
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

 

VOLUME XX, 2019 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number 

A Pre-filtering Approach for  
Incorporating Contextual Information into  
Deep Learning Based Recommender Systems 

Isam Mashhour Al Jawarneh
1
, Paolo Bellavista

1
, Antonio Corradi

1
 , Luca Foschini

1
, 

Rebecca Montanari
1
, Javier Berrocal

2
 and Juan M. Murillo

2
 

1Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy 
2Escuela Politécnica, Universidad de Extremadura, Caceres, Spain 

Corresponding author: Isam Mashhour Al Jawarneh (e-mail: isam.aljawarneh3@unibo.it). 

ABSTRACT Depending on the Internet as the main source of information regarding all aspects of our life 

is becoming a trend. People seek relevant information, suggestions, and recommendations in an overloaded 

online world and through social ties regarding their daily activities, including places to visit and restaurants 

to try new food. The wide variety of choices that are available online causes information overloading, 

which thereby complicates the selection process. Traditional recommender systems are mostly dependent 

on a conventional model that is based on user-item-rating interaction without considering contextual 

information. We claim that new generations of recommendation systems able to exploit context in an 

innovative and efficient way is important and may statistically yield more significant rating predictions. 

However, only few research works have focused on how to effectively and efficiently exploit context 

metadata in Deep Learning (DL)-based recommendations. The main reason lies, perhaps most significantly, 

in the fact that most current DL algorithms are not intrinsically designed to incorporate contextual tags. In 

this paper, we provide a significant contribution for filling this gap by designing a hybrid algorithm that 

retrofits and repurposes a pre-filtering contextual incorporation method and feeds the new dimension to a 

DL-based neural collaborative filtering method, thus preserving and recovering the benefits of both without 

their limitations. The paper also reports quantitative results that show that our method outperforms the 

baselines by statistically significant margins. 

INDEX TERMS Deep Learning; Recommender Systems; Collaborative Filtering; Context Awareness; 

Apache Spark. 

I. INTRODUCTION 

The unprecedented adoption of IoTs, coupled with 

advancements in sensor-enabled devices, has caused an 

accumulation of massive amounts of datasets that are now, 

more than often, coming in contextually tagged forms. 

Those data are typically fed into various engines for 

analysis, aiming at gaining deep insights in many 

directions. A traditional long-lived application is 

Recommender Systems (RSs), which aim at resolving the 

problem of information overloading by presenting users 

with personalized recommendations on items that suit their 

preferences [1]. E-commerce depends heavily on RSs in 

order to improve the item-purchase hit ratio. A non-

exhaustive list includes; news to read, music to listen, items 

to purchase and restaurants to visit. Conventional 

applications of RSs focus mainly on analyzing historical 

user-item-rating interactions (in explicit feedback, or 

simply user-item in implicit counterpart) with no awareness 

for contexts surrounding each feedback decision.  

Comparatively speaking, despite the tremendous size of 

research activities in the literature focusing on RSs in 

various domains, yet the share of their application with 

context-awareness remains humble. In traditional 

recommenders, context information is fed into RSs as items 

and user profiles. Works of the relevant literature have 

focused on incorporating contextual information into 

conventional RSs by employing three models; prefiltering, 

postfiltering and modeling. However, despite the 

availability of sparse works that seek incorporating 

contextual information into DL models, the exploitation of 

context-based models and solutions remains limited. Also, 

most of them have focused on incorporating context using 

model incorporation methods. To the best of our 

knowledge, there are no works in the relevant literature that 

focus on incorporating contextual dimensions into DL-

based RSs using pre-filtering methods such as item-splitting 

(discussed shortly) [2, 3] . DL is establishing itself as the 

new trend for data deep insightful exploration and looks set 

to remain that way at least for the foreseeable future. It then 
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makes sense to investigate important steps toward bringing 

context-awareness into DL.  

The lack of appropriate contributions that seek 

incorporating context-awareness into DL-based RSs has 

encouraged us to design a novel method for achieving such 

target. Incorporating user contexts is paramount because 

user ratings are highly dependent on contexts, where either 

user with different context have different preferences, or 

have different ratings for same items depending on a 

dynamic context. For example, users may rate movies 

differently multiple times depending on the location where 

they watch them (e.g., home, cinema) and who were 

accompanying them (e.g., friend, alone or family). 

Our primary original contribution in this paper is the 

proposal of a hybridized algorithm that combines the 

benefits of a DL-based collaborative filtering algorithm, 

dubbed as Neural Collaborative Filtering [4]  (NFC 

thereafter) and a retrofitted-version of item-splitting 

approach (the plain item-splitting is adopted from [2, 3] )  

for incorporating contextual information in Collaborative 

Filtering (CF), we dub our version as Context-Aware 

Neural Collaborative Filtering (CA-NCF). The novelty of 

our design stems from the fact that plain NCF does not have 

a method for incorporating contextual information (as it 

merely accepts only the traditional forms of either explicit-

feedback represented as a user-item-rating interactions or 

an implicit feed-back on the user-item form), while on the 

other hand our method provides the appropriate 

incorporation. In addition, the paper provides the readers 

with the contribution of originally and quantitatively 

comparing our algorithm with plain NCF version and with 

state-of-art benchmarks for contextual incorporation. 

Taking advantage of the latest advents in big data 

processing, we depend on a DL framework known as 

BigDL [5]  that is engineered atop Apache Spark [6], which 

makes it preferable over counterparts for the fact that it 

seamlessly integrates with the full-fledge stack of Spark 

core (because of the modular architecture of Spark), thus 

allowing seamlessly the fusion of other workloads as 

needed. We have benchmarked with three recently 

popularized contextually tagged datasets that are publicly 

available (Movielens 1M [7] , DePaulMovie [8] and 

TripAdvisor [9]). Our results are statistically significant as 

we have obtained, on average, lower validation loss values 

compared against the baselines. Also, we have obtained 

higher top-one-accuracy (a.k.a. Top1Accuracy, we use those 

terms interchangeably hereafter) values (statistically 

desirable) by applying our method compared to the 

baselines. Those results experimentally validate the 

importance of explicitly incorporating contextual 

information into a DL-based RS.  

The paper remainder is structured as follows. We first 

walk through a brief background, providing short primers 

of RSs, context-awareness and associated approaches. Most 

importantly, we recapitulate the baseline algorithm. 

Thereafter, we elaborate our CA-NCF method and 

associated algorithms. In the section that follows, we show 

and discuss our results. Related work, conclusions and 

recommendations for future research frontiers end the 

paper. 

 
II. BACKGROUND 

In this section, we outline the main concepts relevant to 

CARSs, and we show in a systematic way the transition from 

conventional solutions to latest DL-based trends. 

A.  Recommender Systems 

RSs are loosely defined as those systems that provide 

recommendations to users on items of interest. Items can be 

‘products to purchase’, ‘music to listen’ and ‘restaurants to 

visit’, to mention just a few [1] . Human-oriented RSs are 

basically intended for users lacking proper experience in 

opting for items of interest over-the-wire, giving the 

overwhelming number of alternatives normally offered. A 

case in point is the giant movie company Netflix
1
, which 

employs RSs to recommend top movies to customers 

wishing that they match their preferences and thus 

increasing the watch-and-purchase ratios accordingly by 

personalizing user’s interaction experience. This means 

suggesting different items to various persons or groups. In a 

more utilitarian perspective, RSs work by calculating top 

ranking list of items recommended for users. Computations 

are based on a deep analysis of historical user-item 

interaction that could be modeled either explicitly as ratings 

(a.k.a. explicit feedback) or implicitly such as considering 

the time a user spends viewing a page of a specific item 

online. For example, a prolonged view could signify a big 

interest and thus considered a positive rating (for example, 

1 on a binary rating scale or 4 on a scale from 1 to 5). 

As-is the case for all information systems, RS has been 

emerged as a mimic for a traditional human behavior where 

people normally seek suggestions from their friends. This 

resemblance has been formalized in a method that signaled 

the birth of new breed of algorithms, the widely accepted 

algorithm known as Collaborative Filtering (CF) [10] . In 

its simplest form, it works by recommending items to users 

based on the ratings of their friends and similar users 

presuming they have same tastes, even for other items, 

meaning that they rate the same. RSs normally direct users 

to unseen items, collect their feedbacks and store them for 

more personalized future recommendations. 

As a field that is born as a multidisciplinary domain 

dense at the intersection of various sciences, including, 

among others, computer science, psychology and 

geography, it is considered as a sub-domain of Machine 

Learning (ML). Having said that, most naive ML 

algorithms flow seamlessly to RSs, including the two 

distinguished sub-parts; regression and ranking. In cases 

where RS involves rating prediction, it can be classified 

under regression problems, whereas it is considered a 

ranking task when enclosing item recommendation. The 

distinction is important as rating prediction means that data 

                                                 
1 https://www.netflix.com 
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provides explicit feedback, whereas, on the contrary, 

feedback in item recommendation tasks is implicit. In this 

paper, we focus on explicit feedback category [10] . 

Despite the variety of data sources that feed RSs, they all 

agree in the general format of data fed for recommendation 

tasks. In its general form, data is provided as triplets 

constituting users, items and transactions encapsulating user-

item interaction (formally referred as ratings). Recently, the 

attention has been given to more specialized breed of 

recommenders that are collectively known as Context-

Aware Recommendation Systems (CARS) [11] , which 

work with datasets that embed additional modes 

surrounding the decision-making process (generally known 

as contextual information or contexts for short). For 

example, in a restaurant recommendation system (RRS), 

contexts include extra information in user profiles such as 

age, alcohol drinking level and income. Also, for items 

(restaurants in this case), they include location and whether 

parking services are offered. Those are considered static 

contexts as they slowly or rarely change over time. 

However, another class of contexts include dynamic 

contexts. For example, in a movie watching survey, users 

may rate movies with various scores depending on the 

location where they watch the same movie (home or 

cinema), or the time (weekday or weekend). Reference 

studies have shown that CARS offer more personalized and 

effective recommendations [12] . 

B.  Context Awareness 

Context is loosely defined as any associated information 

that is useful for characterizing the situation of an object [13]. 

Objects include people, locations, and any information that is 

relevant for modelling the binary interaction between users 

and items, including user profiles and their associated item 

list. The additional contextual information is typically 

beneficial for personalized recommendations entwined 

robustly with contexts surrounding ranking decisions. [14] 

classified context into six categories, where three belongs to 

human-related information (i.e., profiles, social ties and 

tasks), whereas the remainder are more about surrounding 

environment (e.g., locations) and associated conditions (e.g., 

weather). For example, in RRS, context plays a pivotal role 

in choosing a restaurant for next meal. User profiles, such as 

those available directly from the database, for example their 

drinking and smoking habits are considered also contexts that 

affects the rating decision. Also, weather conditions at the 

time of visit, the availability of parking slots and similar 

information. 

C.  Incorporating Context Information into 
Recommender Systems 

Incorporating contextual features in a RS normally 

proceeds in one of three directions; pre-filtering, post-

filtering, and contextual modeling [1] . Pre-filtering 

methods serve as dimensionality reduction approaches that 

embed contextual information into users or items 

components. Pre-filtering approaches simply work by 

selecting ratings data that corresponds to a contextual 

condition for generating relevant recommendations. For 

example, if a person wants to listen to a song in her car, 

only ‘car’ music rating data is used to recommend a song. 

Because exact contexts normally do not have enough rating 

data (e.g., because of the known data sparsity problem in 

recommender systems), some works went beyond selecting 

training subsets form data that corresponds to the exact 

contextual values. For example, some works are based on 

ontologies such as the work by [15] which applies a 

prefiltering step that first identifies and generalizes a user 

context (i.e., projecting it to a higher granularity level). 

Afterwards, only data that corresponds to that context 

instance are selected for training. Thereafter, a classical RS 

method such as Item-kNN is applied. In the same vein, [16] 

presented a distributional-semantics pre-filtering approach. 

They adopt a similarity measurement for contextual 

situations that is based on the distributional semantics of 

their constituent conditions. Stated another way, situations 

are considered similar in the case that they similarly 

influence user’s preferences. Despite being a reduction-

based approach, it performs segmentation in a way that 

slightly differs from similar counterparts of the relevant 

literature. The segmentation of ratings is based on 

aggregating ratings with contextual situations that are 

similar to the target.  Contextual situations are an intermix 

descriptions composed of multiple contextual conditions. 

For example, “today is a ‘weekend’ and the song is ‘from 

Sarah with love’.”. by doing that, the method avoids the 

limited capacity of condition-to-condition context 

taxonomy. 

On the contrary, post-filtering approaches launch with 

context kept aside, thereafter a filtering procedure passes 

through results and discard rating predictions rendered as 

non-relevant to context conditions. Contextual modeling 

explicitly model context data and inject it within the layers 

of the prediction model, specifically by parametrizing 

hidden unit transitions as a function of contextual 

information. For example, [17] presented two methods for 

incorporating contextual information with two kinds of 

collaborative filtering models (i.e., memory- and model-

based). The contextual information is engraved into the 

computational models. The memory-based model is based 

on fusing contexts and user ratings in a multi-feature 

vector. For model-based CF, their method combines user 

preferences and contextual features into the learning model. 

In this paper, we focus on pre-filtering paradigms. The 

reason behind this decision is that contextual pre-filtering 

approaches are, design-wise, compelling and conceptually 

appealing approaches, as they allow to seamlessly pave the 

way for applying various traditional recommendation 

approaches untouched (i.e., ‘as-is’ without modifications on 

the underlying algorithms). This also applies to post-

filtering approaches that can also be applied in combination 

with traditional algorithms as-is. However, this comes at 

the price of a computational cost that could be induced by 

applying a post-filtering approach, which often exceeds the 
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pre-filtering counterparts. Also, as it is recommended by 

several comparative studies between the two approaches, 

pre-filtering is preferred to post-filtering in cases where the 

former is able to yield recommendation predictions better 

than plain traditional methods (the methods that work with 

contextual information kept aside) [1, 18-20] .  

For the contextual modelling approaches, we avoid the 

computational complexities associated with them, as by-

design they work by stacking sequentially several hidden 

layers in a neural network, inducing an additional 

computational cost. Also, contextual modelling approaches 

have been widely researched, and many algorithms has 

been already developed in the last two decades or so [1]. 

On the contrary, only few works have touched the pre-

filtering methods, especially in the deep learning arena 

[21]. 

D. Recommendation Approaches: from Conventional to 
Context-Aware 

In the relevant literature, [12] identified several 

approaches for classical recommendation tasks. For 

convenience, we here recapitulate only CF and content-

based, then we refer the interested user to the original paper 

for further details about other approaches. In content-based 

approaches, similarity is measured among items and new 

items are rated based on that. Feature contents are the base 

for calculating similarity. For example, if a user likes a 

restaurant that falls under fast-food category, the system 

learns to rate other restaurants from the same category.  CF 

remains the most applied classical RS approach for its 

simplicity. It is basically based on measuring the similarity 

of preferences between an active user and others with 

similar rating behaviors. Recent developments in CF 

include extensions such as latent factor models, including 

Matrix Factorization (MF) (the industry de facto standard 

for RSs), which projects items and users to a shared latent 

factor space, where factors are inferred from user explicit 

feedback. 

Shortcomings of classical RSs in discovering deep 

relationships surrounding actual recommendation decisions 

led to the emergence of a constellation of systems better 

known as CARS. Context-aware ranking with factorization 

models is becoming a trend. Context is being regarded as an 

indispensable component in recommender systems that can 

deliver more personalized recommendations, matching user 

preferences. In addition to the traditional user-item-rating 

model, CARS consider additional contextual features such 

as temporal (for example, time of day) and weather, thus 

reformulating recommendation problem as a user-item-

context-rating (for explicit feedback cases).  For example, 

in a restaurant CARS, contextual information contains user 

profiles with features such as user’s weight, height, 

smoking and drinking levels, which are key ingredients for 

self-managed RRS context-awareness recommendations.  

Introducing additional features to RSs potentially 

enhance the prediction task, but however brings additional 

layers of computational complexity into the equation. This 

is hardly ever an issue giving a widespread adoption of 

distributed and parallel computing clouds, which has 

motivated a swift adoption of Deep Learning (DL) in 

recommendation tasks. Recent works have brought DL into 

the RSs scene, despite originally intended for complex 

analysis and prediction tasks in complex domains such as 

image and voice recognition. We specifically focus on a 

recently popularized DL-based recommendation algorithm 

dubbed as Neural Collaborative Filtering (NCF) [4] . We 

have selected this representative as it proved most effective 

in providing more accurate personalized recommendations 

by employing a hybridization that benefits from both the 

linearity of CF and the robustness of NN. 

Neural Collaborative Filtering. Neural collaborative 

Filtering (NCF for short) [4]  is a newly introduced 

algorithm that basically hybridize the benefits of Multi-

Layer Perceptron (MLP) and Collaborative Filtering (CF) 

to learn the user–item interaction function. Matrix 

Factorization (MF) can be recovered under its framework. 

In simpler forms, NCF can be leveraged with or without 

MF. As this is considered a DL-based conventional 

approach, it does not accept explicit context features. 

Hence, we aim at redesigning it so that we conveniently 

model context features without loss of generality. To this 

end, we have retrofitted a new version of a pre-filtering 

contextual incorporation method known as item-splitting [2, 

3]  as a frontstage that is responsible for encapsulating 

relevant contextual information into model’s items. 

III.  OUR DL-BASED CONTEXT-AWARE 
RECOMMENDER SYSTEM (CARS) 

Fig. 1 schematically depicts the primary ideas behind 

our DL-based CARS general framework. Raw data from 

sources is fed untouched into a “feature selection” stage, 

where relevant CA features are selected. Afterwards, 

selected features are passed through a specialized “context 

feature incorporation” stage, where we apply item-splitting 

thus preparing for CA-NCF, where we map raw data into a 

lower-dimensional space. Thereafter, the corresponding 

algorithm is applied where we train and use our models. 

The output is a list of context-aware recommendations 

delivered to the user.  

In particular, in the following of this work, we consider a 

prefiltering approach for contextual incorporation as 

described in the next subsections. 

A. Retrofitting Item Splitting Algorithm 

The plain item splitting algorithm as described in the 

seminal work [2, 3]   has three costly nested loops and 

 
FIGURE 1. DL-based CARS framework 
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exhaustively needs to check all enumerations of context 

conditions for each context factor for each item in the rating 

matrix. The plain item splitting algorithm proceeds as 

follows. For each item, it generates two rating lists for each 

contextual condition pair combination, thereafter, it 

computes the two-sample t-statistics, then it finds the 

combination that leads to the maximum t-statistics. 

Afterwards, if that maximum value is greater than a 

threshold, it splits that item in the original list into two 

items based on the corresponding contextual condition that 

generated the maximum t-statistics.  

For small data settings, the procedure described is 

manageable and takes a reasonable running time. However, 

for big datasets that contain millions of ratings and are 

explicitly tagged with several contextual factors, with each 

factor possibly having several contextual conditions, the 

plain procedure could turn prohibitive as it needs 

substantial amount of time and adds layers of complexity 

and overhead to the underlying baseline algorithms. For this 

reason, instead of exhaustively measuring the relevance of 

each pair of context conditions as described in the original 

paper of item-splitting algorithm [2, 3], we employ the 

Analysis of Variance (ANOVA) [22] test to further 

quantify the extent to which a pair of context conditions 

(values in contextual parlance) are superior to other 

permutations from the same conditions list of the same 

context-related feature. We follow ANOVA by a Tukey's 

HSD test, which is a multiple comparison statistical test 

that can be exploited to find contextual condition 

combinations with means in ratings that significantly differ 

from others, signifying that they positively contribute to the 

rating decision. In other terms, we first apply ANOVA as a 

quick-and-dirty sieve to extract contextual variables that 

significantly affect the rating decisions. Our retrofitted 

procedure is listed in Algorithm 1. The output of the 

algorithm is a list of relevant contextual features and the 

associated permutations of relevant contextual conditions 

that can be used for splitting. 

 
Algorithm 1. Retrofitted item-splitting with multi-samples paired 

test 

1: Procedure retrofitted_itemSplitting( contextFeatures, 

threshold) 

2: maxf   MIN_VALUE 

3: relevant_features_List   { } 

4: relevant_pairs_List  { } 

5: while 𝑐𝑓 ∈ contextFeatures != NIL do 

6: F-value, P-value = statistics (aov(cf)). get (F-value, P-

value) //ANOVA 

7:                If F-value >= maxf && P-value <= threshold // 

0.05 is a scientifically recommended margin 

8:                  Maxf   F-value 

9:                 relevant_features_List.add(cf) 

10:               End if 
11: End while 
12: minp   MIN_VALUE 

13: Foreach relevant_feature in relevant_features_List 

14:           Pairs = TukeyHSD (aov (relevant_feature)) //aov: 

analysis of variance 

15:           For pair p in pairs  

16:           If P-adj < threshold 

17:                minp  P-adj 

18:                relevant-pair   pair 

19:                relevant_pairs_List.add(relevant-pair) 

20            End if 
21: End for 

22: Item-splitting(relevant_pairs_List) 

23: End procedure 

  

 

For example, say we have a rating matrix with the 

following contextual factors: ‘day of week’, ‘year’, ‘day of 

month’ and ‘month of year’. Each of those factors may 

have several conditions. For example, ‘day of week’ has the 

following conditions list; (weekday, weekend). Say the 

rating matrix has millions of ratings, if the plain item 

splitting procedure is applied as-is, it would take hours to 

perform the t-statistics that is needed as a core element of 

the procedure. This is because it needs to check every 

combination of contextual conditions for each item, which 

is an expensive exhaustive scan. On the other side, our 

retrofitted version checks only the combinations of 

contextual conditions that show statistical significance 

through the application of ANOVA. By applying our 

retrofitted version of item splitting, we significantly prune 

the search space in such a way that boosts the time-based 

quality performance of the overall system. Our approach 

resorts to a two-stages procedure in which, first, we filter 

the conditions space and, then, we refine the obtained 

results. The filtering stage (where we apply ANOVA, 

which is a greedy approach) results in a sub-list that is 

partially selected from the total contextual conditions space. 

In the second stage (i.e., refinement), we apply the impurity 

test [23] (i.e., t-test) as described in the seminal item-

splitting work [2, 3] for the partial list that resulted from the 

filtering stage. The result of the impurity test is a list of 

contextual conditions that can be used for splitting items. 

Stated another way, our retrofitted item splitting 

procedure operates as follows; First, for every relevant 

context feature we apply the Analysis of Variance 

(ANOVA), thereby extracting the F-value and p-value 

statistics. We depend on profiling the dataset for selecting 

the appropriate p-value. However, for most datasets p-value 

less than or equal 0.05 is a scientifically desirable margin. 

We select a feature with the more-the-better F-value pattern 

 
FIGURE 2. Context-Aware Neural Collaborative Filtering (CA-NCF) 

by retrofitting an explicit feedback NCF 
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(F statistic shows the joint effect of contextual features 

altogether), and to evaluate pair means, we further conduct 

a Tukey post hoc test, where p-values greater than a 

threshold (e.g., 0.05 is statistically desirable) indicate that 

there is no significant difference while values less than the 

threshold signify the opposite. The selected pairs are 

considered the base for item-splitting and thus we feed 

them to the plain item-splitting sub-procedure, which 

proceeds as exactly as described in the original paper [2, 3]. 

Running this procedure per se constitutes a fundamental 

part of our contributions in this paper. Referring to the 

previously mentioned contextual features example, our 

filtering stage may select only two contextual features from 

the contextual features space. For example, say that it 

selects ‘day of week’ and ‘year’. Thereafter, the Tukey’s 

HSD will show the most significant contextual conditions 

pairs from all the possible combinations of permutations in 

the ‘day of week’ and ‘year’ features. Suppose that the 

Tukey’s HSD shows that the following pairs are significant: 

(weekend, weekday) for ‘day of week’ and (‘2018’, ‘not 

2018’) for ‘year’. Those show p-values less than 0.05. 

Those will then constitute the partial list of potential (yet 

probabilistic) contextual combinations that will be passed 

over to the refinement stage. In the refinement stage, we 

apply the t-test on each unique item from the ratings space. 

For each item, we split the ratings into two rating lists 

based on each of the combinations in the partial contextual 

pairs and apply the t-test. We then take the maximum t-test 

for each item and if it was greater than the threshold (e.g., 

greater than 4), we split the item based on the contextual 

pair combination that resulted in such a t-statistic (for 

example <’weekday’, ‘weekend’>). 

B. Context-Aware NCF (CA-NCF): Pre-Filtering 
Approach for Contextual Incorporation 

Our novel algorithm is a hybridization between a 

retrofitted version of the item-splitting contextual 

incorporation paradigm and an adapted explicit feedback 

version of NCF, thus combining the benefits of both in a 

way that enables them to mutually reinforce each other 

without loss of generality. Dub our version as CA-NCF
2
 

(short for Context Aware Neural Collaborative Filtering). 

Item-splitting in this setting is considered as a frontstage 

that is intended for seamlessly capturing and incorporating 

context information into the item components of the NCF 

without changing the core of the plain NCF algorithm. The 

crux of this design is that it injects context-awareness in a 

manner that preserves (to a good extent) the running time of 

the underlying NFC engine, but at the same time benefiting 

from the planted context features in generating more 

accurate context-aware recommendations. Fig. 2 depicts the 

workflow of our algorithm. 

We have added a stage before ‘sparse item vectors’, 

where we perform item-splitting, thus embedding explicit 

context-aware features to better capture the contextual 

                                                 
2 The source code of CA-NCF (including the retrofitted item-splitting 

algorithm) is available at: https://github.com/IsamAljawarneh/CA-NCF 

interaction between users and items. We first restored NCF 

to work with explicit-feedback data representations. We 

then incorporate selected context features into NCF 

prediction model at no cost, since we are constructing a 

new artificial item, thus recovering the same pattern of the 

model. We thus redefine the prediction model as in (1). 

 𝑟̂𝑢𝑖𝑐 = 𝑓 (𝑃𝑇𝑉𝑢 
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶   |𝑃, 𝑄𝑎𝑟𝑡, Θ𝑓)  

We have simply replaced 𝑉𝑖
𝐼 in the plain NCF algorithm 

with a new item sparse vector 𝑉𝑖𝑐
𝐼𝐶   that incorporates context 

conditions (a step through a retrofitted item-splitting 

procedure as described in § III. A). The new setting thus 

constitutes a bottom-most layer encompassing two feature 

vectors 𝑉𝑢 
𝑈  and   𝑉𝑖𝑐

𝐼𝐶 that features user u and an artificial 

item i (embedding item i and context condition c), 

respectively. We use content features for representing users, 

items and contexts since our adaptation of NCF works for 

explicit feedback cases.  

𝑟̂𝑢𝑖𝑐   is the rating of a user for an item under a specific 

context condition. Θ  are model parameters to be estimated. 

𝑃 ∈ ℝM×K
 and  𝑄𝑎𝑟𝑡 ∈ ℝN×K

 are latent factor matrices for 

users and artificial (i.e., fictious) items, respectively. Θ𝑓  is 

a set of model parameters for the interaction function f, 

which then can be reformulated as in (2) 

𝑓( 𝑃𝑇𝑉𝑢 
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶  ) =

𝜙𝑜𝑢𝑡𝑝𝑢𝑡(𝜙𝑛 (… … . (𝜙1(𝑃𝑇𝑉𝑢 
𝑈 , 𝑄𝑎𝑟𝑡

𝑇 𝑉𝑖𝑐
𝐼𝐶  )) … . . ))  (2) 

where 𝜙𝑜𝑢𝑡𝑝𝑢𝑡 is a mapping function employed on the 

output layer, and 𝜙𝑛 is the n
th

 mapping function for a NCF 

layer.  

Stated another way, our newly introduced 3-dimensional 

prediction function can be formulated with a 2-dimensional 

function such as in (3), adapted from [1] . 

ℛU x I x C
RL  (𝑢, 𝑖, 𝑡) =  ℛU x I 

 [c 𝜖 cc] (U,I,R) 
(𝑢, 𝑖)   (3) 

Where RL is the complete rating list, containing records 

on the <user, item, context, rating> form. ‘cc’ is a context 

condition (e.g., ‘weekday’), [𝑐 𝜖 𝑐𝑐] is the contextual pre-

filter.  [𝑐 𝜖 𝑐𝑐] (𝑈, 𝐼, 𝑅) is the subset selected from the RL 

list based on the [𝑐 𝜖 𝑐𝑐] pre-filter. This subset is then 

projected into a two-dimensional space by only selecting 

the user (U) and item (I) dimensions. For example, a 

prediction of the form 

ℛ𝑈 x 𝐼 x 𝐶
𝑅𝐿  (𝑆𝑎𝑟𝑎ℎ, ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′, 𝑤𝑒𝑒𝑘𝑒𝑛𝑑) will 

be transformed into 

ℛ𝑈 x 𝐼 
 [𝑐 𝜖 𝑤𝑒𝑒𝑘𝑒𝑛𝑑] (𝑈,𝐼,𝑅) 

(𝑆𝑎𝑟𝑎ℎ, ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′) in 

order to predict the rating for the ′𝑓𝑟𝑜𝑚 𝑠𝑎𝑟𝑎ℎ 𝑤𝑖𝑡ℎ 𝑙𝑜𝑣𝑒′ 
song by user ‘Sarah’ in a ‘weekend’ day (contextual 

condition), including ‘Saturday’ and ‘Sunday’. 

Conceptualizing our context-aware incorporation this 

way allows us to easily recover NCF, thus ensuring that the 

robustness of NCF mutually reinforce our embedded 

retrofitted-version item-splitting in a way that provides a 

statistically significant context-aware prediction rating 

without loss of generality of NCF. Another advantage is 

that with this approach, the computational complexity of 

our algorithm is reduced to that of only performing NCF on 
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a two-dimensional space (since the newly artificial number 

of items is equal to a maximum of (n + m), where m is the 

number of split items), which is numerically preferred, but, 

at the same time gaining the privileges provided by 

seamlessly incorporating context-related features into the 

play. We show subsequently that we obtain better 

predictive performance than would be gained by 

independently employing each of those models to same 

settings. 

We argue that our methodology has good potential for 

streaming DL jobs as it is computationally less expensive 

than counterparts that potentially stack more convolutional 

layers for the purpose of enhancing predictions with 

contextual tags. 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we discuss experimental settings, datasets 

we rely on, and proposed methodologies for performance 

comparison. In addition, the section describes the baselines 

we compare our original solutions with, parameter 

configurations and coding. Afterwards, we report the 

experimental results measured and an extensive discussion 

about the motivations and lessons learned from these results. 

A. Experimental Settings 

Datasets. We depend on three public datasets of diverse 

sizes for experimentation; a big dataset, Movielens 1M [7], 

in addition to a small size dataset, DePaulMovie [8] and a 

medium-sized dataset, TripAdvisor [9].  By this diversity of 

combination, our intention is to prove the robustness of our 

algorithms under various real scenarios. The statistics of the 

datasets are as follows; Movielens dataset that we select 

contains around one million ratings by almost 6040 users 

for around 3706 movies (i.e., items). For TripAdvisor, it 

was crawled from online reviews on TripAdvisor website. 

there is only one context, trip type (values include Family, 

Couples, Business, Solo travel, Friends). The dataset is 

sparse in both ratings and contexts, comprising 14175 

ratings, 2731 users and 2269 hotels. DePaulMovie was 

collected through surveys, where students are requested to 

rate movies in various time, location, and with different 

companions, which all are considered relevant contexts in 

this setting. Comprising 5035 ratings, 97 users, 79 items, 

and data density 17.48%. We specifically choose those 

datasets as they are well-established representatives for 

contextually tagged explicit-feedback recommendation 

data. Also, they have been used extensively by the creators 

for comparing state-of-art CARS algorithms, considering 

that contextually tagged datasets for explicit-feedback RSs 

is scarce and rare. MovieLens dataset does not contain 

contextual features explicitly. However, it contains a 

timestamp for each captured rating, which then is 

considered an implicit source of contextual information [1] 

. Simply put, we have flattened the timestamp into its 

constituent granular parts, which then constitute relevant 

contextual factors. Specifically, we have extracted the 

following context factors from each timestamp: ‘day of 

month’, ‘day of week’, ‘month’, ‘year’, ‘day of year’ and 

‘day of month’. For example, the original contextual 

conditions list for the ‘day of week’ contains all the seven 

days from ‘Monday’ to ‘Sunday’. This potentially increases 

the data sparsity, which is a common problem in 

recommender systems research [1] . Sparsity can be loosely 

defined as the data distribution for which not enough 

ratings data is available for accurate rating predictions. To 

avoid this kind of sparsity, we have transformed such data 

into pairs. For example, the ‘day of week’ contextual 

conditions list is transformed into the (‘weekend’, 

‘weekday’) pair, where ‘weekend’ implicitly contains 

(‘Saturday’, ‘Sunday’), whereas ‘weekday’ contains 

implicitly all the other five days.  Stated another way, the 

ratings data may not have enough ratings about the 

historical movie watching events for a user in a ‘Sunday’. 

Taking the exact context conditions this way may expand 

the sparsity gap in the dataset, rendering the process 

inappropriate for context-aware recommendations. On the 

other hand, we reap many benefits by binarizing the 

contextual conditions so that each context factor’s 

conditions are split in two groups. 

 In Movielens 1M dataset, to account for sparsity, we 

have dropped items that appear in less than 100 rating 

decisions. We also have dropped users with less than 20 

ratings. The resulted dataset size equals around 940k. For 

DePaulMovie and TripAdvisor datasets we drop items with 

less than 5 ratings, resulting in around 5018 and 10414 

ratings for DePaulMovies and TripAdvisor, respectively. 

Evaluation methods. To evaluate rating performances, 

thereby comparing our method with the baselines, we have 

conducted a train-testing evaluation (with 10 epochs training 

and 80% training dataset). We have used sparse-categorical-

crossentropy as our loss function. The rationale for choosing 

sparse-categorical-crossentropy is to avoid the one-hot 

encoding imposed by using the plain categorical-

crossentropy, as the latter requires one-hot encoding the 

target variables in multiclass classification problems (explicit 

feedback recommenders belongs to the multiclass 

classification family), thus converting them into categorical 

formats, whereas the former accepts the multiclass values as-

is. Since we have multiclass values in the target field (i.e., 

ratings, which span from 1 to 5) then we have opted for 

sparse-categorical-crossentropy. Also, we have used Adam 

and SGD as the optimizers. Thereafter, we have captured the 

average Mean Absolute Error (MAE) and validation loss as 

loss (error) metrics, which are widely accepted measurement 

in relevant literature. MAE and validation loss are decline-

oriented scoring mechanisms for which values follow lower-

better trend. We have redefined MAE by incorporating 

contextual features into the equation. The retrofitted MAE is 

calculated using (4) 

𝑀𝐴𝐸 =  1
|ℛ𝑣𝑎𝑙𝑖𝑑|⁄  ∑ | 𝑟̂𝑢𝑖𝑐 − 𝑟𝑢𝑖𝑐|𝑟𝑢𝑖𝑐 ∈ ℛ𝑣𝑎𝑙𝑖𝑑

   (4) 
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Where ℛ𝑣𝑎𝑙𝑖𝑑 is the validation set, 𝑟̂𝑢𝑖𝑐  is the function that 

we want to learn for predicting the rating of a user 𝑢 to an 

item 𝑖 given the contextual condition 𝑐. The 𝑟𝑢𝑖𝑐  is the target 

rating. 

MAE is the most adopted error metric for rating-oriented 

recommenders, and it is preferred to accuracy metrics (e.g., 

recall and precision)  in cases where we have an access to 

explicit feedback systems such as those that we focus on in 

this paper [1, 24, 25] . 

However, since we are also interested in measuring the 

quality of recommendations, we have also applied an 

accuracy measure. Specifically, a rank-aware metric for top-

N rating predictions (a.k.a. precision-in-top-N [26]). We 

have specifically applied the top-one-accuracy (a.k.a. P@1, 

read ‘precision at 1’, shorthand for precision at cutoff 1), 

which belongs to the class of Precision@k accuracy metrics  

[1]. The rationale for selecting this metric is to evaluate the 

Top-N recommendations and in this case quantifying the 

times that the top element in the Top-N list matches the 

target. Stated another way, P@1 is calculated by only 

considering the first rank in our recommendation list for each 

user. p@1 is an incline-oriented scoring system where the 

higher-better applies. Since we are incorporating contextual 

information into the recommendation model, the precision is 

calculated as the ratio of the correct top-1 ranks to the 

number of items suggested given a specific contextual 

condition. A further reason that rationales the selection of 

such an accuracy measure is that in real scenarios, most users 

are interested in checking the highest ranked items [26]. 

Also, in our case scenarios, the counts of recommendations 

shown to user by the application are preordained, rendering 

precision-oriented measures (such as P@1) suitable [1]. 

To obtain good fit learning curves (a.k.a. convergence) 

that falls between an overfit and underfit model, in order to 

generalize the model, we have repeated the experiments 100 

times, where we evaluate the same model on the same data 

many times and only vary the seed for the random number 

generator, then we calculate the mean of the estimated model 

skill (Loss, MAE and Top1Accuracy). We did this because 

DL methods are stochastic (i.e., they learn via a stochastic 

training algorithm), meaning that we get a different 

diagnostic plot each run.  Hidden layers exploit ReLU as an 

activation function, whereas the output layer depends on 

softmax as an activation function. 

To compare our retrofitted item-splitting procedure (refer 

to section III. A. for further information) with the plain item-

splitting algorithm, we have measured the running time by 

varying the data size.  

Baselines. To show how our method (CA-NCF) excels 

in achieving statistically plausible results, we choose a 

bunch of standard benchmark methods from the relevant 

state-of-art. Specifically, we choose three categories as 

baselines to compare with. Those categories are the 

following: 

Category#1. Plain pre-filtering contextual incorporation 

and DL-based recommenders. Most importantly, we 

compare our algorithm with the baselines that in 

hybridization form the constituent parts of our algorithm. 

Since our algorithm (CA-NCF) is a hybridization between 

the plain prefiltering item-splitting contextual incorporation 

approach [2, 3]    and the vanilla NCF [4] , we first compare 

with the following: 

 Plain baseline (NCF) [4] , specifically an explicit 

feedback version, that constitutes the latest trending 

and benchmark DL-based algorithms for 

recommender systems.  

 Item-splitting Item KNN [2] , which constitutes the 
traditional application of item-splitting as it first 
appeared. An adapted version of the item-based CF, 
which injects contextual information into the item 
component, thus recovering classical CF-based 
recommendation method by turning the User-Item-
Context Rating (UICR) representation into a User-Item-
Rating (UIR) classical representation and thereafter 
feeding it to item KNN. 

Category#2. A benchmark baseline that does not 

consider contextual information, which is the following: 

 A biased matrix factorization method [28]  , which is 

a standard benchmark context-free (i.e., does not 

consider contextual information) method. 

Category#3. A benchmark that uses contextual 

modelling for incorporating contextual data. That is the 

following: 

 Context-Aware Matrix Factorization (CAMF) [29], 

which is a method for incorporating contextual-

information into MF. It introduces new parameters 

based on contextual conditions (a.k.a., values of a 

contextual features), such that each item (or 

user)/context-condition pair has a distinct parameter 

(which significantly increases parameter space) and 

improves the prediction accuracy in cases where 

contextual conditions influence user-item interaction. 

It presumes that the contextual rating deviation is 

dependent on items. 

We have selected CAMF, item-splitting on item KNN as 

they are the standard benchmarks for CARS research, 

utilizing both contextual incorporation methods; contextual-

modeling and pre-filtering, respectively [29] . 

Hyper-Parameter configurations. We have tuned our 

algorithms at various levels, CA-NCF models are learnt 

based on log loss optimized by NCF, since our retrofitted 

version of item-splitting is a pre-filtering contextual 

incorporation method it does not affect the working 

mechanism of the underlying algorithm. We use Stochastic 

Gradient Decent (SGD) and Adam as optimizers. We have 

tested the batch sizes of 64, 128 and 256 (for DePaulMovies 

and TripAdvisor datasets), whereas we use 8k and 16k for 

MovieLens 1M dataset. We set learning rates ranging from 

0.01 to 0.0001 and 0.05 to 0.0005. MLP operate on two 

hidden layers [20,10], and embedding size is 20. NeuMF was 

excluded, thus recovering the raw NCF. Other hyper-

parameters include epoch which is set to maximum 10. One 

epoch is when an entire dataset is passed once through a NN. 

We use impurity criteria [23] to decide whether to split an 
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item. We have selected 𝑇𝑚𝑒𝑎𝑛  as a measure to estimate the 

statistical significance (i.e., using two-sample t-test for 

identifying the significance of differences of the means of 

ratings in the two ratings subsets divided based on a 

contextual condition, where bigger-better applies) between 

means of pairs of rating lists, where each list corresponds to a 

contextual condition. We have selected t-statistic threshold as 

the following: 4 for MovieLens and TripAdvisor datasets, 2.5 

for DePaulMovies dataset. The threshold value 4 is almost 

equivalent to the 0.05 level of statistical significance (a.k.a. 

p-value), which is statistically plausible. 

Notice that we perform the impurity test on a subset of 

contextual conditions. Those are the contextual conditions 

that we have selected through the filtering stage (recall our 

filter-and-refine approach from section III. A.). 

Implementation insights. We have conducted our 

feature engineering using 𝑅 language for the broad range of 

tools it provides. We also use R language for conducting the 

prefiltering stage, where we exploit the libraries that offer 

ANOVA and Tukey’s HSD tests. On the other side of the 

work, our algorithm has been implemented as patches using 

Python language on Spark based on the BigDL framework 

[5]. We have introduced our retrofitted-version of item-

splitting to the BigDL framework by using functions from 

the Pandas library on Python. The rationale behind this 

selection of BigDL is that for Spark, principal functions 

come standard with the codebase distribution, but DL 

functions necessitate additional libraries. However, BigDL 

preserves the robustness and generality of Spark as its 

patches compile down to Sparks core abstraction (known as 

RDD [30] ). Also, we find that by using Python for most of 

our application tasks, and porting some to R for feature 

selection (not Java or Scala) we take a performance hit, 

which is for DL jobs lesser when using Java or Scala. We 

aim at leveraging the best from both worlds, taking 

advantage from R’s and Spark’s BigDL strengths without 

risks. 

B. Context-Aware Neural Collaborative Filtering (CA-
NCF) Test Results 

In this subsection, we delineate the results that we have 

obtained in a coherent and systematic way. We follow the 

same procedural steps as described in section III. Starting 

from the application of our retrofitted-version of item-

splitting, where we compare its running time with the 

baseline plain item-splitting. Fig. 3 shows that the 

retrofitted- item-splitting significantly outperforms plain- 

item-splitting in the language of running time. As the figure 

shows, plain- item-splitting requires a substantial running 

time that significantly increases as the data size increase. 

Those numbers have been captured with MovieLens 1M 

dataset [7], which contains moderate number of contextual 

features. Those number are slated to be doubled for larger 

number of contextual information, negatively affecting the 

overall performance of the system. On average, we obtain a 

 

 
FIGURE 5. Validation loss of CA-NCF Vs. NCF (using SGD and 

Adam optimizers) w.r.t. the number of iterations on DePaulMovies 
dataset 

 

 
 
FIGURE 6. Validation loss of CA-NCF Vs. NCF (using SGD and 

Adam optimizers) w.r.t. the number of iterations on TripAdvisor 
dataset. 

 

 
 
FIGURE 4. Validation loss of CA-NCF Vs. NCF (using SGD and 

Adam optimizers) w.r.t. the number of iterations on MovieLens 1M 

dataset. 

 

 
FIGURE 3. Running time of plain-item-split against retrofitted-

item-split on MovieLens 1M dataset 
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running time decrease gain of roughly 70% by applying our 

retrofitted- item-splitting procedure instead of the plain- 

item-splitting. 

Now we focus on the validation learning curves to 

capture the way both models (our CA-NCF and plain NCF) 

are generalizing. We show those curves using different 

settings for our CA-NCF and the plain NCF by executing 

them both on top of the same software stack (i.e., BigDL) 

[5].  

We have tested our CA-NCF relying on three publicly 

available open source datasets (refer to section VI. A. for 

information). Fig. 4 shows the validation loss using SGD 

and Adam optimizers, averaged from 100 runs. We obtain, 

on average, 1.85 % loss gain by applying CA-NCF 

comparing to the seminal baseline NCF, with Adam 

optimization method applied. The same trend almost occurs 

by applying SGD (despite obtaining less optimization 

compared to Adam, being on average 0.91 %, however still 

outperforming plain NCF).  

The advantage of SGD however is that the convergence 

happens earlier. This particularly supports findings from 

relevant literature that adaptive optimization techniques 

(such as Adam) generalize poorly compared to SGD [32] .  

The biggest shift occurs after 140 iterations for SGD, 

and after 240 for Adam, that is when CA-NCF and NCF 

stabilize. We also note that Adam needs more iterations to 

stabilize, showing, however, ultimately similar trend. Those 

results are obtained by choosing a batch size that is equal to 

16k.  

Similar trends occur for DepaulMovies and TripAdvisor 

datasets as shown in figures 5 and 6, respectively. We have 

obtained 0.37% loss gain for SGD and 3.98% for Adam on 

average for the DepaulMovies datasets. Also, we have 

obtained 1.6% and 2.16% on Adam and SGD, respectively, 

for the TripAdvisor dataset. 

It worth mentioning that all results show similar trends 

comparing SGD to Adam, as they both converge earlier 

using SGD. We also find that for both settings, SGD 

requires a learning rate that is higher than Adam 

counterpart (by a scale of 100) in order to obtain a good fit 

(not over- or under-fitting), ranging from 0.0005 to 0.05 

and 0.0001 to 0.01, respectively. All in all, our version CA-

NCF significantly outperforms the plain NCF for the 

validation loss skill (remind that we use the sparse-

categorical-crossentropy as a validation loss function). We 

note that extra iterations (smaller batch size) has a property 

that allows obtaining more loss gain (statistically plausible). 

It is well established that a good fit model is the one 

performing good on the train and validation sets. This can be 

diagnosed from a plot where the train and validation loss 

decrease and stabilize around the same point. An example 

running session from our case is shown in fig. 7, where the 

shading area constitutes the train loss. We note that the 

convergence applies to both NCF and CA-NCF, with CA-

NCF outperforming. 

To conclude this test, our CA-NCF model is able to 

generalize better than the vanilla NCF as it is shown from 

figures 4,5,6 and 7.  

In another accuracy test, we aim at comparing the 

accuracy of our CA-NCF model with other benchmark 

baselines (refer to section IV. A. for more information). For 

this, we have selected MAE. Fig. 8 shows that our model 

CA-NCF outperforms baselines with statistically significant 

margins.  Our model CA-NCF registers a gain that is roughly 

equals to 2.35 %, on average. Those figures are doubled 

when comparing CA-NCF with the plain item-split KNN, 

where we obtain roughly a gain that is equal to 6.2%, on 

average, whereas they are quadrupled when comparing CA-

NCF to CAMF, where we obtain roughly 8.9% gain, on 

average. In addition, we obtain a significant 11.66 % gain 

over the context-free biasedMF. 

It is worth mentioning though that the plain NCF performs 

better than the other classical benchmarks (such as item-split 

 
FIGURE 9. Top1Accuracy performance learning curve for CA-NCF 
against plain NCF on MovieLens 1M dataset 

 

 
FIGURE 7. Good fit of CA-NCF (validation and train losses converge 

at almost the same point) on MovieLens datasets 

 

 
 
FIGURE 8. MAE of CA-NCF against counterparts for all 

benchmark datasets 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975167, IEEE Access

 

VOLUME XX, 2019  

KNN and CAMF). From all the methods that have been 

compared, context-free biasedMF performs the worst. This is 

expected as it does not consider contextual features. Those 

results support that explicitly considering contextual 

information yields more accurate recommendations. 

Another important learning curve that shows how well a 

model generalizes is the performance learning curve, Top-

one-accuracy, which shows an opposite trend (statistically 

attractive), where more accuracy is better. As shown in fig. 9, 

by applying the Adam to MovieLens dataset, we obtain, on 

average, (for 100 running sessions) roughly 6.4 % top-one-

accuracy gain. Our model generalizes better than the plain 

model as the figure shows. This empirically confirms the 

effectiveness and productiveness of explicitly incorporating 

contextual information into explicit-feedback NCF layers. As 

a general trend, validation loss of CA-NCF models decline 

while predictivity performance enhance. However, adding 

more iterations does not seem to improve the accuracy above 

a specific margin and both models stabilize at almost the 

same iterations.  

To further quantify the significance of our model, we have 

compared CA-NCF and NCF with several state-of-art 

benchmarks (as described in Section VI.A. for information). 

Fig. 10 shows that our model performs the best in terms of 

top-one-accuracy, where we obtain roughly 3.25% and 4% 

accuracy gain by applying CA-NCF instead of the plain 

NCF, on average, by applying Adam and SGD, respectively. 

Even though NCF underperforms our model, it outperforms 

the state-of-art benchmark systems by statistically significant 

magnitudes. We obtain roughly 60%, 55%, and 87% 

accuracy gain, on average, by applying our model CA-NCF 

against item-split KNN, CAMF and biasedMF, respectively. 

It worth noticing that even though we have obtained less gain 

by applying Adam instead of SGD and comparing CA-NCF 

to NCF, we obtain higher accuracy gain when applying 

Adam instead of SGD. 

All the results shown in this section provide a compelling 

argument on the level of improvement of CA-NCF over 

NCF. CA-NCF noticeably improves the recommendations 

quality for datasets that are explicitly (or implicitly) tagged 

with relevant contextual features. Traditionally, those 

features have been treated as additional information that are 

embedded into hidden layers of sequentially stacked neural 

layers. By explicitly incorporating context into a DL-based 

recommender system, we reap many benefits that 

significantly enhance the overall prediction quality of the 

recommender system. 

Also, since we are applying a prefiltering stage that 

selectively prunes the contextual features (and thereby 

conditions) search space, the results show similar trends for a 

variety of datasets despite the variance in data sizes and the 

number of contextual features. This provides a glimpse that 

the important thing to consider is the presence of relevant 

contextual features in the datasets either explicitly or 

implicitly (e.g. a ‘timestamp’), not accounting significantly 

for the number of those features. This in part is due to the 

fact that we apply an impurity check as an integral part of the 

prefiltering stage, where we only select statistically 

significant features and their associated conditions. However, 

we argue that completeness of contextual information may 

not influence the quality of recommendation in the same way 

the underlying procedure does. In addition, this may need 

further future investigation with varying sets of datasets that 

have dissimilar statistical distributions (i.e., being normally 

distributed, skewed or highly skewed). This however falls 

outside the scope of this paper. 

V. RELATED WORK 

Very few works in the relevant literature explicitly 

incorporate contextual information into DL-based 

recommender systems. Most importantly, we mention few 

recent works that are based on Recurrent Neural Networks 

(RNN).  [32] propose to extract static user-side contexts and 

model a high-order interaction with a previous item using a 

product-based neural network (PNN), a Neural Network 

(NN) variant of factorization machine (FM), in order to 

augment an existing RNN model, a method that is dubbed as 

Augmented RNN (ARNN), thereafter, they compare that to a 

baseline untouched RNN. ARNN achieves favorable results 

over plain RNN, the drawback, however, is that it is only 

applicable for static user contexts such as age, country and 

job. Hence, it does not consider the dynamicity of real-life 

context application scenarios, where user explicit feedback 

may change depending on a dynamic surrounding context.   

In the same vein, aiming at mitigating the deficiency of 

RNN in modeling contextual information, [33] propose a 

model termed as Context-Aware Recurrent Neural Networks 

(CA-RNN) that operates adaptive context-specific input 

matrices to model contextual information into and end-to-end 

network, by incorporating contexts into the reference RNN 

model through the items matrix. Time intervals (between 

adjacent behaviors) have been treated as transition contexts 

and incorporated into the model. The design is however 

driven by the fusion of sequential and contextual analysis in 

one framework. 

Aiming at improving next item prediction,  [34] introduce 

a Contextual RNN (CRNN) algorithm by leveraging 

contextual information for the item sequence modeling. They 

basically achieve this by either incorporating item 

representation with context via several non-linear 

transformations (which is considered a prefiltering) or 

 
 
FIGURE 10. Top1Accuracy performance learning curve for CA-NCF 
against plain NCF and the state-of-art benchmarks on all datasets 
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context-dependent dynamics modeling, where context is used 

to parametrize the dynamics of the hidden state transition. 

This algorithm, most importantly, has an input module that 

creates a dense input embedding from sparse original input 

data, thus bringing context information into item 

representation, mimicking the prefiltering incorporation 

approach. Then the final combined representation is passed 

to the recurrent update module. Concatenation assumes no 

effect of context on item representation. 

It worth mentioning that contextual pre-filtering is a 

contextual incorporation approach that normally precedes the 

recommender model in order to get more accurate values. 

Hence, there are only few contextual pre-filtering 

incorporation approaches in the relevant literature. Some 

approaches are based on dimensionality reduction. For 

example, [35] incorporates contextual information into RSs 

using a multidimensional approach. However, the proposed 

method considers the exact values of contextual conditions, 

which then increases the data sparsity, negatively affecting 

the quality of the RS. Accounting for sparsity, the same 

authors suggested a generalized prefiltering approach, where 

they use a generalized filter for context conditions instead of 

the exact values. For example, if we want to recommend a 

song to a person based on the ‘day of week’, we would use 

not only ratings that correspond to ‘Saturday’ for predicting 

the song she may be interested in listening to in a ‘Saturday’, 

but also we use the ratings from ‘Sunday’ as both fall into the 

‘weekend’ pair-wise context condition split. A variant for the 

item-splitting approach is the user-splitting (a.k.a. micro-

profiling), which acts as exactly as the item-splitting but 

instead of splitting items based on statistical significance of 

differences in rating means, it splits user profiles based on the 

same statistics into the so-called micro-profiles so that each 

user has multiple profiles with each profile corresponds to a 

specific contextual condition [36].   
Despite significant, approaches of the relevant literature 

act by either capturing complex transitions of item 

preferences through time intervals (modeling them as a 

transition context) or modelling contextual information into 

the layers of the NN. We contend, however, that simpler 

methods for incorporating contexts are more time-efficient 

while yielding statistically significant results. Also, their 

incorporation into end-to-end DL-based RSs is simpler, 

require less hyperparameter tuning and does not require the 

adaptation while jumping through domains. 

For deeper surveys on recommender systems generally 

and also on DL-based RSs, we refer the interested reader to 

these two specific works [21, 37] . 

VI. CONCLUDING REMARKS, CHALLENGES, AND 
OPEN ISSUES 

Information overloading is currently challenging state-of-the-

art pervasive solutions in their ability to provide customized 

recommendations based on user preferences. Traditionally, 

explicit feedback systems consider user-item-rating 

interaction patterns, by neglecting important contextual 

information. It has been extensively proven recently that 

contextually enriched models yield more statistically 

significant results and personalized recommendations. We 

argue that discarding contextual information while 

performing recommendations has associated dangers and 

subtleties. The introduction of contextual modeling 

techniques mostly dominated by MF-based methods has 

encouraged practitioners in all domains to accept contextual 

metadata as an integral part of any successful RS. We have 

found that, to the best of our knowledge, no DL-based RS is 

incorporating context using pre-filtering methods such as 

item splitting. 

 

In this paper, we have designed a DL-based RS method as 

hybridization between the recently popularized NCF and an 

important contextual incorporation method known as item-

splitting. The hybridization benefits from both worlds 

without their limitations. State-of-art DL-based 

incorporations involve stacking many convolutional layers, 

which is computationally expensive, complicates the model 

and makes it susceptible to over and under-fitting problems. 

These issues are exacerbated by the fact that those settings 

require heavy hyperparameter tuning efforts. We instead 

opted for encoding context cues explicitly through a 

prefiltering incorporation method that simply acts as a 

frontstage which feeds its output to the network, thus 

simplifying the model and making it easier. By incorporating 

contexts, CA-NCF makes more personalized 

recommendations than the plain NCF, which does not 

intrinsically consider contexts. Limitations of beefed-up 

centralized server-based computational models have 

motivated us to employ a distributed robust framework atop 

Apache Spark (specifically relying on libraries provided by 

BigDL), aiming at combining our algorithms with other jobs 

that potentially contain burst streaming workloads. 

As a future perspective, we encourage engaging multi-

criteria ratings during prediction, which is loosely defined as 

the correlation between the overall rating and other fine-

grained ratings. Moreover, the only computational cost 

associated with our framework lies behind feature 

engineering and selection aspects, which works just fine for 

data-at-rest. However, we plan to optimize in a future work 

so that we prepare our algorithms for data-in-flight (online) 

dynamic settings. We are starting by analyzing how our 

models in their current state perform in the wild (aggressive 

online dynamic settings with burst streaming workloads). 
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