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A portable three-dimensional LIDAR-
based system for long-term and wide-
area people behavior measurement

Kenji Koide1,2 , Jun Miura1 and Emanuele Menegatti2

Abstract
It is important to measure and analyze people behavior to design systems which interact with people. This article
describes a portable people behavior measurement system using a three-dimensional LIDAR. In this system, an observer
carries the system equipped with a three-dimensional Light Detection and Ranging (LIDAR) and follows persons to be
measured while keeping them in the sensor view. The system estimates the sensor pose in a three-dimensional envi-
ronmental map and tracks the target persons. It enables long-term and wide-area people behavior measurements which
are hard for existing people tracking systems. As a field test, we recorded the behavior of professional caregivers attending
elderly persons with dementia in a hospital. The preliminary analysis of the behavior reveals how the caregivers decide the
attending position while checking the surrounding people and environment. Based on the analysis result, empirical rules to
design the behavior of attendant robots are proposed.
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Introduction

It is important to measure and analyze people behavior

for designing systems which interact with people. We

have to understand how people behave with respect to

the surrounding people and environment to achieve sys-

tems with natural and rich interactions with people. In

particular for service robots, by analyzing the behavior

of a person who is helping another, we could model

their behavior and create a robot with human-like beha-

vior. This allows robots to have natural interaction with

humans and makes them more acceptable in daily ser-

vice situations.

Several models which describe the social interaction

between persons, such as social distance1 and social force

model,2 have been proposed, and a number of works have

applied those models to service robots.3–5 However, since

those models are based on simple analysis of the distance

between persons, they cannot describe the influence of the

surrounding environment and the other persons. Such lim-

itations may yield unnatural behavior of the robots in com-

plex situations. To realize a robot with natural and

acceptable behavior, it is necessary to measure person
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behavior in diverse situations and construct a sophisticated

interaction behavior model.

There are several data sets which provide people beha-

vior in indoor6 and outdoor environments.7,8 However, to

the best of our knowledge, no data set provides people

behavior involving interaction between followed and fol-

lowing persons even though such a situation is very com-

mon in daily services. Most of existing robots just keep the

distance to the target person constant, and this naive fol-

lowing strategy could make people feel uncomfortable. We

believe that it is necessary to measure and analyze people

attendant behavior to design the behavior of attendant

robots, and it triggered us to develop a system which

enables long-term and wide-area people behavior measure-

ment and create a data set which consists of real profes-

sional human’s attendant behavior data.

Figure 1 illustrates the proposed system for people

behavior measurement. The system is based on a three-

dimensional (3-D) LIDAR, and a human observer carries

the system and follows the persons to be observed while

keeping them in the sensor view. The system simultane-

ously estimates the sensor pose in a 3-D environmental map

and tracks the target persons. The proposed system can be

applied to long-term and wide-area people behavior mea-

surement tasks.

The contributions of this article are threefold. First, we

propose a portable measurement system which enables

long-term and wide-area people behavior measurements.

We validated that the tracking accuracy of the proposed

system is comparable to a static sensor-based people track-

ing system. Second, we provide a preliminary analysis of a

field test of the proposed system in a hospital. We recorded

the behavior of professional caregivers attending elderly

persons with dementia. The results show that the proposed

system can be applied to the measurement of real people

behavior. In addition to that, based on the analysis results,

we propose empirical rules to design the behavior of atten-

dant robots. Third, we provide the software of the system

and the recorded people behavior as open-source and a

public data set (http://github.com/koide3/hdl_graph_slam,

and http://www.aisl.cs.tut.ac.jp/database_fukushimura.

html). They would be useful to measure and analyze people

behavior in situations which are hard for existing people

tracking systems.

The rest of the article is organized as follows. The fol-

lowing section explains related work. The third section

describes an overview of the proposed system. The fourth

and fifth sections describe the offline Simultaneous Loca-

lization and Mapping (SLAM) method using a 3-D LIDAR

and the online people behavior measurement method which

includes sensor localization and people tracking, respec-

tively. The sixth section explains a field test in a hospital

and provides a preliminary analysis of the field test. The

last section concludes the article and discusses future work.

Related work

Systems to measure people behavior can be categorized

into two groups: (1) systems using static sensors which are

fixed at the environment and (2) systems using wearable

sensors attached to the target persons.

People tracking using static sensors, such as cameras

and laser range finders, has been widely studied. In partic-

ular, people tracking using cameras for surveillance is a

major research topic in the computer vision community.

A lot of works have proposed people detection9 and track-

ing methods10 using RGB cameras. Recent inexpensive

consumer RGB-D cameras allow us to reliably detect and

track people,11 and a camera network system for people

tracking using RGB-D cameras has been proposed.12

Although such works provide reliable people tracking, a

capability of recovering the track of a person, who left the

camera view once, is necessary. This problem (i.e. person

reidentification) has been one of the main research topics of

vision-based people tracking systems. A lot of reidentifica-

tion methods based on people appearance13–16 and soft

biometric features17,18 have been proposed. They enable

reliable people reidentification over time and over cameras.

Laser range finders have also been used for people

tracking systems.19,20 Such systems can very accurately

localize people, and the measurement area of each sensor

is larger than cameras. While the reliability and the detec-

tion accuracy of those static sensor-based systems are very

good, they can measure people behavior only in an area

limited by the sensor view. In order to cover a large envi-

ronment, they require the placement of a lot of static sen-

sors, thereby increasing the time and cost of installing and

calibrating all the sensors.

Another way to measure the behavior of specific persons

for a long time over a wide area is to attach a wearable

sensor to each target person and measure their behavior

with the sensor. Several kinds of sensors, such as inertia

navigation system (INS) and global positioning system

(GPS), have been used for this purpose. Recent small wear-

able GPS sensors allow us to track a person in outdoor

Figure 1. The proposed system to measure people behavior
using a 3-D LIDAR. The observer carries the backpack with a 3-D
LIDAR and follows the persons to be measured. 3-D: three-
dimensional.
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environments, and they have been applied to several appli-

cations of people behavior measurement and analysis.21,22

As an application, GPS-based wearable devices for helping

elderly or visually impaired people have been pro-

posed.23,24 The combination of GPS and INS improves

tracking accuracy under low-level GPS radio power.25

However, GPS signals are not available in places close to

buildings and indoor environments.

Recently, Wi-Fi signal-based localization has been

widely studied.26–28 Some of them are based on triangula-

tion of Wi-Fi signal strength and show decimeter or cen-

timeter accuracy in ideal situations.26,27 However, they

require to place multiple antennas in the environment to

accurately estimate the device position, and thus, it is hard

to be applied to a large environment. Other ones are based

on the matching of Wi-Fi fingerprint matching.28 While

they do not rely on external antennas and can be applied

to large environments where Wi-Fi signal is available, the

estimation accuracy is very limited.

Behavior measurement systems for indoor environments

based on pedestrian dead reckoning have also been pro-

posed.29,30 Those methods estimate the target person posi-

tion by integrating acceleration and angular velocity

obtained by an INS (attached to the person). In order to

prevent estimation drift, Li et al. combined pedestrian dead

reckoning and map-based localization.29 Those methods

can keep track the position of the person as long as they

hold the sensor. Since they utilize smartphones which are

very common and inexpensive in recent years, those meth-

ods are cost-effective and easy to adopt. However, since

INS is an internal sensor and it cannot sense the surround-

ing environment, it is hard to accurately measure the person

position with respect to the environment and other persons’

positions. Thus, they cannot be applied to the measurement

of the interaction between persons and that of person’s

behavior affected by the environment.

System overview

Figure 2 shows an overview of the proposed system. In

this system, the observer carries the backpack equipped

with a 3-D LIDAR (velodyne HDL-32e) and a PC and

follows the persons to be measured. The 3-D LIDAR

provides 360� range data at 10 Hz, and from the range

data, the system estimates its pose while tracking the

target persons. The process of the proposed system con-

sists of two phases: (1) offline environmental mapping

and (2) online sensor localization and people detection/

tracking.

In the offline mapping phase, we create a 3-D environ-

mental map which covers the entire measurement area. For

the mapping, we employ a graph optimization-based

SLAM approach (i.e. Graph SLAM31). In order to compen-

sate accumulated rotational errors of the scan matching, we

introduce ground plane and GPS position constraints for

indoor and outdoor environments, respectively.

In the behavior measurement phase, the system esti-

mates its pose on the map created offline by combining

a scan matching algorithm with an angular velocity-based

pose prediction using unscented Kalman filter (UKF).32

Simultaneously, the system detects and tracks the target

persons.

Offline environmental mapping

Graph SLAM

Graph SLAM is one of the most successful approaches to

the SLAM problem. In this approach, the SLAM problem is

solved by constructing and optimizing a graph whose nodes

represent parameters to be optimized, such as sensor poses

and landmark positions, and edges represent constraints,

such as relative poses between sensor poses and landmarks.

The graph is optimized so that the errors between the para-

meters and the constraints are minimized. Following,31,33

let xk be the node k. Let zk and O k be the mean and the

information matrix of the constraints relating to xk . The

objective function is defined as

FðxÞ ¼
X

ekðxk ; zkÞTO kekðxk ; zkÞ; ð1Þ

where ekðxk ; zkÞ is an error function between the para-

meters xk and the constraints zk . Typically, equation (1)

is linearized and minimized by using Gauss–Newton or

Levenberg–Marquardt algorithms.

However, if the parameters span over non-Euclidean

spaces (like pose parameters), those algorithms may lead

to suboptimal or invalid solutions. One way to deal with

this problem is to perform the error optimization on a mani-

fold which is a minimal representation of the parameters

and acts as a Euclidean space locally. In order to enable it,

an operator ? is introduced, which transforms a local

variation Dx on the manifold.

Figure 2. System overview.
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Typically, in the 3-D SLAM problem, node xk has

parameters of the sensor pose at k (a translation vector tk
and a quaternion qk). A manifold of the quaternion

qk ¼ ½qw; qx; qy; qz�T can be represented as ½qx; qy; qz�T , and

the operator ? is described as

qk ?Dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k q0x þ q0y þ q0zk2

q
; q0x; q

0
y; q
0
z

h i
ð2Þ

where q0� ¼ q� �Dq�.
In the proposed system, we first estimate the sensor

trajectory by iteratively applying normal distributions

transform (NDT) scan matching34 between consecutive

frames. For 3-D LIDARs, NDT shows a better performance

than other scan matching algorithms, such as iterative clo-

sest points,35 in terms of both the reliability and the pro-

cessing speed.36 Let pt be the sensor pose at t, consisting of

a translation vector t and a quaternion q, and rt;tþ1 be the

relative sensor pose between t and t þ 1 estimated by the

scan matching. We add them to the pose graph as nodes

½p0; � � � ; pN � and edges ½r0;1; � � � ; rN�1;N �. Then, we find

loops in the trajectory and add them to the graph as edges

(i.e. loop closure) to correct the accumulated error of the

scan matching with Algorithm 1.

The loop detection algorithm is similar to the work of

Nelson.37 First, we detect loop candidates based on the

translational distance and the length of the trajectory

between nodes (lines 2–11). Then, to validate the loop

candidates, a scan matching algorithm (in our case, NDT)

is applied between the nodes of each candidate. If the fit-

ness score is lower than a threshold (e.g. 0.2), we add the

loop to the graph as an edge between the nodes (lines

12–17). Every time a loop is found, the pose graph is

updated such that equation (1) is minimized. We utilize

g2o, a general framework for hypergraph optimization,33

for the pose graph optimization.

As a generated map gets larger, it tends to be bent due to

the accumulated rotational error of the scan matching (see

Figure 3). In order to compensate the error, we introduce

ground plane and GPS position constraints for indoor and

outdoor environments, respectively. Figure 4 shows an

illustration of the graph structure of the proposed system.

Ground plane constraint

To reliably generate the map of a large indoor environment,

we assume that the environment has a single flat floor and

introduce the ground plane constraint which optimizes the

Algorithm 1. Loop-detection

Figure 3. Comparison of the sensor trajectories estimated by
the existing method and the proposed method. (a) BLAM. (b)
LeGO-LOAM. (c) Ours without plane constraints. (d) Ours with
plane constraints.
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pose graph such that the ground plane detected in each

observation becomes the same plane. This assumption is

valid in many indoor public environments, such as schools

and hospitals.

We assume that the approximate height of the sensor is

known (e.g. 2 m) and extract points within a certain height

range which should contain the ground plane points (e.g.

(�1.0, þ1.0) m from the ground). Then, we apply RAN-

SAC38 to the extracted point cloud and detect the ground

plane. If the normal of the detected plane is almost vertical

(the angle between the normal and the unit vertical vector is

lower than 10�), we consider that the ground plane is cor-

rectly detected and add a ground plane constraint edge to

the graph. Figure 5 shows an example of the detected

ground planes. Green points are the points extracted by the

height thresholding, and red points belong to the ground

plane detected by RANSAC. We detect the ground plane

every 10 s and connect the corresponding sensor pose node

pi with the fixed ground plane node where the plane coeffi-

cients are p0 ¼ ½nx; ny; nz; d�T¼ ½0; 0; 1; 0�T .

To calculate the error between sensor pose pt and the

ground plane p0, we first transform the ground plane into

the local coordinate of the sensor pose pt

½n0x; n0y; n0z�T ¼ Rt � ½nx; ny; nz�T ð3Þ

d0 ¼ d � tt � ½n0x; n0y; n0z�T ð4Þ

where p00 ¼ ½n0x; n0y; n0z; d0� is the ground plane in the local

coordinate, and ½Rtjtt� is the sensor pose at time t.

Following Ma et al.’s39 work, we employ the minimum

parameterization tðpÞ ¼ ð�;  ; dÞ, where �;  ; and d are

the azimuth angle, the elevation angle, and the length of

the intercept, respectively. The error between a pose node

and the ground plane node is defined as

tðpÞ ¼ arctan
ny

nx

� �
; arctan

nz

jnj

� �
; d

� �
ð5Þ

ei;0 ¼ tðp00Þ � tðptÞ ð6Þ

where pt is the detected ground plane at t.

GPS constraint

In outdoor environments where the ground is not flat, we

use the GPS-based position constraint instead of the ground

plane constraint. For ease of optimization, we first trans-

form GPS data into the universal transverse mercator coor-

dinate, where a GPS data has easting, northing, and altitude

values in a Cartesian coordinate. Then, each GPS data is

associated with the pose node, which has the closest time

stamp to the GPS data, as a unary edge of the prior position

information.

The error between the translation vector tt of a pose

node pt and a GPS position Tt is simply given by

ei ¼ tt � Tt ð7Þ

SLAM framework evaluation

In order to validate the proposed SLAM system, we

recorded a 3-D point cloud sequence in an indoor environ-

ment. Figure 6 shows the experimental environment and

the trajectory of the sequence. The duration of the sequence

is about 45 min (2700 s), and the length of the trajectory is

about 2400 m (estimated by the proposed method).

For comparison, we generated 3-D environmental maps

using the proposed method with and without plane con-

straints. We also applied existing publicly available SLAM

frameworks, BLAM37 and LeGO-LOAM,40 to this data set.

Figure 3 shows the trajectories estimated by the different

SLAM algorithms. BLAM and LeGO-LOAM were aborted

in the middle of the sequence when they failed to estimate

the trajectory and did not recover. BLAM failed to find the

loops due to the accumulated rotation error of the scan

matching and generated a warped and inaccurate trajectory.

Since LeGO-LOAM maintains the local consistence of the

Figure 4. The proposed pose graph structure.

Figure 5. Ground plane detection. Points within a certain height
range are extracted by height thresholding (green points), and
then RANSAC is applied to them to detect the ground plane (red
points). The horizontality of the ground plane is validated by
checking the plane normal.
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ground plane between consecutive frames, the estimated

trajectory is flatter than the one estimated by BLAM. How-

ever, it still suffers from the accumulated rotational error

due to the lack of the global ground constraint. Eventually,

it failed to estimate the trajectory when the observer made a

u-turn at the end of a narrow corridor.

With and without the plane constraint, the proposed

method could construct pose graphs properly thanks to the

reliability of NDT, and it generated consistent maps. How-

ever, without the plane constraint, the resultant map is

warped due to the accumulated rotational error which is

hard to be corrected by loops on a plane. With the ground

plane constraint, the accumulated rotational error is cor-

rected, and the resultant map is completely flat. Figure 7

shows the generated environmental map. The color indi-

cates the height of each point. The floor has the consistent

height thanks to the plane constraint. The result shows that

the proposed plane constraint is effective to compensate the

accumulated rotational error in a large indoor environment.

Table 1 shows the processing time of the proposed

method and BLAM. The processing time of LeGO-

LOAM is not available here, since it provides only real-

time processing. While BLAM took about 15,327 (s) to

generate the map, the proposed method took about 5392

(s) thanks to the computational efficiency of NDT.

We also validated the proposed method in an outdoor

environment. Figure 8(a) shows the environment and the

trajectory of the sequence. The duration of the sequence

is about 42 min (2500 s). Figure 8(b) shows the map

generated by the proposed method with the GPS con-

straint. Although there were large undulations, the sys-

tem correctly found loops and constructed a proper pose

graph thanks to the GPS constraint. Note that, without

the GPS constraint, the system could not find the loop

due to the scan matching error and failed to create the

environmental map.

Online people behavior measurement

In order to measure people behavior, the system simulta-

neously estimates the sensor pose on the 3-D environmental

map and tracks people around the observer. Figure 9 shows

an overview of the online sensor localization and people

tracking system. By integrating angular velocity and range

data provided by the LIDAR, the system estimates the sen-

sor pose. Then, it detects and tracks people to know people

positions with respect to the environmental map. Note that

the initial pose of the sensor is given by hand to avoid the

global localization problem.

Figure 6. The experimental environment. The duration of the sequence is about 45 min, and the length of the trajectory is about
2400 m.

Figure 7. The created environmental map. The color indicates the height of each point. The height of the floor is consistent thanks to
the plane constraint.

6 International Journal of Advanced Robotic Systems



Sensor localization

We can estimate the sensor ego motion by iteratively

applying a scan matching algorithm as in the SLAM part.

However, in contrast to the SLAM scenario, the observer

has to follow the target persons during the measurement

and sometimes has to move quickly to keep them in the

sensor view. In such cases, the sensor motion between

frames gets very large and the scan matching may wrongly

estimate the sensor ego motion due to the large displace-

ment. In order to deal with this problem, we integrate the

NDT scan matching with angular velocity data provided by

the 3-D LIDAR using UKF.32

We define the sensor state to be estimated as

xt ¼ ½pt; qt; vt; b
a
t �

T ð8Þ

where pt is the position, qt is the rotation quaternion, vt is

the velocity, and ba
t is the bias of the angular velocity of the

sensor at time t. Assuming constant translational velocity

for the sensor motion model, and constant bias for the

angular velocity sensor, the system equation for predicting

the state is defined as

xt ¼ ½pt�1 þDt � vt�1; qt�1 �Dqt; vt�1; b
a
t�1�

T ð9Þ

whereDt is the duration between t and t � 1, andDqt is the

rotation duringDt caused by the bias-compensated angular

velocity a 0t ¼ at � ba
t�1

Dqt ¼ 1;
Dt

2
ax0

t ;
Dt

2
a

y0

t ;
Dt

2
az0

t

� �T

ð10Þ

With equation (9), the system predicts the sensor pose

by using UKF and then applies NDT to match the observed

point cloud with the global map with the estimated xt and qt

as the initial guess of the sensor pose. Then, the system

corrects the sensor state with the sensor pose estimated by

the scan matching zt ¼ ½p0t ; q0t �T . The observation equation

is defined as

zt ¼ ½pt; qt�T ð11Þ

We normalize the quaternion in the state vector after

each of the prediction and correction steps to prevent its

norm from changing due to the unscented transform and the

accumulated calculation error. It is worth mentioning that

we also implemented pose prediction which takes accelera-

tion into account. However, the estimation result got worse

due to the strong noise on acceleration observations.

People detection and tracking

We first remove the background points from an observed

point cloud to extract the foreground points. Then, we cre-

ate an occupancy grid map with a certain voxel size (e.g.

0.5 m) from the environmental map. The input point cloud

is transformed into the map coordinate according to the

sensor pose estimated by UKF, and then each point at a

voxel containing environmental map points is removed as

the background. The Euclidean clustering is then applied to

the foreground points to detect human candidate clusters.

However, in case persons are close together, their clusters

may be wrongly merged and are detected as a single clus-

ter. To deal with this problem, we employ Haselich’s split-

merge clustering algorithm.41

The algorithm first divides a cluster into subclusters

until each cluster gets smaller than a threshold (e.g. 0.45

m) by using dp-means42 so that every cluster does not have

Table 1. Processing time of BLAM and our SLAM system.

Method Time (s)

Ours Scan matching 1542
Floor detection 231
Loop closing 3619
Total 5382

BLAM Total 15,327

Figure 8. The SLAM system validation in an outdoor environ-
ment. (a) The outdoor environment. The duration of the
sequence is about 42 min, and the length of the trajectory is about
3000 m. (b) The 3-D map of the outdoor environment generated
by the proposed method with GPS constraints. The color indi-
cates the height of each point. 3-D: three-dimensional; GPS: global
positioning system.
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points of different persons. Then, if there is no gap between

those subclusters, the clusters are considered to belong to a

single person and remerged into one cluster. Figure 10

shows an example of the detection results. The person

clusters are correctly separated even when they are very

close together thanks to the split and the remerge process.

The detected clusters may contain nonhuman clusters

(i.e. false positives). To eliminate nonhuman clusters

among detected clusters, we judge whether a cluster is a

human or not by using a human classifier trained with slice

features by Kidono et al.43 and Schapire and Singer.44

Assuming that persons walk on the ground plane, we track

persons on the XY plane without the height. We employ the

combination of Kalman filter with the constant velocity

model and global nearest neighbor data association45 to

track persons. The tracking scheme works well as long as

the tracked persons are visible from the sensor and are

correctly detected.

Sensor localization evaluation

To show how the pose prediction improves the sensor loca-

lization, we conducted a sensor localization experiment.

Figure 11 shows the experimental environment. An obser-

ver carries the system and moves along the corridor, and the

system estimates its pose from the range and angular velo-

city data. We conducted the experiment twice. In the first

trial, the observer walked (about 1.5 m/s) to avoid the sen-

sor being moved quickly. In the second trial, the observer

ran (about 3.0 m/s) and the sensor got shaken very strongly.

Figure 12 shows the results of the first trial. Figure 12(a)

shows the estimated trajectories with and without the pose

prediction. Since the observer moved slowly during the

first sequence, both the results show the same correct tra-

jectory. To assess the effect of the sensor pose prediction,

Figure 9. The online sensor pose estimation and people detection and tracking system.

Figure 10. Haselich’s clustering algorithm. The green bounding
box indicates the Euclidean clustering result. Two persons are
wrongly detected as a single cluster. The cluster is divided into
small subclusters (red bounding boxes) and then remerged if
there is no gap between those subclusters. The blue bounding
boxes are the final detection result. (a) Top view. (b) Bird’s eye
view.

Figure 11. The experimental environment of the sensor locali-
zation experiment.
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we assume that the trajectories estimated by NDT are

mostly correct, and we compare the predicted sensor poses

with the poses estimated by NDT since measuring the

ground truth of the sensor trajectory is difficult. Figure

12(b) and (c) shows the difference between the predicted

sensor pose (initial guess pose) and the one estimated by

NDT. In the case without the pose prediction, the previous

matching result is used as an initial guess. With the predic-

tion, the translational and rotational pose prediction errors

significantly decrease thanks to the constant velocity model

and the consideration of angular velocity, respectively.

The results of the second trial are shown in Figure 13.

The system failed to estimate the sensor pose without the

pose prediction (see Figure 13(a)) since the observer moved

very quickly, and the sensor displacement between frames

got larger. The NDT matching took a longer time (about 56

ms per frame) without the pose prediction since the large

displacement between frames makes NDT need more

iterations to converge to a local solution. With the predic-

tion, the matching took about 45 ms per frame thanks to the

good initial guess (see Table 2). The results show that the

angular velocity-based pose prediction makes the pose esti-

mation robust to quick motions and fast to converge.

People detection evaluation

To analyze the effect of the split-merge clustering41 and the

human classifier,43 we recorded a 3-D range data sequence,

Figure 12. The results of the first trial of the sensor localization
experiment. The observer walked during the trial (about 1.5 m/s).
Both the trajectories with and without the angular velocity-based
pose prediction are correctly estimated. With the prediction, the
initial guess for NDT significantly gets closer to the correct pose.
(a) Estimated trajectories. (b) Difference between the predicted
and the corrected positions. (c) Difference between the predicted
and the corrected rotations. (d) Processing time. NDT: normal
distributions transform.

Figure 13. The results of the second trial of the sensor locali-
zation experiment. The observer ran during the trial (about 3.0 m/
s). Without the pose prediction, the system could not correctly
estimate the pose due to the very quick motion. (a) Estimated
trajectories. (b) Difference between the predicted and the cor-
rected positions. (c) Difference between the predicted and the
corrected rotations. (d) Processing time.

Table 2. The summary of the sensor localization experiment.

Seq.

With prediction Without prediction

Error
(m)

Error
(�)

Time
(ms)

Error
(m)

Error
(�)

Time
(ms)

st (walk) 0.0588 1.0913 38.88 0.1367 2.1625 40.06
nd (run) 0.1851 4.2845 45.14 0.3330 6.6798 56.11
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in which two persons are close together and walking side

by side. It is a hard situation for the usual Euclidean clus-

tering since the persons’ clusters may be merged into a

single cluster. The number of frames is 102, and we applied

the human detection method with and without the split-

merge clustering and the human classifier to this sequence.

Table 3 shows the evaluation result. Without both the

techniques, the recall value is low (0.834), since clusters of

the persons are sometimes detected as a single cluster due

to the Euclidean clustering. With the split-merge cluster-

ing, the wrongly merged clusters are split into subclusters,

and the recall value gets higher (0.995). With both the

split-merge clustering and the human classifier, over split

subclusters are eliminated by the classifier, and the highest

F-measure value is achieved (0.961). This result shows

that, in situations where persons are close together, the

split-merge clustering41 effectively increases the recall of

human detection, and by combining it with the human

classifier,43 we can obtain reliable human detection results.

Comparison with a static sensor-based people
tracking system

In order to reveal the pros and cons of the proposed system, we

compared the proposed system with a publicly available static

sensor-based people tracking framework, OpenPTrack.12 The

framework is designed for people tracking using static RGB-

D cameras, and it is scalable to a large camera network.

Moreover, it uses cost-effective hardware and is easy to setup.

It has been operated by people including nonexperts in com-

puter vision, such as artists and psychologists.

Figure 14 shows the experimental environment and the

configuration of the RGB-D camera network. The map is

created by the proposed SLAM method. We placed nine

Kinect v2s so that they cover about 2 � 20 m2 area. We

calibrated the camera network according to the procedure

provided by OpenPTrack and then estimated the transfor-

mation between the environmental map and the camera

network by performing ICP registration between point

clouds of the Kinects and the environmental map.

While a subject walked in the corridor, an observer car-

rying the proposed system followed him. The trajectories of

both the persons were measured by the proposed system

and OpenPTrack. Table 4 shows the summary of the dif-

ferences between the people positions measured by the

proposed system and OpenPTrack. The differences some-

times became larger (about 0.2–0.3 m) due to detection

errors of OpenPTrack at the border of the camera view.

However, the difference is lower than 0.1 m on average,

and the result shows that the measurement accuracy of the

proposed system and the static sensor-based people track-

ing system are comparable.

In summary, the tracking accuracy of the proposed por-

table system is comparable to the static sensor-based system,

and the measurement area of the proposed system can be

extended easily. For instance, the system can measure the

people behavior over the whole area of the map shown in

Figure 7 (200 � 50 m2). We would need hundreds of cam-

eras to cover the whole area of the map if we used a static

sensor-based system in the environment. On the other hand,

static sensor-based systems can measure behavior of all peo-

ple in the covered area simultaneously, while the proposed

system covers only the surrounding area. Thus, we can say

that the proposed system is suitable to measure the behavior

of specific people over a large area, while static sensor-based

systems are suitable for behavior measurement of all the

people in a relatively small environment.

Field test in a hospital

Measuring behavior of caregivers attending
elderly persons

To show that the proposed system can be applied to real

people behavior measurements, we conducted a field test in

Table 3. The people detection evaluation result.

Split-merge
clustering41 Human classifier43 Precision Recall F-measure

Without Without 1.000 0.834 0.909
Without With 1.000 0.809 0.894
With Without 0.902 0.995 0.946
With With 0.961 0.961 0.961

Figure 14. The experimental environment and the configuration
of RGB-D cameras for OpenPTrack. Nine Kinect v2s are placed in
the corridor. While OpenPTrack can measure only the limited
area covered by cameras (about 2 � 20 m2 area), the proposed
system can cover the whole of the floor.

Table 4. The difference of the observer and the subject positions
measured by the proposed system and OpenPTrack.

Difference (m)

Min Max Mean Standard deviation

Observer 0.0008 0.2126 0.0768 0.0448
Subject 0.0035 0.2837 0.0990 0.0445
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Sawarabikai Fukushimura hospital. The hospital is specia-

lized for elderly care, and hundreds of elderly patients are

hospitalized and receiving care and rehabilitation in the

hospital. Under permission granted by the hospital, we

recorded professional caregivers’ behavior while they

attend elderly persons with dementia. Figure 15 shows a

snapshot of the field test. The caregiver attends the elderly

to prevent accidents (such as stumbling, colliding, and fall-

ing) and sometimes guides him/her to their room.

The number of sequences is 33, and the total duration is

about 52 min. We also recorded an attendant behavior

sequence in an outdoor environment shown in Figure 8.

The duration of the outdoor sequence is about 22 min. Note

that, for privacy reasons, we captured images during only

the sequence shown in Figure 15 with the special permis-

sion from the hospital, the subject, and his family. In the

other sequences, we recorded only range data. It is a merit

of the proposed system that it can measure people behavior

without privacy problems.

Figure 16 shows the created indoor environmental maps

through the field test. The elderly persons take rest at the

dining hall on the first floor and then return to their hospital

room on the second floor with a caregiver using the eleva-

tor. After they ride the elevator, we switch the map from the

one of the first floor to the second floor.

During the measurement, there were other patients and

objects, such as wheelchairs and medicine racks, and the

observer sometimes had to move quickly to keep the sub-

jects in sensor view. However, the proposed system could

correctly localize itself through all the sequences thanks to

the wide measurement area of the 3-D LIDAR and the

integration of the scan matching and the angular velocity-

based pose prediction.

Regarding people tracking, the system failed to keep

track of the subjects when a patient came between the

observer and the subjects to be observed, and new IDs were

assigned to the subjects after they reappeared. In such

cases, the system notifies that it lost the track of subjects,

and we reassigned correct IDs to them by hand. Since we

saw those cases only a few times, the system could keep

track of the subjects for the most part of the sequences, and

we could reassign all the IDs with the minimum effort.

Preliminary analysis of the attendant behavior

To show the possibility of the behavior analysis with the

proposed system, we provide preliminary analysis of the

measured behavior sequences.

Figure 17(a) shows the distribution of the distance

between a caregiver and an elderly person in the indoor

environment. The distribution is unimodal, and the peak is

at about 0.6 m. In proxemics, this distance is categorized

as “Personal distance (0.45–1.2 m),” and people allow

only familiar people to be within this distance1 while they

keep more distance (i.e. “Social distance (1.2–3.6 m)”)

when meeting or interacting with unfamiliar people. It

implies that people maintain a closer relationship while

attending another person comparing to usual people inter-

action, such as meeting. Figure 17(b) shows the distribu-

tion of the caregivers’ position with respect to the elderly

persons. The caregivers usually locate at the side of the

elderly persons. In order to lead the elderly persons, they

slightly precede the patients. The distribution is a bit ani-

sotropic: when a caregiver is following an elderly person,

the distance between them tends to be larger since the

caregivers see the elderly person and the surrounding

environment at the same time. From this preliminary anal-

ysis, we can find that the caregivers decide their attending

position in order to keep the elderly person in the view and

look ahead in the environment.

Figure 18(a) shows the trajectories of the caregivers and

the elderly persons at a corner, and it also suggests the

importance of visibility for deciding the attending position.

The number of the trajectories is 17. The caregivers tend to

Figure 15. A snapshot of the field test. The behavior of the care
giver attending an elderly is recorded by using the proposed
system. (a) Image. (b) Range data.

Figure 16. The environments of the field test. (a) Hallway (1F).
(b) Ward (2F).
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walk on the outer side of the corner (15 of 17). We can

consider that, by walking at the outer side, the caregivers

keep the outlook of the corridor to prevent accidents, such

as stumbling and colliding. The caregivers walk on the

inner side in a few cases (2 of 17). However, they preceded

the elderly persons in order to check the safeness before the

elderly persons enter the corner. These results suggest that

the caregivers always check the existence of other sur-

rounding people and objects, such as wheelchairs, to pre-

vent accidents.

Figure 19(a) shows the recorded trajectories in the out-

door environment. In this sequence, the elderly was fine to

walk, and the caregiver did let him walk relatively freely

while navigating him to return back to the hospital. Figure

19(b) shows the caregiver’s walking speed and the eleva-

tion of her position in the global map. When the caregiver

(and the elderly) was going up a slope, they got slow down

to 1.0–1.2 m/s, while they walked at 1.2–1.4 m/s in down

slopes. Slopes influence not only their walking speed but

also their position relationship. We extracted their behavior

in up slopes and down slopes, respectively, and calculated

the distributions of the caregiver’s relative position with

respect to the elderly (see Figure 20). We can see that, in

down slopes, the elderly led the caregiver while they

walked side by side in up slopes due to the change of the

walking speed. Although the caregiver’s “X-axis” position

varies depending on the walking speed, he/she almost

always stays at 0.6 m side from the elderly. This is also

observed in indoor environments (see Figure 17). These

results suggest that, during attendance, professional care-

givers adjust their position depending on the elderly per-

sons’ status and the surrounding environment, while

keeping their side distance to the elderly persons constant.

This can be applied to designing of person following

Figure 17. An analysis of the people attending behavior during the field test in an indoor environment. (a) The distribution of the
distance between the elderly person and the caregiver. (b) The distribution of the relative position of the caregiver with respect to the
elderly person.

Figure 18. The trajectories of the caregivers (in orange) and the elderly persons (in green) at a corner. The light blue lines indicate that
the connected points are measured at the same time. In most of the cases, the caregivers walked on the outer side of the corner (15 of
17). In a few cases, the caregivers walked on the inner side. In such cases, they preceded the elderly persons to ensure outlook of the
corridor (2 of 17). (a) All the trajectories of the caregivers and the elderly person. (b) An example of the cases where the caregiver
walks on the outer side of the corner. (c) The case where the caregiver walks on the inner side of the corner.
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robots. Most of existing person following robots just keep

the distance to the target constant. However, it might be

unnatural behavior for people. We can make the robot keep

the side distance to the target constant, and it may contrib-

ute the naturalness of the following behavior of the robot.

Those analysis results are difficult to obtain using exist-

ing measurement systems which use static sensors or wear-

able devices, such as INS and GPS, since it requires

accurately measure people behavior with respect to other

people and the surrounding environment. The results show

that we can capture and analyze such people behavior with

the proposed system.

Person following behavior rules

Based on the analysis of the real caregivers’ behavior, we

propose empirical rules to design the behavior of attendant

robots. It would be helpful to design a robot which attends a

person while keeping him/her away from dangerous situations.

1. The robot attends the person while keeping the side-

by-side positioning as long as it’s possible. In par-

ticular, it should keep in the position 0.6 m aside

from the person.

2. Depending on the walking speed, the relative posi-

tion would deviate along the front-back direction.

However, even in such a case, the robot should keep

the certain distance aside from the person.

3. At a corner, the robot should go on the outer side of

the corner so that it can check the safeness of the

corridor while avoiding to disturb the person.

4. In case the robot cannot go on the outer side due to

positioning and obstacles, it should go on the inner

side before the person enters the corner and check

whether it’s safe. It would slightly disturb the per-

son from walking. However, the safety has a higher

priority than the comfortableness.

5. To attend a person who is fine to walk, the robot has

to be able to run at about 1.4 m/s.

Figure 19. The recorded attendant behavior in the outdoor
environment. (a) People trajectory. (b) The caregiver’s walking
speed (green) and altitude (blue).

Figure 20. The distribution of the relative position of the care giver with respect to the elderly person in an outdoor environment. (a)
Up slopes. (b) Down slopes.
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Note that the values in the rules, such as the distance to

the person to be attended, should be adjusted depending on

the robot configuration (e.g. size and shape). However, we

believe that the rules would be a good initial guide to

designing a comfortable attendant robot which is socially

acceptable.

Conclusions and discussion

This article has described a portable people behavior mea-

surement system using a 3-D LIDAR. The proposed system

enables long-term and wide-area behavior measurement.

The system first creates a 3-D map of the environment

using the Graph SLAM approach in advance to measure-

ments. Then, it estimates its pose, detects, and tracks people

simultaneously. The tracking accuracy of the system is

comparable to a static sensor-based people tracking system.

As a field test, we demonstrated the effectiveness of the

proposed system in measuring the behavior of professional

caregivers’ attending elderly persons. Based on the analysis

of the measured behavior, empirical rules to design the

behavior of attendant robots are proposed. The measure-

ment system and the professional caregivers’ behavior data

set have been public so that they can be used for to mea-

surement and analysis of people attendant behavior.

The current system requires a human observer who car-

ries the backpack with the 3-D LIDAR, thus manual effort

to observe people is necessary. The human observer would

be replaced with a mobile robot so that a large attendant

behavior data set is automatically created for improving the

robot attendant behavior.
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