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ABSTRACT In this paper we apply a novel approach to near-infrared subcutaneous palm vascular pattern
authentication. The proposed method relies on a recursive algorithm based on a positive linear dynamical
system whose evolution depends on the two matrices representing the vein patterns to be compared. The
output of the system reaches a high value when a good matching between the two matrices is observed,
otherwise it converges rapidly to zero, even in presence of noise. With respect to another algorithm we
recently introduced, this approach achieves not only a better authentication performance but also a drastic
reduction in terms of computation time. These improvements are demonstrated by means of extensive
experiments conducted on challenging datasets.

INDEX TERMS Biometric authentication, dynamical system, noise-rejection, vascular pattern, vein
matching, information security

I. INTRODUCTION

W ITH the rapid growth in demand for reliable and
highly secure human authentication and identifica-

tion systems, the importance of technological solutions and
algorithms in the biometric field is growing along with
security awareness [12]. In fact, traditional/conventional
authentication methods, consisting in token-based systems
that make use of something you have (e.g., ID card), and
knowledge-based systems that make use of something you
know (e.g., personal identification number or password), are
unable to meet the needed reliability and security require-
ments, while biometric systems make use of physiological
(intrinsic) and/or behavioural (extrinsic) traits of individuals,
overcoming the security issues affecting the conventional
methods for personal authentication [23].

Biometric systems can indeed automatically authenticate
or identify subjects in a reliable and fast way and are
therefore suitable to be used in a wide range of applications
to face the risks of unauthorised logical or physical access

and identity theft, as well as new threats such as terrorism
or cybercrime [11].

Suitable biometric features for authentication include
physiological uniqueness of individuals such as fingerprint,
palmprint, hand geometry, face, iris, retina, ear, and be-
havioural traits such as keystroke dynamics, voice, signa-
ture, and gait. Among the listed physiological characteris-
tics, vascular pattern features such as palm veins [4], [29]–
[31], finger veins [5], hand veins [14], and hand dorsal
veins [19], are an emerging biometric trait that has re-
cently received considerable interest from both the research
community and industries [22]. In fact, the subcutaneous
vascular pattern of the human body is unique to every
individual, even between identical twins [14], does not vary
during the course of a person’s life, and lies underneath
the human skin ensuring confidentiality and robustness to
counterfeiting, as opposed to other intrinsic and extrinsic
biometric traits that are more vulnerable to spoofing, thus
leading to important security and privacy concerns [15].

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005460, IEEE Access

In addition, since vascular patterns are typically acquired
by touch-less devices, they allow for a secure authentication
method ensuring high user acceptability without discomfort.

This paper proposes a novel approach to palm vein
matching based on a positive linear dynamical system char-
acterised by a high discriminating power and noise-rejection
capability. Section II gives an overview of the literature
in vein pattern biometrics. Then, Section III illustrates the
preprocessing and feature extraction phases aimed at ex-
tracting the palm vascular pattern, while Section IV presents
our novel algorithm based on the evolution of a dynamical
system, and highlights its noise-rejecting properties. The
experimental results are reported and discussed in Section
V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK
In recent years, the use of palm veins as a trait for automated
secure personal authentication has been largely investigated
due to their advantages over other biological features.

Veins are part of the network structure of blood vessels
underneath the human skin and are almost invisible in nor-
mal lighting conditions. However, it is possible to identify
the vascular pattern through near-infrared (NIR) illumina-
tion with wavelength commonly in the range from 750
nm up to 2000 nm. The incident light in the near-infrared
spectrum penetrates into the human biological tissues up
to 3-4 mm detecting the vascular pattern underneath the
skin [27].

Veins can be distinguished from arteries because arteries
carry oxygenated blood that contains oxyhemoglobin, whilst
veins carry deoxygenated blood that contains deoxyhe-
moglobin, which has a different absorbency rate under near-
infrared radiations: deoxyhemoglobin absorbs a higher level
of NIR radiations, which allows us to detect and isolate vein
patterns. As a result of the acquisition in presence of NIR
illumination, vascular patterns in raw images appear much
darker than all other tissues, which facilitates the feature
extraction step for matching.

Various methods for human authentication through palm
vascular pattern matching have been proposed in literature.
Among them, the work of Zhou and Kumar [31] presents
a neighbourhood matching Radon transform (NMRT)-based
method aimed at extracting line-like palm vascular features
and a Hessian phase-based method to extract palm vein
features analysing the eigenvalues of Hessian matrix of the
input image. The matching score is computed making use of
the Hamming distance. Khan et al. [13] use multidirectional
representation derived from the nonsubsampled contourlet
transform, which is binarised into a hash table. Finally, a L0-
norm approach is used for matching. In another study, Sun
and Abdulla [26] introduce an algorithm based on curvelet
transform used to obtain curve-like features, whilst Ham-
ming distance is used for matching. The work of Al-juboori
et al. [1] proposes the use of bank of Gabor filters to extract
the vein features, followed by a dimensionality reduction
using the Fisher discriminated analysis (FDA) method, and

finally the use of the nearest neighbours technique for
matching. The study of Kang and Wu [15], instead, utilises
an improved local binary pattern method based on mutual
foreground for feature extraction and an improved χ2 dis-
tance for matching, whilst the approach proposed in [28] by
Wang et al., involves the discriminative local binary pattern
(LBP) algorithm for palm vein feature extraction and adopts
an improved improved χ2 distance for verification. Another
approach proposed by Kang et al. [16], makes use of a local
invariant feature extraction technique based on the square
root of the scale invariant feature transform (RootSIFT). The
work of Ma et al. [21] presents an adaptive bidimensional
Gabor filter for feature extraction, which are compared using
the minimum normalised Hamming distance method, whilst
Ahmad et al. [2] make use of the wave atom transform
(WAT) method for feature extraction and the normalised
Hamming distance to compute the matching score. Hong
et al. [9] make use of a hierarchical classifier based on the
fusion of the block dominant orientation code (BDOC) and
block-based histogram of oriented gradient (BHOG) features
from different spectrum bands (red, green, blue and NIR).

All these techniques can be grouped in three main
categories based on the nature of the features used for
matching [17]:
• holistic approaches based on multilinear subspace

learning: dimensionality reduction techniques are used
to project palm vascular images into subspaces aimed
at capturing the main features of the palm;

• line/curve matching using vessel extraction based on
line-like feature extraction techniques that involve spa-
tial domain filters for line/curve extraction;

• texture based codes, which make use of the orientation
of lines as features.

III. HAND PALM IMAGE PROCESSING
Usually, palm print images in the near-infrared band contain
not only the blood vessels used to authenticate a person, but
also a region of not-interest (e.g., shades, wrist, image back-
ground). Moreover, they have different size and orientation
and could also be corrupted by noise. All these factors may
affect the accuracy in processing and verification perfor-
mance [33]. Thus, a preprocessing of all palm print images
is required to enable the feature extraction phase.

Figure 1 outlines the preprocessing and feature extraction
phases illustrating all the main steps involved in the vascular
pattern extraction from a raw NIR-based hand palm image.
All these steps are detailed in the video included in the
additional material (tests #1 and #2).

A. PREPROCESSING
The preprocessing elaboration is required to extract the
central region of interest from the input image. As outlined
in the Figure 1, the major steps involved in the preprocessing
of raw images are: 1) noise reduction, 2) local adaptive
binarization, 3) hand shape detection, and 4) ROI coordinate
construction and extraction [24].
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FIGURE 1. Block diagram of the adopted NIR-based hand palm image
processing for vascular pattern extraction.

1) Noise reduction
A noise typically corrupting digital images is the impulse
noise [8], [18]. This kind of noise is independent, randomly
distributed, and uncorrelated with the image, since it can
affect all pixels in the image with the same probability.
Hence, a common non-linear spatial filter, i.e. median filter,
can be used to remove unwanted information from noisy
palmprint images preserving details. In our experiments, the
kernel size has been set to 5× 5 pixels.

2) Local adaptive binarization
It is used to automatically perform a local adaptive
clustering-based image thresholding in order to reduce the
input gray-level image I(i, j) to a binary image B(i, j).
Furthermore, to remove the wrist part of the hand, which
can contribute in poor segmentation, the last L pixels on the
wrist side of the image are zero-padded as in [15].

3) Hand shape detection
It is achieved by filtering the binary image B(i, j) using
Canny’s operator [3], which ensures good noise immunity
and detects true edges with minimum error [7].

4) ROI coordinate construction and ROI extraction
To reduce the influence of rotation, translation, and scaling
of the palm, a standard reference system is used to align
all the palm images in a standard pose, hence, it is possible
to locate the peak and valley points of the palm tracking
the distance between the centre of mass of the segmented
hand image and the contours of the hand shape. Thus, taking
the reference points between the fingers we can construct
a reference line to align different hand images and use the
middle point between them to detect and extract the 172×
172 area of the palmprint’s centre without any effort [32].

B. FEATURE EXTRACTION
Since the features are used for matching, feature extraction
plays a key role in biometric identification and authentica-
tion systems. The proposed feature extraction stage makes
use of the following steps: 1) highlighting blood vessels by

enhancing contrast and sharpness, 2) Laplacian of Gaussian,
and 3) morphological operations. Figure 2 depicts the results
of the proposed feature extraction algorithm.

1) Blood vessel enhancement
It highlights blood vessels so that they are easily distinguish-
able from the background. To correct uneven illumination
and to enhance the contrast we combined the Top-Hat
and Bottom-Hat transforms, used to detect bright (dark)
objects from a varying dark (bright) background. The Top-
Hat transform is defined as the difference between the input
image I and its morphological opening by a cross shaped
structuring element B ⊆ Z2:

B =

0 1 0
1 1 1
0 1 0

 (1)

TH = I − (I ◦B) = I − ((I 	B)⊕B) (2)

whilst the Bottom-Hat transform is defined as the difference
between the closing of the input image I(i, j) by the
structuring element B and the input image itself:

BH = (I •B)− I = ((I ⊕B)	B)− I (3)

where the opening is obtained by the erosion of I(i, j) by
B followed by dilation of the resulting image by B, and the
closing is obtained by the dilation of I(i, j) by B followed
by erosion of the resulting image by B. Then, to remove
the bright objects and enhance the black ones that represent
the blood vessels, we adopt the Top-Hat and Bottom-Hat
transforms as follows:

Io(i, j) = I(i, j)− TH(i, j)−BH(i, j). (4)

After this operation, a normalisation [10] is applied to preset
the values of mean and variance for all palm images:

In(i, j) =

{
µn + ρ if Io(i, j) > σ2

µn − ρ if Io(i, j) ≤ σ2
(5)

where

ρ =

√
σ2
n (Io(i, j)− µ)

2

σ2
(6)

with µn = 128 and σn = 40, determined experimentally.

2) Laplacian of Gaussian
The Laplacian is a bidimensional isotropic operator used
to estimate the second spatial derivative of an image and
is commonly used to extract line-like features, since can
preserve the pattern suppressing the noise at the same
time [26]. In fact, to decrease its sensitivity to noise the
operator is applied to an image already smoothed by a
bidimensional Gaussian operator G(i, j), whose expression
is given by

G(i, j) = exp

(
− i

2 + j2

2σ2

)
. (7)
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(a) (b) (c)

FIGURE 2. Results of the proposed vascular pattern extraction method on
PolyU (upper row) and CASIA (lower row) databases: (a) original ROI images,
(b) boolean vascular pattern matrices, and (c) original ROI images overlapped
with the extracted vascular patterns.

Since convolution and differentiation are the only linear
operators involved, it is possible to interchange them:

∇2 [G(i, j) ∗ In(i, j)] =
[
∇2G(i, j)

]
∗ In(i, j). (8)

Hence, the Laplacian of Gaussian can be precomputed as:

∇2G(i, j) =

(
i2 + j2 − 2σ2

σ4

)
G(i, j). (9)

3) Morphological operations
They are aimed at cleaning the vascular pattern image from
small objects and noise such as random bright spots on
black background and black holes on bright components.
To accomplish this goal we use a morphological filter
composed of an opening followed by a dilation through a
structuring element B as follows:

F = (I ◦B) •B. (10)

Finally, an iterative thinning transformation is applied to
reduce a foreground object to a minimal connected stroke
preserving the topology [20], since the final vascular pat-
tern image is homotopically equivalent to the input image.
Figure 2 exemplifies the vascular pattern extraction method.

IV. A DYNAMIC ALGORITHM FOR VEIN MATCHING
We discuss here the dynamic algorithm we propose for vein
matching, which is a recursive algorithm based on iterative
operations on the matrices associated with the images. To
have an immediate glimpse on how the algorithm works the
reader is invited to take a look at the video included in the
additional material. The reader is invited to take a look at
the video included in the additional material (tests #3 and
#4) to see the time evolution of the dynamic algorithm in
both genuine and impostor experiments.

Given two initial images X̄ and Ȳ of the same size, the
recursive algorithm yields a pair of real matrices, X and Y ,

with the same size as X̄ and Ȳ . The algorithm is initialised
as xij(0) = x̄ij and yij(0) = ȳij where x̄ij and ȳij are the
binary values of pixel i, j in the original images X̄ and Ȳ ,
converted to real (floating point) values. For brevity we refer
to the real entries of matrices X(k) and Y (k) as “pixels".

The idea behind the algorithm is to recursively increase
the value of a pixel i, j if in the complementary neigh-
bourhood (namely, the neighbourhood of the corresponding
pixel i, j in the comparison image) there are pixels with
large values. Conversely, if the pixels in the complementary
neighbourhood have low values, the value of pixel i, j
converges to zero. The algorithm also includes a term that
initially increases the value of a pixel if the pixels in a
proper neighbourhood in the same image have large values,
and then vanishes with time; it has the effect of initially
thickening the relevant patterns.

The two images are processed according to the iterations

xij(k + 1) = λxij(k) + µ
∑

hl∈Nij

yhl(k)

︸ ︷︷ ︸
cross-matching

+ νk
∑

hl∈Nij

xhl(k)

︸ ︷︷ ︸
initial expansion

(11)

yij(k + 1) = λyij(k) + µ
∑

hl∈Nij

xhl(k)

︸ ︷︷ ︸
cross-matching

+ νk
∑

hl∈Nij

yhl(k)

︸ ︷︷ ︸
initial expansion

(12)

where k = 0, 1, . . . ,K − 1, and Nij is a square neigh-
borhood of the pixel i, j of dimension δ (integer):

Nij = {h, l : |h− i| ≤ δ, |l − j| ≤ δ, h, l ∈ Z}.

At the final step K, to achieve a boolean image, pixels
with value smaller than 1 are set to zero whilst pixels with
value greater than 1 are saturated to 1, so as to generate the
final boolean matrices (images) X ′ and Y ′, with

x′ij := {xij(K) ≥ 1} and y′ij := {yij(K) ≥ 1}. (13)

Given the size δ of the neighbourhood Nij and denoting
by n(N ) = (2δ + 1)2 the corresponding number of pixels,
the positive parameters λ, µ, ν are selected based on an
optimisation procedure.

To limit the search region for the optimisation procedure
within a bounded set (see Figure 3), we impose the con-
straints:

0 < λ, µ, ν < 1 (14)
λ+ ν < 1 (15)
1

2
µ · n(N ) < 1− λ < µ · n(N ) (16)

Since we consider positive parameters, the requirement
that λ, µ, ν < 1 in (14) is implied by (15) and (16).

The reasoning behind the introduced constraints can be
explained as follows.
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• Given (11) and (12) in the absence of cross matching
(µ = 0) and of initial expansion terms (ν = 0),
xij(k) and yij(k) should asymptotically converge to
zero: since the iterations become xij(k+1) = λxij(k)
and yij(k + 1) = λyij(k), this happens provided that
λ < 1, as in (14).

• The expansion term initially augments xij (resp. yij) if
the average value of the pixels in the neighbourhood of
xij (resp. yij) is large. It depends on the factor νk, and
we set 0 < ν < 1 as in (14) so that this initial effect
quickly vanishes with time. This is needed because, in
the long run, the persistence of this term would make
all lines thicker and thicker, leading to false positives.

• The inequality in (15) needs to hold to ensure that, if
there is an isolated pixel xij whose value is initially
large, but there are no active pixels in both the neigh-
bourhoods of the image itself and the complementary
image, then the pixel value decreases from the very
beginning of the iterations, since it evolves as

xij(k + 1) =
(
λ+ νk

)
xij(k). (17)

With ν + λ < 1, such a pixel is therefore quickly
cancelled.

• The first inequality in (16) is explained as follows.
The cross-matching term increases xij (resp. yij) if
the average value of the pixels in the complementary
neighbourhood is large.
If νk ≈ 0, which is ensured for large k in view of (14),
we have

xij(k+ 1) = λxij(k) + µn(N )

∑
hl∈Nij

yhl(k)

n(N )︸ ︷︷ ︸
average value

(18)

Hence,
1

2
µ · n(N ) + λ < 1 implies that, if the

average value in the complementary neighbourhood
is around or below the half of xij(k), then xij gets
smaller: xij(k + 1) < xij(k). Hence, we take the
empirical threshold of xij(k)/2 to discriminate whether
the complementary neighbourhood has to be considered
“populated” or “unpopulated". Conversely, the second
inequality in (16), µ · n(N ) + λ > 1, means that if the
average value is about or greater than xij , the comple-
mentary region should be consider as “populated" so
xij should get larger: xij(k + 1) > xij(k). The same
holds for yij(k).

At the end of the iterations, given xij(K) and yij(K),
the images X ′ and Y ′ are produced, where some pixels are
set to 0 and others to 1 according to the boolean decision
boundary in (13).

The final test is performed on the number of pixels with
value 1 (active), which is compared to the initial number.
Denoting by Σ(X̄) and Σ(Ȳ ) the number of active pixels in
the initial images and by Σ(X ′) and Σ(Y ′) the number of
active pixels in the final images, we consider the matching

index [25]:

α =
1

2

[
Σ(X ′)

Σ(X̄)
+

Σ(Y ′)

Σ(Ȳ )

]
. (19)

Similar images will have a large number of surviving
pixels (cf. Figure 8 (a) and (c)), hence a large matching
index α, while different images will be left with a very
small number of nonzero pixels (cf. Figure 8 (b) and (d)),
with α considerably small.

Since νk → 0 when k →∞, asymptotically the recursion
becomes identical to that in our algorithm for palmprint
matching [25] (which makes use of palmprint features
acquired in the visible spectrum rather than in the NIR).

The resulting algorithm works as follows.

Algorithm Vein matching index computation
Input: Boolean images A and B.

Parameters: Number of steps K, positive constants
λ, µ, ν < 1, integer neighbourhood amplitude δ > 0.

Outputs: Matching index α.

1) Convert the two input images from boolean into real
matrices X := A and Y := B.

2) Set k = 0.
3) At each iteration, compute the updated values for each

pixel in both images according to (11)–(12)
4) Set k = k + 1 and, IF k < K, GOTO step 3.
5) Generate the boolean matrices [X ′, Y ′] as follows: IF

xij ≥ 1, THEN x′ij := 1; ELSE x′ij := 0; IF yij ≥ 1,
THEN y′ij := 1; ELSE y′ij := 0.

6) Compute the matching index α as in (19).

Therefore, we can formally guarantee that asymptotically
the performance is at least as good as with the previous
algorithm. Moreover, the new dynamic algorithm has note-
worthy advantages.

• The term νk provides an initial burst that considerably
increases the speed of convergence. Its effect is that
of initially enlarging the lines, which is beneficial and
very rapidly leads to a situation where the discrimina-
tion is possible (see Figure 5).

• The benefits of the joint cross-matching and the initial
expansion term are seen in the first iterations, which
allows to stop the algorithm at an early stage. Indeed,
the best results in terms of discrimination are achieved
after few iterations, so waiting any longer is useless
(although it does not compromise performance in terms
of the matching index, see Figure 5). Stopping the
algorithm after few iterations drops the computational
time of an order of magnitude (cf. Figure 5) and still
allows for very effective authentication.

Given the constraints (15)–(16), the optimal parameter
values are chosen based on an experimental campaign in
order to maximise the performance.
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V. EXPERIMENTAL RESULTS
A. DATABASES USED IN SIMULATION
The performance of the proposed palm vascular pattern
authentication system has been tested upon the PolyU multi-
spectral palmprint database [34] and the CASIA multispec-
tral palmprint database [35], which are worldwide shared
for research purposes and whose details are given in Table 1.

The first database consists of 6 000 palmprint images for
each electromagnetic spectrum, captured from 250 subjects
by a CCD-based device. All images are 8 bit gray-level
of size 352 × 288 pixels at 96 dpi resolution. The sec-
ond database consists of 1 200 palmprint images for each
electromagnetic spectrum, captured from 100 subjects by a
CCD-based device. All images are 8 bit gray-level of size
768× 576 pixels at 96 dpi resolution.

In both databases, for each subject there are palmprint
images from both left and right hands captured from people
of different ages at different times.

TABLE 1. Specifications of the PolyU and CASIA databases.

PolyU CASIA

Subjects 250 100
Samples 24 12
Total 6000 1200
Hand holder yes no
Spectrum bands 4 6
Wavelengths [nm] 470, 525, 660,

880
460, 630, 700,

850, 940, WHT

B. PARAMETER OPTIMISATION
Since the proposed approach for matching is based on a
linear parameter-dependent system, it is very important to
set its internal parameters in order to maximise the system
performance. Hence, in this phase we have carried out a
one-time parameter tuning procedure which consists of a
massive experiment to estimate the values of the parameters
λ, µ, and ν that maximise the accuracy of the system.

Thus, given the set N of nearby points of a generic
point p(x, y), it is convenient to set the parameters in
accordance with the criteria (14)–(16). To define the set N ,
it is reasonable to consider a small radius as δ = 2 (which
means that the cardinality of N is equal to n(N ) = 25),
since the thickness of blood vessels typically amounts at
most to a couple of pixels. This choice allows a perfect
coverage of a blood vessel and avoids excessive unwanted
overlaps with other blood vessels in the comparison image.

The suitable parameter values, in terms of accuracy
and convergence speed, have been found by means of a
massive experiment, conducted over a subset of the CASIA
multispectral palmprint database.

Since it is not possible to thoroughly invesitgate in the
convergence domain to find the optimal parameter values,
the candidate parameters have been chosen using a Monte
Carlo sampling-based approach, generating a large number

0
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0.6
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0.8
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1
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1 0

Region of convergence
Valid candidate samples

FIGURE 3. Region of convergence of the system bounded by the constraints
reported in (14)–(16) (with n(N ) = 25 and p = 1/2), and valid Monte Carlo
samples (λ, µ, ν).

of pseudo-random points in the space, selecting the only
points within the convergence domain, and using the candi-
date parameters to test the behaviour of the system. Figure 3
depicts the convergence domain of the system according
to the hard constraints argued in Section IV. The subset
of the database consists of half the right hand samples of
all the subjects acquired in the spectrum band at 940 nm,
whilst the number of parameter sets (λ, µ, ν) generated by
the Monte Carlo sampling and belonging to the convergence
domain is equal to 176. Hence, the amount of the tests
performed is 176 ×

(
300
2

)
= 7 893 600. Figure 4 illustrates

a comparative analysis of the performance by plotting the
genuine acceptance rate against the false acceptance rate
for several different parameter sets (λ, µ, ν), whilst Table 2
presents detailed results in terms of equal error rate and
genuine acceptance rate achieved by each parameter set.
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FIGURE 4. Comparative graph of several ROC curves generated by plotting
the Genuine Acceptance Rate against False Acceptance Rate obtained using
different parameter configurations.

It is worth of note that to verify the effectiveness and ro-
bustness of our system, the parameters obtained from the test
conducted using images acquired under 940 nm wavelength
illumination have been used for the verification experiments
on both the testing databases using different wavelength
illumination images without parameter re-tuning. Thus, the
best parameter values resulting from the simulation are:

λ = 630 · 10−3

µ = 295 · 10−4

ν = 292 · 10−3.

(20)
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TABLE 2. Comparative analysis of the performance in terms of equal error
rate and genuine acceptance rate using the subset of the CASIA database
considering the near-infrared spectrum band at 940 nm.

Parameter set

1st 2nd 3rd 4th 5th 6th 7th

EER [%] 0.23 1.46 1.02 2.53 0.98 0.65 1.99

GAR [%] 99.8 98.5 99.0 97.5 99.0 99.4 98.0

To limit the computational cost of the matching process,
it is important to set a priori the number of iterations
after which we can consider the response close enough to
the steady state of the dynamic system. Hence, to better
illustrate the behaviour of the system in terms of accuracy,
even with respect to our previous algorithm for palmprint
matching [25], we performed the tests executing the algo-
rithms with a large number of iterations, thus allowing the
systems to reach the steady state condition.

We used the results from the tests obtained using the
proposed approach and our previous algorithm to graph
their behaviours in terms of discriminating power. Figure 5
illustrates the difference between the mean values of the
true positive and true negative rates against the number
of iterations, whilst the vertical dashed line represents the
selected number of iterations at which the proposed system
is intended to operate.
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FIGURE 5. Comparison between the proposed approach and our previous
algorithm in terms of discriminating power by plotting the difference between
the mean values of the true positive and true negative rates against the
number of iterations.

The figure clearly shows that, within a few iterations, the
matching score achieved by the proposed system can be
considered close enough to the convergence value of the
dynamic system in the steady state condition. These results
consistently suggests that the new approach achieves signifi-
cantly improved performance over the one in [25], ensuring
also greater reliability thanks to its higher discriminating
power. Hence, to save computation time, the number of
iterations for the tests has been set to 15.

C. PERFORMANCE ASSESSMENT AND COMPARISON
In order to evaluate the accuracy of the proposed authen-
tication method based on a single-sample approach for
single biometric systems, each sample in the database has
undergone a one-to-one matching test against every single

stored sample. Hence, a comparison between a subject with
real identity Ir and a subject with claimed identity Ic is
aimed at testing the hypothesis:

H0 : Ir = Ic versus H1 : Ir 6= Ic (21)

where H0 is the null hypothesis that the user is who s/he
claims to be (genuine or intra-class matching), whilst H1 is
the alternative hypothesis that the user is not who s/he claims
to be (impostor or inter-class matching). In particular, given
a threshold value, t, all matching values lower than t lead
to the rejection of the null hypothesis H0 [6]. Therefore,
whether the hypothesis is accepted or rejected, the test is
subject to two kinds of errors:

1) False Acceptance Rate (FAR) that is the probability
of accepting the null hypothesis H0 when input is not
valid,

2) False Rejection Rate (FRR) that is the probability of
rejecting the null hypothesis H0 when input is valid.

The Genuine Acceptance Rate (GAR) is instead the proba-
bility of accepting the null hypothesis H0 when input is
valid. The Receiver Operating Characteristic (ROC) rep-
resents the trade-off between FAR and FRR when the
threshold varies, whilst the intersection point for which
rejection and acceptance errors are equal is named Equal
Error Rate (EER).

In our experiments, we have performed tests by taking
12 samples in the NIR spectrum at 880 nm of the left and
right hands of all the subjects from the PolyU multispectral
palmprint database and 6 samples in the NIR spectrum
at 850 nm of the left and right hands of all the subjects
from the CASIA multispectral palmprint database, for a
total of 6 000 and 1 200 samples, respectively. Furthermore,
in order to increase the amount of intra-class tests and
to comparatively assess the performance from various ap-
proaches, we regarded both hands as belonging to different
subjects [1], [2], [16], [21], [26], [28]. As a matter of fact
this setup constitutes a total number of experiments equal to:
1)
(
6 000
2

)
= 17 997 000, including 2× 250×

(
12
2

)
= 33 000

intra-class experiments for the PolyU database, and 2)(
1200
2

)
= 719 400, including 2 × 100 ×

(
6
2

)
= 3 000 intra-

class experiments for the CASIA database.
Figure 6(a) and Figure 6(b) outline the trade-off between

the FRR and the FAR curves when the threshold varies,
whilst the two EERs identified by the intersection point
between the curves are 2.341 · 10−5 for the PolyU database
and 1.081 · 10−3 for the CASIA database. Figure 6(c) and
Figure 6(d) instead, illustrate the genuine (intra-class) and
impostor (inter-class) distributions for both the databases.
The two distributions (or classes) are clearly separated in
both the databases, indicating the ability of the system to
distinguish the genuine user samples from those of the
impostors. Indeed, the separation also provides a hint on
the threshold point that maximises the variance between the
two classes in order to correctly mark a user sample image
as authentic or impostor.
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TABLE 3. Summary of the performance in terms of EER derived from several published methods.

Reference Year Database (DB) Methodology EER
Name Users Samples Features Matching [%]

Zhou et al. [31] 2011 CASIA 200 6 Neighborhood Matching
Radon Transform

Hamming distance 0.51

Hessian phase Hamming distance 1.44
PolyU 500 12 Neighborhood Matching

Radon Transform
Hamming distance 0.004

Hessian phase Hamming distance 0.43
Sun et al. [26] 2012 PolyU 500 12 Curvelet transform Hamming distance 0.66
Al-juboori et al. [1] 2013 PolyU 500 12 Gabor filters and FDA Single nearest

neighbours
0.2335

Kang et al. [15] 2014 CASIA 100 6 Mutual foreground LBP χ2 distance 2.53
Mutual foreground LBP χ2 distance and

SVM score fusion
0.267

Hong et al. [16] 2015 CASIA 200 6 RootSIFT LBP-based
mismatching removal

0.996

Wang et al. [28] 2017 PolyU 500 12 Discriminative LBP χ2 distance 0.079
Ma et al. [21] 2017 CASIA 200 6 Adaptive Gabor filter Normalised

Hamming distance
0.12

Ahmad et al. [2] 2019 PolyU 500 12 Wave atom transform Normalised
Hamming distance

1.98

Proposed method (DPVM) CASIA 200 6 Morphological operations
and LoG filter

Dynamical system 0.108

PolyU 500 12 Morphological operations
and LoG filter

Dynamical system 0.002
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FIGURE 6. Performance assessment from PolyU (first coloumn) and CASIA
(second coloumn) databases: (a) False Acceptance Rate and False Rejection
Rate curves, and (b) estimation of theortical genuine and impostor
distributions.

To assess the performance of the proposed dynamic palm
vein matching (DPVM) system with respect to several
other approaches present in literature, we have presented
in Figure 7 a comparison of the detection error trade-
off (DET) curves, which have been drawn by plotting
FRR against FAR. As the FRR indicates the number of
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FIGURE 7. Comparison of detection error trade-off (DET) curves between the
proposed system and other algorithms using (a) CASIA database and (b)
PolyU database.

match errors, the closer the curve is to the bottom of the
graph, the better the biometric performance of the system.
Hence, from Figure 7 it is clear that the dynamic palm
vein matching algorithm has achieved better performance
with regard to all the other methods, obtaining a GAR at
FAR = 10−6 equal to GAR|FAR=10−6 = 9.99 · 10−1 and
GAR|FAR=10−6 = 9.78 · 10−1 for the PolyU and CASIA
databases, respectively. Table 3 presents a summary of
the performance in terms of equal error rate (EER) of
different approaches in literature. In particular, our system
has achieved a Zero False Acceptance Rate (ZeroFAR) and
a Zero False Rejection Rate (ZeroFRR), which represent the
FRR (resp. FAR) value when FAR (resp. FRR) is zero, equal
to FRR|FAR=0 = 5.57 · 10−5 and FAR|FRR=0 = 3.03 · 10−5

for the PolyU database, and FRR|FAR=0 = 1.96 · 10−3

and FAR|FRR=0 = 4.27 · 10−2 for the CASIA database.
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Thus, these results show that our algorithm outperforms
all the other approaches with an EER reduced at least by
50% with respect to the listed techniques, demonstrating the
effectiveness of the proposed approach.

D. NOISE IMMUNITY
To demonstrate the robustness of the dynamic algorithm
against noise, further experiments have been carried out to
compare normal images and images highly corrupted by
random impulse noise. The model of this noise is always
independent, randomly distributed, and uncorrelated with
the images and can be described as follows:

In(x, y) =

{
28 − 1 with probability p ,

I(x, y) with probability 1− p .
(22)

Furthermore, the system robustness has also been tested per-
forming impostor matching experiments by adding the same
random impulse noise to the user sample images. These
experiments lead to low matching scores because there are
not enough connections between the active points of both
the images to be compared (i.e., half of the points in the
complementary neighbourhood are not active), though the
pixels affected by noise are the same. As a result, the amount
of survived points after the algorithm evolution is very
limited. Figure 8 illustrates the dynamic algorithm behaviour
in presence of random impulse noise with probability p
equal to 20%. In particular the first column shows the user
sample images to compare, the second column shows the
user sample images of the claimed identity, and the last
column shows the remaining points after the algorithm evo-
lution. Four most significant examples have been reported,
testing the following conditions: a) true positive match with
the user sample image corrupted by noise, b) true negative
match with the user sample image corrupted by noise, c)
true positive match with both the images to be compared
corrupted by noise, and d) true negative match with both
the images to be compared corrupted by identical noise (i.e.,
the same corrupted pixels). These tests demonstrate that the
system is able to recognise a subject with ease even if the
samples are highly affected by noise. The video included
in the additional material shows (tests #5 to #7) the system
behaviour in noisy conditions.

E. COMPUTATIONAL EFFICIENCY
The experiments have been performed making use of a
virtual machine configured with two dedicated processors
and 4096 MB RAM hosted on an Intel Core i5-7200U
CPU (2.5 GHz) with 8192 MB RAM running a 64-bit
Microsoft Windows 10 operating system. The code has
been implemented using Matlab R2016b; to estimate the
total computation time, each part of the code has been
performed 500 times, then it has been considered the mean
time. As a result, the average computation times required
for preprocessing, feature extraction, and matching of the
proposed algorithm are 81 ms, 28 ms, 126 ms respectively.

(a)

(b)

(c)

(d)

FIGURE 8. Dynamic algorithm behaviour in presence of random impulse
noise with probability p = 20%: a) true positive match with one image
corrupted by noise, b) true negative match with one image corrupted by noise,
c) true positive match with both images corrupted by noise, and d) true
negative match with both images corrupted by identical noise (i.e., the same
corrupted pixels).

Hence, the mean response time for verification is about
0.235 s, making this approach suitable to be used in a real-
time biometric authentication or identification system. The
proposed template consists of a square Boolean matrix of
dimensions 128 × 128 pixels, hence the total size for each
template is 2048 bytes. In terms of algorithm particularities
and user friendliness (the number of enrollment samples
required), the system is computationally simple because it
only requires one image as an enrollment template. This
makes the algorithm well suited even for systems with
limited resources.

VI. CONCLUSION
In this paper, a new approach for near-infrared subcutaneous
palm vascular pattern authentication has been investigated.
Inspired by our previous study [25], which adopts a dynamic
algorithm tailored to palmprint features acquired in the
visible electromagnetic spectrum rather than in the near-
infrared, we have proposed a novel dynamical system ap-

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005460, IEEE Access

proach achieving significantly improved performance over
the earlier proposed system ensuring also greater reliability
thanks to its higher discriminating power which allows to
recognise a subject with ease, even if the templates are
highly corrupted by noise. To evaluate the performance of
the system a massive campaign of experiments has been
conducted and the results clearly show that the proposed
approach can compete with the state-of-the-art methods,
achieving an EER equal to 1.081 · 10−3 for the CASIA
database and 2.341 · 10−5 for the PolyU database. The
experiments presented in Section V illustrate that the value
of GAR still can be considered 100% for levels of FAR
up to 10−4 on the CASIA database and up to 10−6 on
the PolyU database. In particular, setting the threshold such
that the system works at ZeroFAR, the probability to reject
a legitimate subject is 5.57 · 10−5 for the PolyU database
and 1.96 · 10−3 for the CASIA database, whilst there is
no likelihood of accepting impostors. We also want to
highlight that the system has undergone a parameter tuning
step which is required only once and there is no need to
perform this phase again, even using different databases
with different wavelength illumination images, which proves
the effectiveness and robustness of the proposed system. In
terms of algorithm particularities and user friendliness, the
system is computationally simple and extremely fast (allow-
ing for real-time applications) and user friendly, since it only
requires one near-infrared image as an enrollment template.
The computational time indeed requires only 0.235 s for
the entire process, whilst the size of a single template is
equal to 2048 bytes, thus allowing the use of the proposed
method in systems with limited resources. Furthermore, the
values of FAR, FRR and consequently of GAR obtained
from the experimental results allow the system to meet the
strict requirements of very high security applications.
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