictions.

However, only few research works have focused on how to effectively and efficiently exploit context

metadata in Deep Learning (DL)-based recommendations. The main reason lies, perhaps most significantly,

in the fact that most current DL algorithms are not intrinsically designed to incorporate contextual tags. In

this paper, we provide a significant contribution for filling this gap by designing a hybrid algorithm that

retrofits and repurposes a pre-filtering contextual incorporation method and feeds the new dimension to a

DL-based neural collaborative filtering method, thus preserving and recovering the benefits of both without

their limitations. The paper also reports quantitative results that show that our method outperforms the

baselines by statistically significant margins.

INDEX TERMS Deep Learning; Recommender Systems; Collaborative Filtering; Context Awareness;

Apache Spark.

I. INTRODUCTION

The unprecedented adoption of IoTs, coupled with

advancements in sensor-enabled devices, has caused an

accumulation of massive amounts of datasets that are now,

more than often, coming in contextually tagged forms.

Those data are typically fed into various engines for

analysis, aiming at gaining deep insights in many

directions. A traditional long-lived application is

Recommender Systems (RSs), which aim at resolving the

problem of information overloading by presenting users

with personalized recommendations on items that suit their

preferences [1]. E-commerce depends heavily on RSs in

order to improve the item-purchase hit ratio. A non-

exhaustive list includes; news to read, music to listen, items

to purchase and restaurants to visit. Conventional

applications of RSs focus mainly on analyzing historical

user-item-rating interactions (in explicit feedback, or

simply user-item in implicit counterpart) with no awareness

for contexts surrounding each feedback decision.

Comparatively speaking, despite the tremendous size of

research activities in the literature focusing on RSs in

various domains, yet the share of their application with

context-awareness remains humble. In traditional

recommenders, context information is fed into RSs as items

and user profiles. Works of the relevant literature have

focused on incorporating contextual information into

conventional RSs by employing three models; prefiltering,

postfiltering and modeling. However, despite the

availability of sparse works that seek incorporating

contextual information into DL models, the exploitation of

context-based models and solutions remains limited. Also,

most of them have focused on incorporating context using

model incorporation methods. To the best of our

knowledge, there are no works in the relevant literature that

focus on incorporating contextual dimensions into DL-

based RSs using pre-filtering methods such as item-splitting

(discussed shortly) [2, 3] . DL is establishing itself as the

new trend for data deep insightful exploration and looks set

to remain that way at least for the foreseeable future. It then

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

makes sense to investigate important steps toward bringing

context-awareness into DL.

The lack of appropriate contributions that seek

incorporating context-awareness into DL-based RSs has

encouraged us to design a novel method for achieving such

target. Incorporating user contexts is paramount because

user ratings are highly dependent on contexts, where either

user with different context have different preferences, or

have different ratings for same items depending on a

dynamic context. For example, users may rate movies

differently multiple times depending on the location where

they watch them (e.g., home, cinema) and who were

accompanying them (e.g., friend, alone or family).

Our primary original contribution in this paper is the

proposal of a hybridized algorithm that combines the

benefits of a DL-based collaborative filtering algorithm,

dubbed as Neural Collaborative Filtering [4] (NFC

thereafter) and a retrofitted-version of item-splitting

approach (the plain item-splitting is adopted from [2, 3])

for incorporating contextual information in Collaborative

Filtering (CF), we dub our version as Context-Aware

Neural Collaborative Filtering (CA-NCF). The novelty of

our design stems from the fact that plain NCF does not have

a method for incorporating contextual information (as it

merely accepts only the traditional forms of either explicit-

feedback represented as a user-item-rating interactions or

an implicit feed-back on the user-item form), while on the

other hand our method provides the appropriate

incorporation. In addition, the paper provides the readers

with the contribution of originally and quantitatively

comparing our algorithm with plain NCF version and with

state-of-art benchmarks for contextual incorporation.

Taking advantage of the latest advents in big data

processing, we depend on a DL framework known as

BigDL [5] that is engineered atop Apache Spark [6], which

makes it preferable over counterparts for the fact that it

seamlessly integrates with the full-fledge stack of Spark

core (because of the modular architecture of Spark), thus

allowing seamlessly the fusion of other workloads as

needed. We have benchmarked with three recently

popularized contextually tagged datasets that are publicly

available (Movielens 1M [7] , DePaulMovie [8] and

TripAdvisor [9]). Our results are statistically significant as

we have obtained, on average, lower validation loss values

compared against the baselines. Also, we have obtained

higher top-one-accuracy (a.k.a. Top1Accuracy, we use those

terms interchangeably hereafter) values (statistically

desirable) by applying our method compared to the

baselines. Those results experimentally validate the

importance of explicitly incorporating contextual

information into a DL-based RS.

The paper remainder is structured as follows. We first

walk through a brief background, providing short primers

of RSs, context-awareness and associated approaches. Most

importantly, we recapitulate the baseline algorithm.

Thereafter, we elaborate our CA-NCF method and

associated algorithms. In the section that follows, we show

and discuss our results. Related work, conclusions and

recommendations for future research frontiers end the

paper.

II. BACKGROUND

In this section, we outline the main concepts relevant to

CARSs, and we show in a systematic way the transition from

conventional solutions to latest DL-based trends.

A. Recommender Systems

RSs are loosely defined as those systems that provide

recommendations to users on items of interest. Items can be

‘products to purchase’, ‘music to listen’ and ‘restaurants to

visit’, to mention just a few [1] . Human-oriented RSs are

basically intended for users lacking proper experience in

opting for items of interest over-the-wire, giving the

overwhelming number of alternatives normally offered. A

case in point is the giant movie company Netflix
1
, which

employs RSs to recommend top movies to customers

wishing that they match their preferences and thus

increasing the watch-and-purchase ratios accordingly by

personalizing user’s interaction experience. This means

suggesting different items to various persons or groups. In a

more utilitarian perspective, RSs work by calculating top

ranking list of items recommended for users. Computations

are based on a deep analysis of historical user-item

interaction that could be modeled either explicitly as ratings

(a.k.a. explicit feedback) or implicitly such as considering

the time a user spends viewing a page of a specific item

online. For example, a prolonged view could signify a big

interest and thus considered a positive rating (for example,

1 on a binary rating scale or 4 on a scale from 1 to 5).

As-is the case for all information systems, RS has been

emerged as a mimic for a traditional human behavior where

people normally seek suggestions from their friends. This

resemblance has been formalized in a method that signaled

the birth of new breed of algorithms, the widely accepted

algorithm known as Collaborative Filtering (CF) [10] . In

its simplest form, it works by recommending items to users

based on the ratings of their friends and similar users

presuming they have same tastes, even for other items,

meaning that they rate the same. RSs normally direct users

to unseen items, collect their feedbacks and store them for

more personalized future recommendations.

As a field that is born as a multidisciplinary domain

dense at the intersection of various sciences, including,

among others, computer science, psychology and

geography, it is considered as a sub-domain of Machine

Learning (ML). Having said that, most naive ML

algorithms flow seamlessly to RSs, including the two

distinguished sub-parts; regression and ranking. In cases

where RS involves rating prediction, it can be classified

under regression problems, whereas it is considered a

ranking task when enclosing item recommendation. The

distinction is important as rating prediction means that data

1 https://www.netflix.com

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

provides explicit feedback, whereas, on the contrary,

feedback in item recommendation tasks is implicit. In this

paper, we focus on explicit feedback category [10] .

Despite the variety of data sources that feed RSs, they all

agree in the general format of data fed for recommendation

tasks. In its general form, data is provided as triplets

constituting users, items and transactions encapsulating user-

item interaction (formally referred as ratings). Recently, the

attention has been given to more specialized breed of

recommenders that are collectively known as Context-

Aware Recommendation Systems (CARS) [11] , which

work with datasets that embed additional modes

surrounding the decision-making process (generally known

as contextual information or contexts for short). For

example, in a restaurant recommendation system (RRS),

contexts include extra information in user profiles such as

age, alcohol drinking level and income. Also, for items

(restaurants in this case), they include location and whether

parking services are offered. Those are considered static

contexts as they slowly or rarely change over time.

However, another class of contexts include dynamic

contexts. For example, in a movie watching survey, users

may rate movies with various scores depending on the

location where they watch the same movie (home or

cinema), or the time (weekday or weekend). Reference

studies have shown that CARS offer more personalized and

effective recommendations [12] .

B. Context Awareness

Context is loosely defined as any associated information

that is useful for characterizing the situation of an object [13].

Objects include people, locations, and any information that is

relevant for modelling the binary interaction between users

and items, including user profiles and their associated item

list. The additional contextual information is typically

beneficial for personalized recommendations entwined

robustly with contexts surrounding ranking decisions. [14]

classified context into six categories, where three belongs to

human-related information (i.e., profiles, social ties and

tasks), whereas the remainder are more about surrounding

environment (e.g., locations) and associated conditions (e.g.,

weather). For example, in RRS, context plays a pivotal role

in choosing a restaurant for next meal. User profiles, such as

those available directly from the database, for example their

drinking and smoking habits are considered also contexts that

affects the rating decision. Also, weather conditions at the

time of visit, the availability of parking slots and similar

information.

C. Incorporating Context Information into
Recommender Systems

Incorporating contextual features in a RS normally

proceeds in one of three directions; pre-filtering, post-

filtering, and contextual modeling [1] . Pre-filtering

methods serve as dimensionality reduction approaches that

embed contextual information into users or items

components. Pre-filtering approaches simply work by

selecting ratings data that corresponds to a contextual

condition for generating relevant recommendations. For

example, if a person wants to listen to a song in her car,

only ‘car’ music rating data is used to recommend a song.

Because exact contexts normally do not have enough rating

data (e.g., because of the known data sparsity problem in

recommender systems), some works went beyond selecting

training subsets form data that corresponds to the exact

contextual values. For example, some works are based on

ontologies such as the work by [15] which applies a

prefiltering step that first identifies and generalizes a user

context (i.e., projecting it to a higher granularity level).

Afterwards, only data that corresponds to that context

instance are selected for training. Thereafter, a classical RS

method such as Item-kNN is applied. In the same vein, [16]

presented a distributional-semantics pre-filtering approach.

They adopt a similarity measurement for contextual

situations that is based on the distributional semantics of

their constituent conditions. Stated another way, situations

are considered similar in the case that they similarly

influence user’s preferences. Despite being a reduction-

based approach, it performs segmentation in a way that

slightly differs from similar counterparts of the relevant

literature. The segmentation of ratings is based on

aggregating ratings with contextual situations that are

similar to the target. Contextual situations are an intermix

descriptions composed of multiple contextual conditions.

For example, “today is a ‘weekend’ and the song is ‘from

Sarah with love’.”. by doing that, the method avoids the

limited capacity of condition-to-condition context

taxonomy.

On the contrary, post-filtering approaches launch with

context kept aside, thereafter a filtering procedure passes

through results and discard rating predictions rendered as

non-relevant to context conditions. Contextual modeling

explicitly model context data and inject it within the layers

of the prediction model, specifically by parametrizing

hidden unit transitions as a function of contextual

information. For example, [17] presented two methods for

incorporating contextual information with two kinds of

collaborative filtering models (i.e., memory- and model-

based). The contextual information is engraved into the

computational models. The memory-based model is based

on fusing contexts and user ratings in a multi-feature

vector. For model-based CF, their method combines user

preferences and contextual features into the learning model.

In this paper, we focus on pre-filtering paradigms. The

reason behind this decision is that contextual pre-filtering

approaches are, design-wise, compelling and conceptually

appealing approaches, as they allow to seamlessly pave the

way for applying various traditional recommendation

approaches untouched (i.e., ‘as-is’ without modifications on

the underlying algorithms). This also applies to post-

filtering approaches that can also be applied in combination

with traditional algorithms as-is. However, this comes at

the price of a computational cost that could be induced by

applying a post-filtering approach, which often exceeds the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

pre-filtering counterparts. Also, as it is recommended by

several comparative studies between the two approaches,

pre-filtering is preferred to post-filtering in cases where the

former is able to yield recommendation predictions better

than plain traditional methods (the methods that work with

contextual information kept aside) [1, 18-20] .

For the contextual modelling approaches, we avoid the

computational complexities associated with them, as by-

design they work by stacking sequentially several hidden

layers in a neural network, inducing an additional

computational cost. Also, contextual modelling approaches

have been widely researched, and many algorithms has

been already developed in the last two decades or so [1].

On the contrary, only few works have touched the pre-

filtering methods, especially in the deep learning arena

[21].

D. Recommendation Approaches: from Conventional to
Context-Aware

In the relevant literature, [12] identified several

approaches for classical recommendation tasks. For

convenience, we here recapitulate only CF and content-

based, then we refer the interested user to the original paper

for further details about other approaches. In content-based

approaches, similarity is measured among items and new

items are rated based on that. Feature contents are the base

for calculating similarity. For example, if a user likes a

restaurant that falls under fast-food category, the system

learns to rate other restaurants from the same category. CF

remains the most applied classical RS approach for its

simplicity. It is basically based on measuring the similarity

of preferences between an active user and others with

similar rating behaviors. Recent developments in CF

include extensions such as latent factor models, including

Matrix Factorization (MF) (the industry de facto standard

for RSs), which projects items and users to a shared latent

factor space, where factors are inferred from user explicit

feedback.

Shortcomings of classical RSs in discovering deep

relationships surrounding actual recommendation decisions

led to the emergence of a constellation of systems better

known as CARS. Context-aware ranking with factorization

models is becoming a trend. Context is being regarded as an

indispensable component in recommender systems that can

deliver more personalized recommendations, matching user

preferences. In addition to the traditional user-item-rating

model, CARS consider additional contextual features such

as temporal (for example, time of day) and weather, thus

reformulating recommendation problem as a user-item-

context-rating (for explicit feedback cases). For example,

in a restaurant CARS, contextual information contains user

profiles with features such as user’s weight, height,

smoking and drinking levels, which are key ingredients for

self-managed RRS context-awareness recommendations.

Introducing additional features to RSs potentially

enhance the prediction task, but however brings additional

layers of computational complexity into the equation. This

is hardly ever an issue giving a widespread adoption of

distributed and parallel computing clouds, which has

motivated a swift adoption of Deep Learning (DL) in

recommendation tasks. Recent works have brought DL into

the RSs scene, despite originally intended for complex

analysis and prediction tasks in complex domains such as

image and voice recognition. We specifically focus on a

recently popularized DL-based recommendation algorithm

dubbed as Neural Collaborative Filtering (NCF) [4] . We

have selected this representative as it proved most effective

in providing more accurate personalized recommendations

by employing a hybridization that benefits from both the

linearity of CF and the robustness of NN.

Neural Collaborative Filtering. Neural collaborative

Filtering (NCF for short) [4] is a newly introduced

algorithm that basically hybridize the benefits of Multi-

Layer Perceptron (MLP) and Collaborative Filtering (CF)

to learn the user–item interaction function. Matrix

Factorization (MF) can be recovered under its framework.

In simpler forms, NCF can be leveraged with or without

MF. As this is considered a DL-based conventional

approach, it does not accept explicit context features.

Hence, we aim at redesigning it so that we conveniently

model context features without loss of generality. To this

end, we have retrofitted a new version of a pre-filtering

contextual incorporation method known as item-splitting [2,

3] as a frontstage that is responsible for encapsulating

relevant contextual information into model’s items.

III. OUR DL-BASED CONTEXT-AWARE
RECOMMENDER SYSTEM (CARS)

Fig. 1 schematically depicts the primary ideas behind

our DL-based CARS general framework. Raw data from

sources is fed untouched into a “feature selection” stage,

where relevant CA features are selected. Afterwards,

selected features are passed through a specialized “context

feature incorporation” stage, where we apply item-splitting

thus preparing for CA-NCF, where we map raw data into a

lower-dimensional space. Thereafter, the corresponding

algorithm is applied where we train and use our models.

The output is a list of context-aware recommendations

delivered to the user.

In particular, in the following of this work, we consider a

prefiltering approach for contextual incorporation as

described in the next subsections.

A. Retrofitting Item Splitting Algorithm

The plain item splitting algorithm as described in the

seminal work [2, 3] has three costly nested loops and

FIGURE 1. DL-based CARS framework

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

exhaustively needs to check all enumerations of context

conditions for each context factor for each item in the rating

matrix. The plain item splitting algorithm proceeds as

follows. For each item, it generates two rating lists for each

contextual condition pair combination, thereafter, it

computes the two-sample t-statistics, then it finds the

combination that leads to the maximum t-statistics.

Afterwards, if that maximum value is greater than a

threshold, it splits that item in the original list into two

items based on the corresponding contextual condition that

generated the maximum t-statistics.

For small data settings, the procedure described is

manageable and takes a reasonable running time. However,

for big datasets that contain millions of ratings and are

explicitly tagged with several contextual factors, with each

factor possibly having several contextual conditions, the

plain procedure could turn prohibitive as it needs

substantial amount of time and adds layers of complexity

and overhead to the underlying baseline algorithms. For this

reason, instead of exhaustively measuring the relevance of

each pair of context conditions as described in the original

paper of item-splitting algorithm [2, 3], we employ the

Analysis of Variance (ANOVA) [22] test to further

quantify the extent to which a pair of context conditions

(values in contextual parlance) are superior to other

permutations from the same conditions list of the same

context-related feature. We follow ANOVA by a Tukey's

HSD test, which is a multiple comparison statistical test

that can be exploited to find contextual condition

combinations with means in ratings that significantly differ

from others, signifying that they positively contribute to the

rating decision. In other terms, we first apply ANOVA as a

quick-and-dirty sieve to extract contextual variables that

significantly affect the rating decisions. Our retrofitted

procedure is listed in Algorithm 1. The output of the

algorithm is a list of relevant contextual features and the

associated permutations of relevant contextual conditions

that can be used for splitting.

Algorithm 1. Retrofitted item-splitting with multi-samples paired

test

1: Procedure retrofitted_itemSplitting(contextFeatures,

threshold)

2: maxf  MIN_VALUE

3: relevant_features_List  { }

4: relevant_pairs_List  { }

5: while 𝑐𝑓 ∈ contextFeatures != NIL do

6: F-value, P-value = statistics (aov(cf)). get (F-value, P-

value) //ANOVA

7: If F-value >= maxf && P-value <= threshold //

0.05 is a scientifically recommended margin

8: Maxf  F-value

9: relevant_features_List.add(cf)

10: End if
11: End while
12: minp  MIN_VALUE

13: Foreach relevant_feature in relevant_features_List

14: Pairs = TukeyHSD (aov (relevant_feature)) //aov:

analysis of variance

15: For pair p in pairs

16: If P-adj < threshold

17: minp  P-adj

18: relevant-pair  pair

19: relevant_pairs_List.add(relevant-pair)

20 End if
21: End for

22: Item-splitting(relevant_pairs_List)

23: End procedure

For example, say we have a rating matrix with the

following contextual factors: ‘day of week’, ‘year’, ‘day of

month’ and ‘month of year’. Each of those factors may

have several conditions. For example, ‘day of week’ has the

following conditions list; (weekday, weekend). Say the

rating matrix has millions of ratings, if the plain item

splitting procedure is applied as-is, it would take hours to

perform the t-statistics that is needed as a core element of

the procedure. This is because it needs to check every

combination of contextual conditions for each item, which

is an expensive exhaustive scan. On the other side, our

retrofitted version checks only the combinations of

contextual conditions that show statistical significance

through the application of ANOVA. By applying our

retrofitted version of item splitting, we significantly prune

the search space in such a way that boosts the time-based

quality performance of the overall system. Our approach

resorts to a two-stages procedure in which, first, we filter

the conditions space and, then, we refine the obtained

results. The filtering stage (where we apply ANOVA,

which is a greedy approach) results in a sub-list that is

partially selected from the total contextual conditions space.

In the second stage (i.e., refinement), we apply the impurity

test [23] (i.e., t-test) as described in the seminal item-

splitting work [2, 3] for the partial list that resulted from the

filtering stage. The result of the impurity test is a list of

contextual conditions that can be used for splitting items.

Stated another way, our retrofitted item splitting

procedure operates as follows; First, for every relevant

context feature we apply the Analysis of Variance

(ANOVA), thereby extracting the F-value and p-value

statistics. We depend on profiling the dataset for selecting

the appropriate p-value. However, for most datasets p-value

less than or equal 0.05 is a scientifically desirable margin.

We select a feature with the more-the-better F-value pattern

FIGURE 2. Context-Aware Neural Collaborative Filtering (CA-NCF)

by retrofitting an explicit feedback NCF

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

(F statistic shows the joint effect of contextual features

altogether), and to evaluate pair means, we further conduct

a Tukey post hoc test, where p-values greater than a

threshold (e.g., 0.05 is statistically desirable) indicate that

there is no significant difference while values less than the

threshold signify the opposite. The selected pairs are

considered the base for item-splitting and thus we feed

them to the plain item-splitting sub-procedure, which

proceeds as exactly as described in the original paper [2, 3].

Running this procedure per se constitutes a fundamental

part of our contributions in this paper. Referring to the

previously mentioned contextual features example, our

filtering stage may select only two contextual features from

the contextual features space. For example, say that it

selects ‘day of week’ and ‘year’. Thereafter, the Tukey’s

HSD will show the most significant contextual conditions

pairs from all the possible combinations of permutations in

the ‘day of week’ and ‘year’ features. Suppose that the

Tukey’s HSD shows that the following pairs are significant:

(weekend, weekday) for ‘day of week’ and (‘2018’, ‘not

2018’) for ‘year’. Those show p-values less than 0.05.

Those will then constitute the partial list of potential (yet

probabilistic) contextual combinations that will be passed

over to the refinement stage. In the refinement stage, we

apply the t-test on each unique item from the ratings space.

For each item, we split the ratings into two rating lists

based on each of the combinations in the partial contextual

pairs and apply the t-test. We then take the maximum t-test

for each item and if it was greater than the threshold (e.g.,

greater than 4), we split the item based on the contextual

pair combination that resulted in such a t-statistic (for

example <’weekday’, ‘weekend’>).

B. Context-Aware NCF (CA-NCF): Pre-Filtering
Approach for Contextual Incorporation

Our novel algorithm is a hybridization between a

retrofitted version of the item-splitting contextual

incorporation paradigm and an adapted explicit feedback

version of NCF, thus combining the benefits of both in a

way that enables them to mutually reinforce each other

without loss of generality. Dub our version as CA-NCF
2

(short for Context Aware Neural Collaborative Filtering).

Item-splitting in this setting is considered as a frontstage

that is intended for seamlessly capturing and incorporating

context information into the item components of the NCF

without changing the core of the plain NCF algorithm. The

crux of this design is that it injects context-awareness in a

manner that preserves (to a good extent) the running time of

the underlying NFC engine, but at the same time benefiting

from the planted context features in generating more

accurate context-aware recommendations. Fig. 2 depicts the

workflow of our algorithm.

We have added a stage before ‘sparse item vectors’,

where we perform item-splitting, thus embedding explicit

context-aware features to better capture the contextual

2 The source code of CA-NCF (including the retrofitted item-splitting

algorithm) is available at: https://github.com/IsamAljawarneh/CA-NCF

interaction between users and items. We first restored NCF

to work with explicit-feedback data representations. We

then incorporate selected context features into NCF

prediction model at no cost, since we are constructing a

new artificial item, thus recovering the same pattern of the

model. We thus redefine the prediction model as in (1).

 𝑟̂𝑢𝑖𝑐 = 𝑓 (𝑃𝑇𝑉𝑢
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶 |𝑃, 𝑄𝑎𝑟𝑡, Θ𝑓) 

We have simply replaced 𝑉𝑖
𝐼 in the plain NCF algorithm

with a new item sparse vector 𝑉𝑖𝑐
𝐼𝐶 that incorporates context

conditions (a step through a retrofitted item-splitting

procedure as described in § III. A). The new setting thus

constitutes a bottom-most layer encompassing two feature

vectors 𝑉𝑢
𝑈 and 𝑉𝑖𝑐

𝐼𝐶 that features user u and an artificial

item i (embedding item i and context condition c),

respectively. We use content features for representing users,

items and contexts since our adaptation of NCF works for

explicit feedback cases.

𝑟̂𝑢𝑖𝑐 is the rating of a user for an item under a specific

context condition. Θ are model parameters to be estimated.

𝑃 ∈ ℝM×K
 and 𝑄𝑎𝑟𝑡 ∈ ℝN×K

 are latent factor matrices for

users and artificial (i.e., fictious) items, respectively. Θ𝑓 is

a set of model parameters for the interaction function f,

which then can be reformulated as in (2)

𝑓(𝑃𝑇𝑉𝑢
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶) =

𝜙𝑜𝑢𝑡𝑝𝑢𝑡(𝜙𝑛 (… … . (𝜙1(𝑃𝑇𝑉𝑢
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶)) … . .)) (2)

where 𝜙𝑜𝑢𝑡𝑝𝑢𝑡 is a mapping function employed on the

output layer, and 𝜙𝑛 is the n
th

 mapping function for a NCF

layer.

Stated another way, our newly introduced 3-dimensional

prediction function can be formulated with a 2-dimensional

function such as in (3), adapted from [1] .

ℛU x I x C
RL (𝑢, 𝑖, 𝑡) = ℛU x I

 [c 𝜖 cc] (U,I,R)
(𝑢, 𝑖) (3)

Where RL is the complete rating list, containing records

on the <user, item, context, rating> form. ‘cc’ is a context

condition (e.g., ‘weekday’), [𝑐 𝜖 𝑐𝑐] is the contextual pre-

filter. [𝑐 𝜖 𝑐𝑐] (𝑈, 𝐼, 𝑅) is the subset selected from the RL

list based on the [𝑐 𝜖 𝑐𝑐] pre-filter. This subset is then

projected into a two-dimensional space by only selecting

the user (U) and item (I) dimensions. For example, a

prediction of the form

ℛ𝑈 x 𝐼 x 𝐶
𝑅𝐿 (𝑆𝑎𝑟𝑎ℎ, ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′, 𝑤𝑒𝑒𝑘𝑒𝑛𝑑) will

be transformed into

ℛ𝑈 x 𝐼
 [𝑐 𝜖 𝑤𝑒𝑒𝑘𝑒𝑛𝑑] (𝑈,𝐼,𝑅)

(𝑆𝑎𝑟𝑎ℎ, ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′) in

order to predict the rating for the ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′
song by user ‘Sarah’ in a ‘weekend’ day (contextual

condition), including ‘Saturday’ and ‘Sunday’.

Conceptualizing our context-aware incorporation this

way allows us to easily recover NCF, thus ensuring that the

robustness of NCF mutually reinforce our embedded

retrofitted-version item-splitting in a way that provides a

statistically significant context-aware prediction rating

without loss of generality of NCF. Another advantage is

that with this approach, the computational complexity of

our algorithm is reduced to that of only performing NCF on

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

a two-dimensional space (since the newly artificial number

of items is equal to a maximum of (n + m), where m is the

number of split items), which is numerically preferred, but,

at the same time gaining the privileges provided by

seamlessly incorporating context-related features into the

play. We show subsequently that we obtain better

predictive performance than would be gained by

independently employing each of those models to same

settings.

We argue that our methodology has good potential for

streaming DL jobs as it is computationally less expensive

than counterparts that potentially stack more convolutional

layers for the purpose of enhancing predictions with

contextual tags.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we discuss experimental settings, datasets

we rely on, and proposed methodologies for performance

comparison. In addition, the section describes the baselines

we compare our original solutions with, parameter

configurations and coding. Afterwards, we report the

experimental results measured and an extensive discussion

about the motivations and lessons learned from these results.

A. Experimental Settings

Datasets. We depend on three public datasets of diverse

sizes for experimentation; a big dataset, Movielens 1M [7],

in addition to a small size dataset, DePaulMovie [8] and a

medium-sized dataset, TripAdvisor [9]. By this diversity of

combination, our intention is to prove the robustness of our

algorithms under various real scenarios. The statistics of the

datasets are as follows; Movielens dataset that we select

contains around one million ratings by almost 6040 users

for around 3706 movies (i.e., items). For TripAdvisor, it

was crawled from online reviews on TripAdvisor website.

there is only one context, trip type (values include Family,

Couples, Business, Solo travel, Friends). The dataset is

sparse in both ratings and contexts, comprising 14175

ratings, 2731 users and 2269 hotels. DePaulMovie was

collected through surveys, where students are requested to

rate movies in various time, location, and with different

companions, which all are considered relevant contexts in

this setting. Comprising 5035 ratings, 97 users, 79 items,

and data density 17.48%. We specifically choose those

datasets as they are well-established representatives for

contextually tagged explicit-feedback recommendation

data. Also, they have been used extensively by the creators

for comparing state-of-art CARS algorithms, considering

that contextually tagged datasets for explicit-feedback RSs

is scarce and rare. MovieLens dataset does not contain

contextual features explicitly. However, it contains a

timestamp for each captured rating, which then is

considered an implicit source of contextual information [1]

. Simply put, we have flattened the timestamp into its

constituent granular parts, which then constitute relevant

contextual factors. Specifically, we have extracted the

following context factors from each timestamp: ‘day of

month’, ‘day of week’, ‘month’, ‘year’, ‘day of year’ and

‘day of month’. For example, the original contextual

conditions list for the ‘day of week’ contains all the seven

days from ‘Monday’ to ‘Sunday’. This potentially increases

the data sparsity, which is a common problem in

recommender systems research [1] . Sparsity can be loosely

defined as the data distribution for which not enough

ratings data is available for accurate rating predictions. To

avoid this kind of sparsity, we have transformed such data

into pairs. For example, the ‘day of week’ contextual

conditions list is transformed into the (‘weekend’,

‘weekday’) pair, where ‘weekend’ implicitly contains

(‘Saturday’, ‘Sunday’), whereas ‘weekday’ contains

implicitly all the other five days. Stated another way, the

ratings data may not have enough ratings about the

historical movie watching events for a user in a ‘Sunday’.

Taking the exact context conditions this way may expand

the sparsity gap in the dataset, rendering the process

inappropriate for context-aware recommendations. On the

other hand, we reap many benefits by binarizing the

contextual conditions so that each context factor’s

conditions are split in two groups.

 In Movielens 1M dataset, to account for sparsity, we

have dropped items that appear in less than 100 rating

decisions. We also have dropped users with less than 20

ratings. The resulted dataset size equals around 940k. For

DePaulMovie and TripAdvisor datasets we drop items with

less than 5 ratings, resulting in around 5018 and 10414

ratings for DePaulMovies and TripAdvisor, respectively.

Evaluation methods. To evaluate rating performances,

thereby comparing our method with the baselines, we have

conducted a train-testing evaluation (with 10 epochs training

and 80% training dataset). We have used sparse-categorical-

crossentropy as our loss function. The rationale for choosing

sparse-categorical-crossentropy is to avoid the one-hot

encoding imposed by using the plain categorical-

crossentropy, as the latter requires one-hot encoding the

target variables in multiclass classification problems (explicit

feedback recommenders belongs to the multiclass

classification family), thus converting them into categorical

formats, whereas the former accepts the multiclass values as-

is. Since we have multiclass values in the target field (i.e.,

ratings, which span from 1 to 5) then we have opted for

sparse-categorical-crossentropy. Also, we have used Adam

and SGD as the optimizers. Thereafter, we have captured the

average Mean Absolute Error (MAE) and validation loss as

loss (error) metrics, which are widely accepted measurement

in relevant literature. MAE and validation loss are decline-

oriented scoring mechanisms for which values follow lower-

better trend. We have redefined MAE by incorporating

contextual features into the equation. The retrofitted MAE is

calculated using (4)

𝑀𝐴𝐸 = 1
|ℛ𝑣𝑎𝑙𝑖𝑑|⁄ ∑ | 𝑟̂𝑢𝑖𝑐 − 𝑟𝑢𝑖𝑐|𝑟𝑢𝑖𝑐 ∈ ℛ𝑣𝑎𝑙𝑖𝑑

 (4)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

Where ℛ𝑣𝑎𝑙𝑖𝑑 is the validation set, 𝑟̂𝑢𝑖𝑐 is the function that

we want to learn for predicting the rating of a user 𝑢 to an

item 𝑖 given the contextual condition 𝑐. The 𝑟𝑢𝑖𝑐 is the target

rating.

MAE is the most adopted error metric for rating-oriented

recommenders, and it is preferred to accuracy metrics (e.g.,

recall and precision) in cases where we have an access to

explicit feedback systems such as those that we focus on in

this paper [1, 24, 25] .

However, since we are also interested in measuring the

quality of recommendations, we have also applied an

accuracy measure. Specifically, a rank-aware metric for top-

N rating predictions (a.k.a. precision-in-top-N [26]). We

have specifically applied the top-one-accuracy (a.k.a. P@1,

read ‘precision at 1’, shorthand for precision at cutoff 1),

which belongs to the class of Precision@k accuracy metrics

[1]. The rationale for selecting this metric is to evaluate the

Top-N recommendations and in this case quantifying the

times that the top element in the Top-N list matches the

target. Stated another way, P@1 is calculated by only

considering the first rank in our recommendation list for each

user. p@1 is an incline-oriented scoring system where the

higher-better applies. Since we are incorporating contextual

information into the recommendation model, the precision is

calculated as the ratio of the correct top-1 ranks to the

number of items suggested given a specific contextual

condition. A further reason that rationales the selection of

such an accuracy measure is that in real scenarios, most users

are interested in checking the highest ranked items [26].

Also, in our case scenarios, the counts of recommendations

shown to user by the application are preordained, rendering

precision-oriented measures (such as P@1) suitable [1].

To obtain good fit learning curves (a.k.a. convergence)

that falls between an overfit and underfit model, in order to

generalize the model, we have repeated the experiments 100

times, where we evaluate the same model on the same data

many times and only vary the seed for the random number

generator, then we calculate the mean of the estimated model

skill (Loss, MAE and Top1Accuracy). We did this because

DL methods are stochastic (i.e., they learn via a stochastic

training algorithm), meaning that we get a different

diagnostic plot each run. Hidden layers exploit ReLU as an

activation function, whereas the output layer depends on

softmax as an activation function.

To compare our retrofitted item-splitting procedure (refer

to section III. A. for further information) with the plain item-

splitting algorithm, we have measured the running time by

varying the data size.

Baselines. To show how our method (CA-NCF) excels

in achieving statistically plausible results, we choose a

bunch of standard benchmark methods from the relevant

state-of-art. Specifically, we choose three categories as

baselines to compare with. Those categories are the

following:

Category#1. Plain pre-filtering contextual incorporation

and DL-based recommenders. Most importantly, we

compare our algorithm with the baselines that in

hybridization form the constituent parts of our algorithm.

Since our algorithm (CA-NCF) is a hybridization between

the plain prefiltering item-splitting contextual incorporation

approach [2, 3] and the vanilla NCF [4] , we first compare

with the following:

 Plain baseline (NCF) [4] , specifically an explicit

feedback version, that constitutes the latest trending

and benchmark DL-based algorithms for

recommender systems.

 Item-splitting Item KNN [2] , which constitutes the
traditional application of item-splitting as it first
appeared. An adapted version of the item-based CF,
which injects contextual information into the item
component, thus recovering classical CF-based
recommendation method by turning the User-Item-
Context Rating (UICR) representation into a User-Item-
Rating (UIR) classical representation and thereafter
feeding it to item KNN.

Category#2. A benchmark baseline that does not

consider contextual information, which is the following:

 A biased matrix factorization method [28] , which is

a standard benchmark context-free (i.e., does not

consider contextual information) method.

Category#3. A benchmark that uses contextual

modelling for incorporating contextual data. That is the

following:

 Context-Aware Matrix Factorization (CAMF) [29],

which is a method for incorporating contextual-

information into MF. It introduces new parameters

based on contextual conditions (a.k.a., values of a

contextual features), such that each item (or

user)/context-condition pair has a distinct parameter

(which significantly increases parameter space) and

improves the prediction accuracy in cases where

contextual conditions influence user-item interaction.

It presumes that the contextual rating deviation is

dependent on items.

We have selected CAMF, item-splitting on item KNN as

they are the standard benchmarks for CARS research,

utilizing both contextual incorporation methods; contextual-

modeling and pre-filtering, respectively [29] .

Hyper-Parameter configurations. We have tuned our

algorithms at various levels, CA-NCF models are learnt

based on log loss optimized by NCF, since our retrofitted

version of item-splitting is a pre-filtering contextual

incorporation method it does not affect the working

mechanism of the underlying algorithm. We use Stochastic

Gradient Decent (SGD) and Adam as optimizers. We have

tested the batch sizes of 64, 128 and 256 (for DePaulMovies

and TripAdvisor datasets), whereas we use 8k and 16k for

MovieLens 1M dataset. We set learning rates ranging from

0.01 to 0.0001 and 0.05 to 0.0005. MLP operate on two

hidden layers [20,10], and embedding size is 20. NeuMF was

excluded, thus recovering the raw NCF. Other hyper-

parameters include epoch which is set to maximum 10. One

epoch is when an entire dataset is passed once through a NN.

We use impurity criteria [23] to decide whether to split an

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

item. We have selected 𝑇𝑚𝑒𝑎𝑛 as a measure to estimate the

statistical significance (i.e., using two-sample t-test for

identifying the significance of differences of the means of

ratings in the two ratings subsets divided based on a

contextual condition, where bigger-better applies) between

means of pairs of rating lists, where each list corresponds to a

contextual condition. We have selected t-statistic threshold as

the following: 4 for MovieLens and TripAdvisor datasets, 2.5

for DePaulMovies dataset. The threshold value 4 is almost

equivalent to the 0.05 level of statistical significance (a.k.a.

p-value), which is statistically plausible.

Notice that we perform the impurity test on a subset of

contextual conditions. Those are the contextual conditions

that we have selected through the filtering stage (recall our

filter-and-refine approach from section III. A.).

Implementation insights. We have conducted our

feature engineering using 𝑅 language for the broad range of

tools it provides. We also use R language for conducting the

prefiltering stage, where we exploit the libraries that offer

ANOVA and Tukey’s HSD tests. On the other side of the

work, our algorithm has been implemented as patches using

Python language on Spark based on the BigDL framework

[5]. We have introduced our retrofitted-version of item-

splitting to the BigDL framework by using functions from

the Pandas library on Python. The rationale behind this

selection of BigDL is that for Spark, principal functions

come standard with the codebase distribution, but DL

functions necessitate additional libraries. However, BigDL

preserves the robustness and generality of Spark as its

patches compile down to Sparks core abstraction (known as

RDD [30]). Also, we find that by using Python for most of

our application tasks, and porting some to R for feature

selection (not Java or Scala) we take a performance hit,

which is for DL jobs lesser when using Java or Scala. We

aim at leveraging the best from both worlds, taking

advantage from R’s and Spark’s BigDL strengths without

risks.

B. Context-Aware Neural Collaborative Filtering (CA-
NCF) Test Results

In this subsection, we delineate the results that we have

obtained in a coherent and systematic way. We follow the

same procedural steps as described in section III. Starting

from the application of our retrofitted-version of item-

splitting, where we compare its running time with the

baseline plain item-splitting. Fig. 3 shows that the

retrofitted- item-splitting significantly outperforms plain-

item-splitting in the language of running time. As the figure

shows, plain- item-splitting requires a substantial running

time that significantly increases as the data size increase.

Those numbers have been captured with MovieLens 1M

dataset [7], which contains moderate number of contextual

features. Those number are slated to be doubled for larger

number of contextual information, negatively affecting the

overall performance of the system. On average, we obtain a

FIGURE 5. Validation loss of CA-NCF Vs. NCF (using SGD and

Adam optimizers) w.r.t. the number of iterations on DePaulMovies
dataset

FIGURE 6. Validation loss of CA-NCF Vs. NCF (using SGD and

Adam optimizers) w.r.t. the number of iterations on TripAdvisor
dataset.

FIGURE 4. Validation loss of CA-NCF Vs. NCF (using SGD and

Adam optimizers) w.r.t. the number of iterations on MovieLens 1M

dataset.

FIGURE 3. Running time of plain-item-split against retrofitted-

item-split on MovieLens 1M dataset

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

running time decrease gain of roughly 70% by applying our

retrofitted- item-splitting procedure instead of the plain-

item-splitting.

Now we focus on the validation learning curves to

capture the way both models (our CA-NCF and plain NCF)

are generalizing. We show those curves using different

settings for our CA-NCF and the plain NCF by executing

them both on top of the same software stack (i.e., BigDL)

[5].

We have tested our CA-NCF relying on three publicly

available open source datasets (refer to section VI. A. for

information). Fig. 4 shows the validation loss using SGD

and Adam optimizers, averaged from 100 runs. We obtain,

on average, 1.85 % loss gain by applying CA-NCF

comparing to the seminal baseline NCF, with Adam

optimization method applied. The same trend almost occurs

by applying SGD (despite obtaining less optimization

compared to Adam, being on average 0.91 %, however still

outperforming plain NCF).

The advantage of SGD however is that the convergence

happens earlier. This particularly supports findings from

relevant literature that adaptive optimization techniques

(such as Adam) generalize poorly compared to SGD [32] .

The biggest shift occurs after 140 iterations for SGD,

and after 240 for Adam, that is when CA-NCF and NCF

stabilize. We also note that Adam needs more iterations to

stabilize, showing, however, ultimately similar trend. Those

results are obtained by choosing a batch size that is equal to

16k.

Similar trends occur for DepaulMovies and TripAdvisor

datasets as shown in figures 5 and 6, respectively. We have

obtained 0.37% loss gain for SGD and 3.98% for Adam on

average for the DepaulMovies datasets. Also, we have

obtained 1.6% and 2.16% on Adam and SGD, respectively,

for the TripAdvisor dataset.

It worth mentioning that all results show similar trends

comparing SGD to Adam, as they both converge earlier

using SGD. We also find that for both settings, SGD

requires a learning rate that is higher than Adam

counterpart (by a scale of 100) in order to obtain a good fit

(not over- or under-fitting), ranging from 0.0005 to 0.05

and 0.0001 to 0.01, respectively. All in all, our version CA-

NCF significantly outperforms the plain NCF for the

validation loss skill (remind that we use the sparse-

categorical-crossentropy as a validation loss function). We

note that extra iterations (smaller batch size) has a property

that allows obtaining more loss gain (statistically plausible).

It is well established that a good fit model is the one

performing good on the train and validation sets. This can be

diagnosed from a plot where the train and validation loss

decrease and stabilize around the same point. An example

running session from our case is shown in fig. 7, where the

shading area constitutes the train loss. We note that the

convergence applies to both NCF and CA-NCF, with CA-

NCF outperforming.

To conclude this test, our CA-NCF model is able to

generalize better than the vanilla NCF as it is shown from

figures 4,5,6 and 7.

In another accuracy test, we aim at comparing the

accuracy of our CA-NCF model with other benchmark

baselines (refer to section IV. A. for more information). For

this, we have selected MAE. Fig. 8 shows that our model

CA-NCF outperforms baselines with statistically significant

margins. Our model CA-NCF registers a gain that is roughly

equals to 2.35 %, on average. Those figures are doubled

when comparing CA-NCF with the plain item-split KNN,

where we obtain roughly a gain that is equal to 6.2%, on

average, whereas they are quadrupled when comparing CA-

NCF to CAMF, where we obtain roughly 8.9% gain, on

average. In addition, we obtain a significant 11.66 % gain

over the context-free biasedMF.

It is worth mentioning though that the plain NCF performs

better than the other classical benchmarks (such as item-split

FIGURE 9. Top1Accuracy performance learning curve for CA-NCF
against plain NCF on MovieLens 1M dataset

FIGURE 7. Good fit of CA-NCF (validation and train losses converge

at almost the same point) on MovieLens datasets

FIGURE 8. MAE of CA-NCF against counterparts for all

benchmark datasets

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

KNN and CAMF). From all the methods that have been

compared, context-free biasedMF performs the worst. This is

expected as it does not consider contextual features. Those

results support that explicitly considering contextual

information yields more accurate recommendations.

Another important learning curve that shows how well a

model generalizes is the performance learning curve, Top-

one-accuracy, which shows an opposite trend (statistically

attractive), where more accuracy is better. As shown in fig. 9,

by applying the Adam to MovieLens dataset, we obtain, on

average, (for 100 running sessions) roughly 6.4 % top-one-

accuracy gain. Our model generalizes better than the plain

model as the figure shows. This empirically confirms the

effectiveness and productiveness of explicitly incorporating

contextual information into explicit-feedback NCF layers. As

a general trend, validation loss of CA-NCF models decline

while predictivity performance enhance. However, adding

more iterations does not seem to improve the accuracy above

a specific margin and both models stabilize at almost the

same iterations.

To further quantify the significance of our model, we have

compared CA-NCF and NCF with several state-of-art

benchmarks (as described in Section VI.A. for information).

Fig. 10 shows that our model performs the best in terms of

top-one-accuracy, where we obtain roughly 3.25% and 4%

accuracy gain by applying CA-NCF instead of the plain

NCF, on average, by applying Adam and SGD, respectively.

Even though NCF underperforms our model, it outperforms

the state-of-art benchmark systems by statistically significant

magnitudes. We obtain roughly 60%, 55%, and 87%

accuracy gain, on average, by applying our model CA-NCF

against item-split KNN, CAMF and biasedMF, respectively.

It worth noticing that even though we have obtained less gain

by applying Adam instead of SGD and comparing CA-NCF

to NCF, we obtain higher accuracy gain when applying

Adam instead of SGD.

All the results shown in this section provide a compelling

argument on the level of improvement of CA-NCF over

NCF. CA-NCF noticeably improves the recommendations

quality for datasets that are explicitly (or implicitly) tagged

with relevant contextual features. Traditionally, those

features have been treated as additional information that are

embedded into hidden layers of sequentially stacked neural

layers. By explicitly incorporating context into a DL-based

recommender system, we reap many benefits that

significantly enhance the overall prediction quality of the

recommender system.

Also, since we are applying a prefiltering stage that

selectively prunes the contextual features (and thereby

conditions) search space, the results show similar trends for a

variety of datasets despite the variance in data sizes and the

number of contextual features. This provides a glimpse that

the important thing to consider is the presence of relevant

contextual features in the datasets either explicitly or

implicitly (e.g. a ‘timestamp’), not accounting significantly

for the number of those features. This in part is due to the

fact that we apply an impurity check as an integral part of the

prefiltering stage, where we only select statistically

significant features and their associated conditions. However,

we argue that completeness of contextual information may

not influence the quality of recommendation in the same way

the underlying procedure does. In addition, this may need

further future investigation with varying sets of datasets that

have dissimilar statistical distributions (i.e., being normally

distributed, skewed or highly skewed). This however falls

outside the scope of this paper.

V. RELATED WORK

Very few works in the relevant literature explicitly

incorporate contextual information into DL-based

recommender systems. Most importantly, we mention few

recent works that are based on Recurrent Neural Networks

(RNN). [32] propose to extract static user-side contexts and

model a high-order interaction with a previous item using a

product-based neural network (PNN), a Neural Network

(NN) variant of factorization machine (FM), in order to

augment an existing RNN model, a method that is dubbed as

Augmented RNN (ARNN), thereafter, they compare that to a

baseline untouched RNN. ARNN achieves favorable results

over plain RNN, the drawback, however, is that it is only

applicable for static user contexts such as age, country and

job. Hence, it does not consider the dynamicity of real-life

context application scenarios, where user explicit feedback

may change depending on a dynamic surrounding context.

In the same vein, aiming at mitigating the deficiency of

RNN in modeling contextual information, [33] propose a

model termed as Context-Aware Recurrent Neural Networks

(CA-RNN) that operates adaptive context-specific input

matrices to model contextual information into and end-to-end

network, by incorporating contexts into the reference RNN

model through the items matrix. Time intervals (between

adjacent behaviors) have been treated as transition contexts

and incorporated into the model. The design is however

driven by the fusion of sequential and contextual analysis in

one framework.

Aiming at improving next item prediction, [34] introduce

a Contextual RNN (CRNN) algorithm by leveraging

contextual information for the item sequence modeling. They

basically achieve this by either incorporating item

representation with context via several non-linear

transformations (which is considered a prefiltering) or

FIGURE 10. Top1Accuracy performance learning curve for CA-NCF
against plain NCF and the state-of-art benchmarks on all datasets

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

context-dependent dynamics modeling, where context is used

to parametrize the dynamics of the hidden state transition.

This algorithm, most importantly, has an input module that

creates a dense input embedding from sparse original input

data, thus bringing context information into item

representation, mimicking the prefiltering incorporation

approach. Then the final combined representation is passed

to the recurrent update module. Concatenation assumes no

effect of context on item representation.

It worth mentioning that contextual pre-filtering is a

contextual incorporation approach that normally precedes the

recommender model in order to get more accurate values.

Hence, there are only few contextual pre-filtering

incorporation approaches in the relevant literature. Some

approaches are based on dimensionality reduction. For

example, [35] incorporates contextual information into RSs

using a multidimensional approach. However, the proposed

method considers the exact values of contextual conditions,

which then increases the data sparsity, negatively affecting

the quality of the RS. Accounting for sparsity, the same

authors suggested a generalized prefiltering approach, where

they use a generalized filter for context conditions instead of

the exact values. For example, if we want to recommend a

song to a person based on the ‘day of week’, we would use

not only ratings that correspond to ‘Saturday’ for predicting

the song she may be interested in listening to in a ‘Saturday’,

but also we use the ratings from ‘Sunday’ as both fall into the

‘weekend’ pair-wise context condition split. A variant for the

item-splitting approach is the user-splitting (a.k.a. micro-

profiling), which acts as exactly as the item-splitting but

instead of splitting items based on statistical significance of

differences in rating means, it splits user profiles based on the

same statistics into the so-called micro-profiles so that each

user has multiple profiles with each profile corresponds to a

specific contextual condition [36].
Despite significant, approaches of the relevant literature

act by either capturing complex transitions of item

preferences through time intervals (modeling them as a

transition context) or modelling contextual information into

the layers of the NN. We contend, however, that simpler

methods for incorporating contexts are more time-efficient

while yielding statistically significant results. Also, their

incorporation into end-to-end DL-based RSs is simpler,

require less hyperparameter tuning and does not require the

adaptation while jumping through domains.

For deeper surveys on recommender systems generally

and also on DL-based RSs, we refer the interested reader to

these two specific works [21, 37] .

VI. CONCLUDING REMARKS, CHALLENGES, AND
OPEN ISSUES

Information overloading is currently challenging state-of-the-

art pervasive solutions in their ability to provide customized

recommendations based on user preferences. Traditionally,

explicit feedback systems consider user-item-rating

interaction patterns, by neglecting important contextual

information. It has been extensively proven recently that

contextually enriched models yield more statistically

significant results and personalized recommendations. We

argue that discarding contextual information while

performing recommendations has associated dangers and

subtleties. The introduction of contextual modeling

techniques mostly dominated by MF-based methods has

encouraged practitioners in all domains to accept contextual

metadata as an integral part of any successful RS. We have

found that, to the best of our knowledge, no DL-based RS is

incorporating context using pre-filtering methods such as

item splitting.

In this paper, we have designed a DL-based RS method as

hybridization between the recently popularized NCF and an

important contextual incorporation method known as item-

splitting. The hybridization benefits from both worlds

without their limitations. State-of-art DL-based

incorporations involve stacking many convolutional layers,

which is computationally expensive, complicates the model

and makes it susceptible to over and under-fitting problems.

These issues are exacerbated by the fact that those settings

require heavy hyperparameter tuning efforts. We instead

opted for encoding context cues explicitly through a

prefiltering incorporation method that simply acts as a

frontstage which feeds its output to the network, thus

simplifying the model and making it easier. By incorporating

contexts, CA-NCF makes more personalized

recommendations than the plain NCF, which does not

intrinsically consider contexts. Limitations of beefed-up

centralized server-based computational models have

motivated us to employ a distributed robust framework atop

Apache Spark (specifically relying on libraries provided by

BigDL), aiming at combining our algorithms with other jobs

that potentially contain burst streaming workloads.

As a future perspective, we encourage engaging multi-

criteria ratings during prediction, which is loosely defined as

the correlation between the overall rating and other fine-

grained ratings. Moreover, the only computational cost

associated with our framework lies behind feature

engineering and selection aspects, which works just fine for

data-at-rest. However, we plan to optimize in a future work

so that we prepare our algorithms for data-in-flight (online)

dynamic settings. We are starting by analyzing how our

models in their current state perform in the wild (aggressive

online dynamic settings with burst streaming workloads).

ACKNOWLEDGMENT

This research was supported by the SACHER (Smart

Architecture for Cultural Heritage in Emilia Romagna)

project funded by the POR-FESR 2014-20 (no.

J32I16000120009) through CIRI.

REFERENCES

[1] F. Ricci, L. Rokach and B. Shapira, "Introduction to recommender
systems handbook," in Recommender Systems Handbook. Springer,

2011, pp. 1-35.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

[2] L. Baltrunas and F. Ricci, "Context-based splitting of item ratings in
collaborative filtering," in Proceedings of the Third ACM

Conference on Recommender Systems, 2009, pp. 245-248.

[3] L. Baltrunas and F. Ricci, "Experimental evaluation of context-
dependent collaborative filtering using item splitting," User

Modeling and User-Adapted Interaction, vol. 24, (1-2), pp. 7-34,

2014.
[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu and T. Chua, "Neural

collaborative filtering," in Proceedings of the 26th International

Conference on World Wide Web, 2017, pp. 173-182.
[5] J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C.

Zhang, Y. Wan and Z. Li, "BigDL: A distributed deep learning

framework for big data," arXiv Preprint arXiv:1804.05839, 2018.
[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica,

"Spark: Cluster computing with working sets." HotCloud, vol. 10,

(10-10), pp. 95, 2010.
[7] F. M. Harper and J. A. Konstan, "The movielens datasets: History

and context," Acm Transactions on Interactive Intelligent Systems

(Tiis), vol. 5, (4), pp. 19, 2016.
[8] Y. Zheng, B. Mobasher and R. Burke, "Carskit: A java-based

context-aware recommendation engine," in 2015 IEEE International

Conference on Data Mining Workshop (ICDMW), 2015, pp. 1668-
1671.

[9] Y. Zheng, B. Mobasher and R. Burke, "Context recommendation

using multi-label classification," in Proceedings of the 2014
IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume
02, 2014, pp. 288-295.

[10] J. B. Schafer, D. Frankowski, J. Herlocker and S. Sen, "Collaborative

filtering recommender systems," in The Adaptive WebAnonymous
Springer, 2007, pp. 291-324.

[11] Y. Zheng, "Interpreting Contextual Effects By Contextual Modeling

In Recommender Systems," arXiv Preprint arXiv:1710.08516, 2017.
[12] Y. Zheng, B. Mobasher and R. D. Burke, "Incorporating context

correlation into context-aware matrix factorization." in Cpcr Itwp@

Ijcai, 2015, .
[13] R. Burke, "Hybrid web recommender systems," in The Adaptive

WebAnonymous Springer, 2007, pp. 377-408.

[14] A. Schmidt, M. Beigl and H. Gellersen, "There is more to context

than location," Comput. Graph., vol. 23, (6), pp. 893-901, 1999.

[15] A. Karpus, I. Vagliano, K. Goczyła and M. Morisio, "An ontology-

based contextual pre-filtering technique for recommender systems,"
in 2016 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2016, pp. 411-420.

[16] V. Codina, F. Ricci and L. Ceccaroni, "Distributional semantic pre-
filtering in context-aware recommender systems," User Modeling

and User-Adapted Interaction, vol. 26, (1), pp. 1-32, 2016.

[17] W. Lee and G. Tseng, "Incorporating contextual information and
collaborative filtering methods for multimedia recommendation in a

mobile environment," Multimedia Tools Appl, vol. 75, (24), pp.

16719-16739, 2016.
[18] U. Panniello, A. Tuzhilin and M. Gorgoglione, "Comparing context-

aware recommender systems in terms of accuracy and diversity,"

User Modeling and User-Adapted Interaction, vol. 24, (1-2), pp. 35-
65, 2014.

[19] U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano and A.

Pedone, "Experimental comparison of pre-vs. post-filtering

approaches in context-aware recommender systems," in Proceedings

of the Third ACM Conference on Recommender Systems, 2009, pp.

265-268.
[20] U. Panniello, A. Tuzhilin and M. Gorgoglione, "Comparing context-

aware recommender systems in terms of accuracy and diversity:

which contextual modeling, pre-filtering and post-filtering methods
perform the best," 2012.

[21] S. Zhang, L. Yao, A. Sun and Y. Tay, "Deep learning based

recommender system: A survey and new perspectives," ACM
Computing Surveys (CSUR), vol. 52, (1), pp. 5, 2019.

[22] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to

Statistical Learning. Springer, 2013112.
[23] L. Breiman, Classification and Regression Trees. Routledge, 2017.

[24] R. Chulyadyo and P. Leray, "A Framework for Offline Evaluation of
Recommender Systems based on Probabilistic Relational Models,"

2017.

[25] G. Adomavicius and A. Tuzhilin, "Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible

extensions," IEEE Transactions on Knowledge & Data Engineering,

(6), pp. 734-749, 2005.
[26] G. Adomavicius and Y. Kwon, "New recommendation techniques for

multicriteria rating systems," IEEE Intelligent Systems, vol. 22, (3),

pp. 48-55, 2007.
[27] Y. Koren, R. Bell and C. Volinsky, "Matrix factorization techniques

for recommender systems," Computer, (8), pp. 30-37, 2009.

[28] L. Baltrunas, B. Ludwig and F. Ricci, "Matrix factorization
techniques for context aware recommendation," in Proceedings of the

Fifth ACM Conference on Recommender Systems, 2011, pp. 301-

304.
[29] Y. Zheng and A. A. Jose, "Context-aware recommendations via

sequential predictions," in Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, 2019, pp. 2525-2528.
[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker and I. Stoica, "Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster
computing," in Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, 2012, pp. 2.

[31] N. S. Keskar and R. Socher, "Improving generalization performance
by switching from adam to sgd," arXiv Preprint arXiv:1712.07628,

2017.
[32] Y. Song and J. Lee, "Augmenting Recurrent Neural Networks with

High-Order User-Contextual Preference for Session-Based

Recommendation," arXiv Preprint arXiv:1805.02983, 2018.
[33] Q. Liu, S. Wu, D. Wang, Z. Li and L. Wang, "Context-aware

sequential recommendation," in 2016 IEEE 16th International

Conference on Data Mining (ICDM), 2016, pp. 1053-1058.
[34] E. Smirnova and F. Vasile, "Contextual sequence modeling for

recommendation with recurrent neural networks," in Proceedings of

the 2nd Workshop on Deep Learning for Recommender Systems,
2017, pp. 2-9.

[35] G. Adomavicius, R. Sankaranarayanan, S. Sen and A. Tuzhilin,

"Incorporating contextual information in recommender systems using

a multidimensional approach," ACM Transactions on Information

Systems (TOIS), vol. 23, (1), pp. 103-145, 2005.

[36] L. Baltrunas and X. Amatriain, "Towards time-dependant
recommendation based on implicit feedback," in Workshop on

Context-Aware Recommender Systems (CARS’09), 2009, pp. 25-30.

[37] J. Lu, D. Wu, M. Mao, W. Wang and G. Zhang, "Recommender
system application developments: a survey," Decis. Support Syst.,

vol. 74, pp. 12-32, 2015.

Isam Mashhour Al Jawarneh is a research Assistant

and Ph.D. student at the Computer Science and

Engineering Department (DISI) of the University of
Bologna, Italy. His research interests cover many aspects

of big data stream processing and active data

warehousing for highly dynamic application scenarios.
He has authored/co-authored many international journal

articles and papers for flagship conferences (such as IEEE GLOBECOM

and ICC). He has a research and teaching experience at higher-education
level for more than 12 years.

Paolo Bellavista (SM’06) received MSc and PhD

degrees in computer science engineering from the
University of Bologna, Italy, where he is now a full

professor of distributed and mobile systems. His

research activities span from pervasive wireless
computing to location/context-aware services, from

edge cloud computing to middleware for Industry 4.0 applications. He is
currently the scientific coordinator of a large H2020 big data innovation

action called IoTwins about distributed digital twins for the manufacturing

industry. He serves on the Editorial Boards of IEEE Communications
Surveys and Tutorials, IEEE T. on Network and Service Management,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

VOLUME XX, 2019

Elsevier Pervasive Mobile Computing, Elsevier Journal on Network and
Computing Applications, and Springer Journal of Network and Systems

Management.

Antonio Corradi (SM’19) graduated from University

of Bologna, Italy, and received MS in electrical

engineering from Cornell University, USA. He is a full

professor of computer engineering at the University of
Bologna. His research interests include distributed

systems, middleware for pervasive and heterogeneous

computing, infrastructure for ser-vices and network
management.

Luca Foschini (SM’19) graduated from the
University of Bologna, Italy, where he received a Ph.D.

degree in computer science engineering in 2007. He is

now an associate professor of computer engineering at
the University of Bologna. His interests span from

integrated management of distributed systems and

services to wireless pervasive computing and scalable

context data distribution infrastructures and context-aware services.

Currently, he is working on mobile crowdsensing and crowdsourcing and

management of Cloud systems for Smart City environments.

Rebecca Montanari graduated from the University

of Bologna, where she received a Ph.D. degree in

computer science engineering in 2001. She is now an
associate professor of computer engineering at the

University of Bologna. Her research primarily focuses

on semantic-based middleware supports for service
provisioning, context-aware services, security solutions

for pervasive environments, policy-based service management, and

adaptive and scalable middleware solutions for system and service
management.

Javier Berrocal received the Ph.D. degree in computer

science from the University of Extremadura, Spain, in
2014. In 2016, he obtained an associate position at the

University of Extremadura. His main research interests

are mobile computing, context awareness, pervasive
systems, crowd sensing, the Internet of Things, and fog

computing. He is a cofounder of the company Gloin,

which is a software-consulting company.

Juan Manuel Murillo is a co-founder of Gloin and a full

professor at the University of Extremadura. His research
interests include software architectures, mobile computing,

and cloud computing. Murillo has a PhD in computer
science from the University of Extremadura.

