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ABSTRACT Cry detection is an important facility in both residential and public environments, which can
answer to different needs of both private and professional users. In this paper, we investigate the problem
of cry detection in professional environments, such as Neonatal Intensive Care Units (NICUs). The aim of
our work is to propose a cry detection method based on deep neural networks (DNN5s) and also to evaluate
whether a properly designed synthetic dataset can replace on-field acquired data for training the DNN-based
cry detector. In this way, a massive data collection campaign in NICUs can be avoided, and the cry detector
can be easily retargeted to different NICUs. The paper presents different solutions based on single-channel
and multi-channel DNNs. The experimental evaluation is conducted on the synthetic dataset created by
simulating the acoustic scene of a real NICU, and on a real dataset containing audio acquired on the same
NICU. The evaluation revealed that using real data in the training phase allows achieving the overall highest
performance, with an Area Under Precision-Recall Curve (PRC-AUC) equal to 87.28 %, when signals are
processed with a beamformer and a post-filter and a single-channel DNN is used. The same method, however,
reduces the performance to 70.61 % when training is performed on the synthetic dataset. On the contrary,
under the same conditions, the new single-channel architecture introduced in this paper achieves the highest
performance with a PRC-AUC equal to 80.48 %, thus proving that the acoustic scene simulation strategy
can be used to train a cry detection method with positive results.

INDEX TERMS Infant cry detection, deep neural networks, neonatal intensive care unit, data augmentation,

acoustic scene simulation, computational audio processing.

I. INTRODUCTION

Newborns’ cry signals contain valuable information related
to the state of the infant and their acoustic analysis represents
a cost-effective and non-intrusive monitoring approach in dif-
ferent environments, from simple households to infant wards
or Neonatal Intensive Care Units (NICUs) [1]. Cry detection
consists in the identification of a cry signal within an audio
stream, and it can serve as a pre-processing stage for deeper
analysis, or as a support for the medical staff for evaluating
the overall health status of the infant [2]-[5]. Further analysis
of the audio signal can detect specific situations, such as the
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presence of a pathology [6]-[8], or the cause of a cry (e.g.,
hunger, pain) [9]-[11].

Cry detection has been already addressed in the literature,
different techniques have been proposed to solve the problem,
and diverse corpora have been used to evaluate them. In some
earlier works, the authors [5], [12] proposed an algorithm
for detecting voiced sounds by using the short-term energy
measure of a signal and an automatic threshold selection
algorithm. In [12], the authors assumed that undesired sounds
contain lower energy and are shorter compared to voice
sounds and evaluated the performance on a synthetic dataset
composed of infants’ cries. Reggiannini et al. [13] adopted
a Cepstral-based acoustic analysis to identify cry utterances
and detect the fundamental frequency of the cry.
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In the recent years, approaches based on machine learning
appeared in the literature and demonstrated promising results.
Cohen and Lavner [14] suggested an algorithm that uses mel-
frequency cepstral coefficients (MFCCs) and is based on
k-nearest neighbors to classify both cry and non-cry frames.
The algorithm was designed to alert parents when infants
are being left alone (either in apartments or vehicles), thus
it was evaluated on a synthetic corpus that includes street
noises. Hidden Markov models (HMMs) have been used
in [4] to detect and classify different elements in the record-
ing including inspiratory and expiratory phases of the cry,
as well as beeping sounds, speech, silence and background
noise. Experiments have been conducted on a corpus col-
lected in the neonatology departments of multiple hospitals
by means of a hand-held recorder placed about 30 cm from
the subject. In [2], the same authors extended their work
by adopting different signal decomposition techniques and
a Gaussian Mixture Model (GMM) classifier in addition to
HMMs. Naithani et al. [3] also adopted HMMs to classify the
expiratory and inspiratory phases of a cry, as well as a third
class including all other noises. In this case, audio record-
ings have been captured in different acoustic environments
within the target hospitals. Raboshchuk et al. [15] explicitly
addressed the robustness of vocalization detection algorithms
against noise. The authors proposed a pre-processing pipeline
composed of Non-Negative Matrix Factorization (NMF) and
spectral subtraction algorithms to reduce undesired distur-
bances. The paper evaluated a GMM and a Support Vector
Machine (SVM) classifier, and the experiments demonstrated
the superiority of the SVM-based solution.

Methods based on deep neural networks (DNNs) have
also been proposed for cry detection. In [16], Lavner and
colleagues revised their previous work [14] by adopting a
neural network composed of three convolutional layers and
one fully-connected layer and evaluated the performance
by using audio signals recorded in domestic environments.
Torres et al. [17] presented a solution targeted at low-power
devices and proposed a novel set of features. DNNs and
support vector data description (SVDD) classifiers were eval-
uated by using a dataset composed of various recordings
collected from public websites. A DNN-based algorithm has
been proposed in a preliminary work by the authors [18]. The
algorithm uses an eight-channel circular microphone array,
and it was evaluated on a synthetic dataset and on a real
dataset composed of 10 cry recordings acquired in a NICU.

A deeper analysis on additional data acquired in the NICU
revealed significant problems related to the interaction of
the medical staff with the microphone array, and important
aspects related to the characteristics of the acoustic environ-
ment. More in detail, the analysis revealed that the inter-
action of the medical staff with the infants can misalign
the microphone array, thus not allowing the multi-channel
solution proposed in [18] to operate properly. The analysis
suggested the need to further study the detection approach,
and this paper extends the previous work by the authors [18]
presenting additional solutions. More in detail, this paper
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presents a detailed study on single-channel and multi-channel
neural networks, and on the beamforming plus post-filtering
approach presented in [18]. The feature extraction stage has
been modified in order to consider the spectral characteristics
of the signals acquired in the NICU. Moreover, we propose
the acoustic scene simulation strategy for generating syn-
thetic data for training the neural networks. This solution
allows for significant performance without requiring a mas-
sive amount of data acquired on-field for training. This repre-
sents an important result, since maternity wards and NICUs
are very sensitive environments [19], and their access is often
restricted to external personnel for multiple reasons, such
for avoiding hazards due to the accidental introduction of
pathogens. Therefore, the collection of data on-field may be
a reason of concern from this perspective. On the other hand,
the required safety precautions complicate the procedures and
protocols to follow in order to collect data.

The experimental evaluation has been conducted on a syn-
thetic dataset created by simulating the acoustic scene of a
NICU and a real dataset. Compared to [18], the synthetic
dataset has been modified in order to be more compliant
with the acoustic characteristics of the NICU environment.
The real dataset has been significantly extended with respect
to the one used in [18], thus allowing a more insightful
experimental evaluation of the cry detection algorithms.
Moreover, the proposed approaches are compared to a
state-of-the-art algorithm for vocalization detection in real
NICUs [15]. Up to the authors’ knowledge, this is the only
work present in the literature that specifically addresses the
problem of vocalization detection in real-life scenarios, and
that proposes specific solutions to deal with the presence
of undesired disturbances. The obtained results show that
the proposed DNN-based approaches outperform the com-
parative method, and that the neural networks architectures
introduced in this paper coupled with the acoustic scene sim-
ulation strategy are able to achieve significant performance
without needing real data for training.

Compared to previous works on DNN-based cry
detection [16], [17], this paper addresses the NICU envi-
ronment, rather than domestic environments, and it pro-
poses specific solutions for reducing the negative effects of
undesired disturbances. Differently from [16], [17], here we
study single-channel and multi-channel architectures, and
we determine the topologies of the networks experimentally
rather than fixing them a-priori. Moreover, the acoustic scene
simulation strategy is adopted to create a synthetic dataset
used in the training phase, and the experimental evaluation is
conducted by using data acquired in a real NICU.

The outline of the paper is the following. Section II
presents the case study and the hardware equipment used
to collect data. Section III describes the proposed algorith-
mic framework for cry detection. The comparative method
is briefly introduced in Section IV, whereas Section V
presents the experiments performed to evaluate the proposed
approach, and the obtained results. Finally, Section VI con-
cludes the paper and presents future developments.
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(a) Scheme of the recording
setup.

(b) Picture of the recording setup.

(c) The MATRIX Creator circular microphone array.

FIGURE 1. Cry detection crib prototype and microphone array details:

(a) schematic representation of the position and orientation of the
microphone array with respect to the crib, (b) crib prototype adopted in
the current research; (c) circular array board microphones placement and
orientation, the board radius is 5.25 cm.

Il. CASE STUDY

Cry detection technologies can support the NICUs medi-
cal staff by providing additional monitoring abilities with a
non-intrusive technology. However, NICUs typically present
noisy acoustic environments [20], [21] that implicate many
challenges for an infant cry detection system. A micro-
phone array allows the use of multi-channel techniques (such
as beamforming) to enhance the audio signal by remov-
ing coherent noise sources. The prototype at the basis of
the present work is shown in Fig. 1, and it consists in a
microphone-array directly integrated in the crib and oriented
towards the head of the infant. Fig. 1a shows a scheme where
the microphone array is evidenced, Fig. 1b shows a picture of
the actual prototype.

The crib is a Draeger Babytherm 8004/8010 that has been
equipped with a Raspberry Pi 3 Model B v1.2 board, and
the MATRIX Creator development board which includes a
circular microphone array featuring 8 digital MEMS micro-
phones (model MP34DB02 by ST Microelectronics). The
microphone array is distributed uniformly on a circumference
with radius of 5.25 cm! and is located above the crib by means
of a supporting arm. The clamp that binds the array to the arm
allows to tilt the array towards the head of the infant. The arm,
on the other hand, allows for a partial rotation, to move the
array whenever it hinders the activities of the medical staff.

1 www.matrix.one
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FIGURE 2. Block-scheme of the approach proposed in [18] (SE-DNN).

The monitoring device has been used to record the raw
audio samples acquired by the MEMS microphones, with-
out any processing over the audio stream, thus without any
noise management, reduction or mitigation, from either the
hardware or the software included in the prototype.

The complexity of the scenario requires a robust and effec-
tive cry detection method able to overcome interfering noises
such as other infants’ cries, the voices of the medical staff,
the noise originating from the multiple devices in the NICU.

Ill. THE PROPOSED APPROACH

The cry detection approach proposed in this paper consists
in extracting Log-Mel feature vectors from the audio signal
and classifying them as “cry” or “not-cry”’ by using a DNN.
For each feature vector, the network outputs a value com-
prised in the range [0, 1], where O and 1 represent respec-
tively absence and presence of cry. Considering the system
described in the previous section, the cry detection approach
presented in [18] uses all the audio channels of the circular
microphone array depicted in Fig. lc, and prior to extract-
ing Log-Mel coefficients it reduces undesired disturbances
with a filter-and-sum beamformer and the Optimally Modi-
fied Log-Spectral Amplitude estimator (OMLSA) post-filter
(Fig. 2).

A later investigation of the collected audio signals, how-
ever, revealed a few concerns related to the microphone array
position and orientation. As an example, during the medical
staff activity, the arm supporting the microphone is often
moved to the side and it is not restored to its original position
for a prolonged period. This problem is representative of
the unpredictable nature of a NICU environment. In fact,
in our previous work [18], although a part of the collected
data has been used to evaluate the cry detection method,
the data did not present this problem, thus resulting in a
good performance. Further investigation on the collected data
showed a performance drop, revealing the problem described
above.

In this regard, some alternatives to the original approach
presented in [18] have been investigated, and the related
schemes are depicted in Fig. 3. One of the approaches oper-
ates on a single-channel, without additional pre-processing
(Fig. 3a). The second approach uses 3 channels as input of
the DNN, among the 8 provided by the array. In this way,
the network directly incorporates the processing stages of
multiple audio channels (Fig. 3a).
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(a) Single-channel architecture (1Ch-DNN).

Uniform
Circular Array

Log-Mel
Extraction  —{ Neural Network —Cry/Not-Cry
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(b) Multi-channel architecture (3Ch-DNN).

FIGURE 3. Block-scheme of the single-channel and multi-channel
approaches.

@
FEN I

(a) Full Spectrogram. (b) Cry spectrogram detail.

(c) “Beep” noise. (d) Interfering voice.

FIGURE 4. Excerpt from the audio sample spectrograms and audio source
spectra details (the ignored part is masked out): (a) full spectrogram with
both cry and noises, (b) identification of the cry target detail, (c) example
of “beep” noise, (d) identification of the interfering voice detail.

All the approaches share a similar feature extraction
stage, where Log-Mel coefficients are calculated. However,
as shown in Fig. 4, the observation of the spectrum of the
audio stream in Fig. 4a reveals that the cry signals (Fig. 4b)
occupy all the frequency components up to 8 kHz [11], [22],
whereas most of the noise types, such as the ““beep” noises
(Fig. 4c) produced by medical equipment and the interfering
voices from the medical staff (Fig. 4d), affect mostly the
signal frequency components below 4kHz. In this regard,
an additional filtering stage has been included in the Log-
Mel extraction process, where the lower frequency bands are
discarded (see Section III-A for the details).

A. FEATURE EXTRACTION

All the methods presented above share the same feature
extraction stage. For each input channel of the neural net-
work, the signal is divided in frames 20 ms long and over-
lapped by 10 ms. The Fast-Fourier Transform of the frame
is then filtered with a filter-bank composed of 40 triangular
filters equally spaced in the mel-space. Log-Mel coefficients
are obtained by calculating the energy in each band, and then
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by applying the logarithm operator. The final feature vector
is composed of 40 elements. This approach, denoted as Full-
band in the following, is evaluated both in the architecture
of Fig. 2 and in the new architectures of Fig. 3. The Half-
band approach, on the other hand, consists in reducing the
bandwidth of the filter-bank to the range 4 kHz—8 kHz and
number of filters to 20. The length of the feature vector is
thus reduced accordingly.

The classifier does not operate on individual feature vec-
tors, but it exploits the temporal information contained in
adjacent frames. The input of the neural network is thus a
(2N + 1) x F matrix, where N is the size of the temporal
context, i.e., the number of frames preceding and following
the frame being classified, whereas F' € {20, 40} is the
length of the feature vector. In this paper, N has been set to
49 frames, that leads to an input corresponding to about 1s.

B. SINGLE-CHANNEL DNN APPROACH
The single-channel neural network architecture (1Ch-DNN)
used for cry detection is shown in Fig. 5. The exact topology
of the network is defined by exploring the hyperparameters
space on a validation set (see Section V). Its general structure
is defined as follows: the first part of the network consists
in one or more convolutional layers, each followed by batch
normalization [23], rectifier linear unit (ReLU) activation
function [24], dropout [25], and max-pooling operator. The
output of convolutional layers is processed by one or more
fully connected layers, each followed by batch normalization,
ReLU activation function, and dropout. The output layer
is composed of a single neuron with a sigmoid activation
function, that outputs the probability of the central frame of
being a cry. The network training is performed by minimizing
the binary cross-entropy loss with the Adam algorithm [26].
The hyperparameters related to the network topology that
are determined in the experimental phase are the number of
convolutional and fully connected-layers, the size and the
number of the kernels of convolutional layers, the size of the
max-pooling operator, the dropout rate, the number of units
in the fully-connected layers, as well as the learning rate, and
the batch size used to train and validate the network.

C. MULTI-CHANNEL DNN APPROACH
The multi-channel neural network architecture uses 3 input
channels (3Ch-DNN) and is shown in Fig. 6. As in the
single-channel approach, the exact topology of the network
is determined in the experimental phase by using a validation
set (Section V). The general structure, however, is defined as
follows: the first part of the network consists of three identical
blocks, each with one or more convolutional layers, followed
by batch normalization, rectifier linear unit (ReLU) activa-
tion function, dropout and max-pooling operator. These three
blocks share the same exact topology and operate in parallel.
Each channel input corresponds to a specific microphone of
the array, that is, the first, the fourth and the seventh.

The outputs of the three blocks are then placed side by side.
At one time each block produces one frame, the three frames
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FIGURE 5. Single-channel DNN architecture used for cry detection.
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FIGURE 6. Multi-channel DNN architecture used for cry detection.

are then merged in a single frame with the same row number
of the original frames and three times the number of columns
of the original frames. The resulting frame is then processed
by an additional convolutional layer also followed by batch
normalization [26], ReLU activation function, dropout and
max-pooling operator. The output of this convolutional layers
is then processed by one or more fully connected layers, each
followed by batch normalization, ReLU activation function,
and dropout. As in the single-channel network, the output
layer is composed of a single neuron with a sigmoid activation
function, and training is performed by minimizing the binary
cross-entropy loss with the Adam algorithm [26].

The hyperparameters related to the network topology that
are determined in the experimental phase are the number of
convolutional and fully connected-layers, the size and the
number of the kernels of convolutional layers, the size of the
max-pooling operator, the dropout rate, the number of units
in the fully-connected layers, as well as the learning rate, and
the batch size used to train and validate the network.

D. SIGNAL ENHANCEMENT APPROACH

The Signal Enhancement approach (SE-DNN) has been
investigated in our previous work [18]. In the present work it
is further investigated by means of an extended real dataset.
In this approach, all the eight audio channels are used in
the algorithm and processed according to the block-scheme
shown in Fig. 2. The first stages of the algorithm consist in a
filter-and-sum adaptive beamformer followed by a OMLSA
post-filter to enhance the signal quality and reduce the noise.
The output of the beamformer and of the post-filter is a single
channel that follows the same processing steps described in
Section III-A and Section III-B. The general structure of the
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neural network, thus, matches the one that has been already
presented in Section III-B, but the exact topology has been
determined separately in the experimental phase.

1) BEAMFORMER

A beamformer reduces the effects of coherent noise sources,
such as the sounds from the medical equipments present in a
NICU. The algorithm used in [18] is the linearly constrained
minimum-variance (LCMYV) beamformer [27], and it will be
now briefly presented. Denoting with s(¢) the desired source
as a function of time ¢, with a,,(¢) the room impulse response
between the m-th microphone and s(¢), and with n,,(¢) the
noise term related to microphone m, the signal acquired by
the m-th microphone is given by:

2n(t) = ap(t) * s(t) + np (). ey

Analyzing the signals with the short-time Fourier transform
(STFT), (1) can be expressed in vector form as:

Z(k,l) = Ak)S(k, )+ N(k, 1), 2)

where [ is the frame index and k is the frequency bin index.
Beamforming consists in filtering the signal acquired by each
microphone with the filter W,r(k, [),m = 1, ..., M, and sum-
ming the outputs. The vector formulation of the beamforming
operation is:

Yk, ) = Wik, DZ(k, ]). 3)

Filters coefficients WX (k, [) are obtained by minimizing the
output power E{Y(k,)Y*(k,[)}, and constraining the sig-
nal component of Y (k, ) to be equal to S(k,[). It can be
demonstrated [27] that the steepest descent formulation of the
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adaptive solution is given by the following expression:
Wk, 1+ 1) = P(k)[W(k, ) — uZk, DY*(k, D] + F(k),
“
where
P(k) =1 — A(K)A" (k)/[| A
and

F(k) = A(k)/||AK)||*.

2) POST-FILTER

The residual diffuse noise is reduced by means of the OMLSA
algorithm [27], that applies an adaptive gain function G(k, /)
to the output of the beamformer:

1Y (k, DI* = Gk, DY (k, DI, Q)
where
_ Ek.D 1 [*® !
G(k, l) = —1 T S(k’ [) €xXp (5 /\v(k’l) Tdt) s (6)
ok, D) Yk, DI
Ek, 1) = m, J/(k, = m, @)

and v(k, ) = y(k, D§(k, 1)/(1 4+ &(k, 1)). The noise variance
an(k, [) is estimated using the improved minima controlled
recursive averaging (IMCRA) [27]. In OMLSA, the optimal
spectral gain function is obtained as a weighted geometric
mean of the hypothetical gains associated with the speech
presence uncertainty. The modified gain function takes the
following form:

Gk, 1) = [G, (k, HP*DGLPED, (8)

where Gy, (k, 1) is the same as (6), p(k, [) is the speech pres-
ence probability (SPP) and Gy, is a lower threshold [27].
The speech presence probability is computed as

qlk, 1)
1 — gk, )

where g(k, [) is the a priori speech absence probability esti-
mated using a soft-decision approach [27].

—1
pk, 1) = {1 + a —i—é(k,l))e_”(k’l)} . 9)

IV. COMPARATIVE METHOD

Up to the authors’ knowledge, the only work present in the
literature that explicitly addresses the task of vocalization
detection in real NICUs is the work by Raboshchuk et al.
in [15]. This work describes a complete pipeline that handles
the acoustic data recorded in NICUs and it has been compared
to the proposed approaches. Other recent methods for infant
cry detection have not been considered in the evaluation,
since they lack important implementation details.

The first stage of the comparative method enhances the
input signals by applying the Non-negative Matrix Factor-
ization (NMF) and the spectral Subtraction (SS) algorithms.
Vocalization detection is then performed by a Gaussian Mix-
ture Model (GMM) based detector.
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The NMF algorithm is used to reduce non-stationary
noises. Denoting with Vg« the matrix representing the spec-
trograms of the input signals, where F are the frequency bins
and N the number of frames, it is possible to approximate it
with two non-negative matrices:

VExn & WExgr - HRxn - (10)

The columns of W should be intended as bases, whereas the
rows of H as their corresponding activations in each frame,
thus R < F. NMF attempts to find the matrices W and H
through the solution of the minimization problem:

argminW’HD(V||WH)+)L|H|1 , W,H=>=0, (11)

where D is Kullback-Leibler divergence and A < 0 is used
to promote a sparsity constraint on the activations. For each
source, the matrix of bases is estimated on a training dataset
and then is used in the source separation step of the whole
dataset. In the cry detection problem, the ensemble matrix of
bases W; = [Wcyy; Who—cryl s kept fixed in (11) in order to
estimate the matrix H = [Hcyy; Hyo—cry] for the test dataset.
The spectrum of each source can be obtained as

WiH;
2 Wil
where multiplication ® and division operations are element-
wise. The output enhanced signal is obtained joining the
spectrogram VC,y and the phase of the original input audio.

The SS algorithm is applied to reduce the stationary noise
contributions. The clean signal spectrum X (n, k) can be esti-
mated from the noisy input spectrum Y (n, k) by subtracting
an estimate of the noise spectrum D(n, k):

V= ®V, i€ [Cry, No-Cry] (12)

X(n, k)Y
[Y(n, )" — a|D(n, k)",
=1 if Y@ > (@+ p)IDn, k)
BID(n, k)7, otherwise
(13)
where 7 is the frame index, k the frequency bin, y = 2

corresponds to perform a power spectrum subtraction, « is the
subtraction factor and 0 < 8 < 1 is the spectral floor param-
eter. The noise estimate is obtained by using the Minima-
Controlled Recursive-Averaging (MCRA) algorithm [28]:

ID(n, k)|” = aq(n, k)| D(n — 1, k)Y
+ (1 = ag(n, k)Y (n, k)Y, (14)

with ag(n, k) = a + (1 — a)p(n, k), where p(n, k) is the
speech-presence probability calculated exploiting the ratio
between the noisy signal spectrum and its local minimum.
The ratio is first smoothed by a factor o5 and then compared
to a certain threshold value, where a higher ratio indicates
presence of speech. Subsequently, a recursive temporal aver-
aging is carried out, to reduce fluctuations between speech
and non-speech segments.

A feature vector composed by 16 Frequency-Filtered Log-
arithmic FilterBank Energy (FF-LFBE) coefficients, along
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FIGURE 7. Plan of the NICU used to create the Synthetic Dataset.

with their 16 first temporal derivatives, is extracted from the
enhanced audio signals divided into frames using 30 ms long
Hamming windows, overlapped by 10 ms.

Vocalization detection is performed by a single Gaus-
sian probability density function with a diagonal covariance
matrix used to model each class, i.e., Cry and Non-Cry.

V. EXPERIMENTS
The methods described in Section IIT have been implemented
in the Python programming language by using the Keras
framework with Tensorflow as the back-end and librosa [29]
for feature extraction. On the other hand, the source code of
the comparative method has been provided us by the authors,
and it is based on Matlab and HTK toolkit [30].

By combining the three methods described in Section III
and the two feature extraction procedures, we investigated
five cry detection strategies, namely:

o Full-band - 1Ch DNN: single-channel DNN with full
feature vector as input.

o Full-band - 3Ch DNN: multi-channel DNN with full
feature vector as input.

o Half-band - 1Ch DNN: single-channel DNN with half
feature vector as input.

o Half-band - 3Ch DNN: multi-channel DNN with half
feature vector as input.

o SE-DNN: single-channel DNN with signal enhancement
and full feature vector as input.

In the following, we will describe the adopted datasets,
the experimental setup and discuss the experimental results.

A. DATASETS

The methods presented above have been evaluated by using
a synthetic and a real dataset. The first one is a revision
of the synthetic dataset presented in [18], whereas the real
dataset has been collected in the NICU of the Salesi Hospi-
tal (Ancona, Italy) by means of the prototype described in
Section II.

1) SYNTHETIC DATASET

The synthetic dataset simulates the acoustic environment of
the Salesi Hospital NICU (acoustic scene simulation). This
has been performed by using Pyroomacoustics [31], which
allows to create the impulse responses between an audio
source and a microphone from their positions and the room
characteristics.
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As shown in Fig. 7, a simulated microphone array and a
simulated crib (show in blue) have been placed in the model
along with different types of noise sources. The microphone
array has been based on the geometry of its real counterpart,
with 8 channels placed on a circular pattern with a radius
of 5.25cm. Its position and orientation towards the audio
source within the crib (target source) also matches the proto-
type geometry (i.e., towards the head of the monitored baby).
In the model, the noise sources are placed within a radius of
about 5.5 m from the microphone array. Three coherent noise
source types and two incoherent noise source types have been
considered. Among the coherent noise source types are:

« human speech: it emulates the presence of the medical
staff;

« infant cry: it emulates other infants within other cribs
nearby the target;

o “beep” sound: it emulates the typical noises of a medi-
cal equipment.

Regarding the incoherent noise source types, the sounds of
a fan and of an oxygen concentrator have been used. The
sampling frequency is 16kHz for all audio data. A total
of 64 infant cry recordings belonging to 29 different subjects
have been combined with 12 background realization, 23 beep
sounds and 26 human speech recordings in order to create
64 audio sequences of 30 s that simulate realistic acoustic sce-
narios. Half of simulated scenarios presents a SNR of 0dB,
whereas the other half presents a SNR of 5dB. The total
amount of cry signal is 15 minutes and 1 second, whereas
the cry/silence ratio in each recording is about 50%.

The speech signals are extracted from a widely used
mono clean speech dataset with American English sentences
(WSIJO0) [32]. All the other audio signals are collected from
different web sources.”>

With respect to the synthetic dataset proposed in our pre-
vious work [18], SNR values above 5 dB have not been used.

2) REAL DATASET

The real dataset is composed of about 2 hours and 57 minutes
of audio data sampled at 16 kHz. The total duration of cry
signals is 45 minutes and 55 seconds. As shown in Table 1,
a total of 2 female and 3 male infants have been monitored.
All the infants were born premature with gestational age
between 28 weeks and 34 weeks and 2 days, whereas their age
span from 2 days up to 208 days. All of them were suffering or
had suffered from some illness, including respiratory, which
are very common in preterm children. The dataset is com-
posed of 535 audio fragments whose durations are comprised
between 2 and 150 seconds.

B. EXPERIMENTAL SETUP

To evaluate the proposed approaches and to define the topol-
ogy of each DNN, we used a random search approach [33],
defining a pool of 300 configurations. The hyperparameters

2http://www.freesound‘org
3http://www.youtube.com
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TABLE 1. Real dataset composition by subjects.

Subject Sex  Gestational Age Age Nr. of Audio  Recording Cry
(weeksTdays) (days) Fragments Time (s) Time (s)
Baby 1 M 28 24 113 2280 930
Baby 2 M 34 2 259 4892 897
Baby 3 M 2811 208 108 2014 497
Baby4 F 31+t 34 24 606 62
Baby 5 F 34712 5 31 833 369

TABLE 2. Hyperparameters explored in the random search and network architectures for the proposed configurations. “U”: Uniform distribution; log U

uniform distribution in the log-domain.

Parameter (Distribution) Range Full-band 1Ch-DNN  Full-band 3Ch-DNN  Half-band 1Ch-DNN  Half-band 3Ch-DNN SE-DNN
Batch size (U) {512, 1024, 2048} 512 2048 512 1024 1024
Learning Rate (log U) [4.88-1074,5.52-10~%] 1.02-1073 8.54-10—4 2.18 1073 5.55-10~4 2.89 1073
CNN layers

Nr. of CNN layers (U) [1,3] 1 1 3 2 3
Kernel shape (U) [1,10] x [1,10] 2x1 Ix1 Ix1,1x1,1x1 2x2,1x1 5%3,2x2,2x1
Kernel number (log U) (16, 64] 18 36 63,18, 19 4x1,2x1 29, 54, 61
Strides (log U) [1,6] x [1,6] 3x1 2x1 2x4,5x1,4x1 27,32 2x2,2x5,3x1
Pooling Shape (U) {1,2} x {1,2} 1x2 1x2 2x1,2x2,2x1 Ix1, 1x1 1x1,2x1, 1x2
Pooling Strides (U) {1,2} x {1,2} 1x1 1x2 1x2,1x2,1x2 1x1,2x2 1x1,1x1,1x2
Dropout Rate (U) {0,0.1} 0.1 0 0.1,0.2,0.3 0.0, 0.1 0.1,0.2,0.3
Last CNN Layer (Multi-Channel DNN Only)
Nr. of CNN layers (U) 1 - 1 - 1
Kernel shape (U) [1,4] x [1,4] 1x1 - 2x2
Kernel number (log U) [16, 64] 35 - 53
Strides (U) [1,7] x [1,7] 2x2 - 2x1
Fully-connected layers
Nr. of fully-connected layers (U) [1,3] 1 3 3 1 2
Units log U [100, 1024] 181 251, 153, 127 154, 113, 107 796 148, 140
Dropout Rate (U) {0,0.5} 0 0.5,0.5,0.5 0.5,0.5,0.5 0 0.5,0.5
Number of trainable parameters - 4.193.535 4.455.596 49.570 4.117.515 305.996

distributions and ranges reported respectively in the first
and second column of Table 2. The synthetic dataset has been
divided in 4 folds with the same number of audio sequences,
corresponding to the 25% of the dataset each. On the other
hand, the real dataset has been divided in three parts. One
third has been used as test set, whereas the remaining part
has been further divided in training set (75%) and val-
idation sets (25%), corresponding to 50% and 16.7% of
the whole real dataset respectively. Each subject is present
only in the training set, the validation set, or the test
set.
The experimentation consists of three main phases:

o Hyperparameters search conducted on the synthetic
dataset: 3 folds have been used as a training set and 1 fold
has been used as a validation set. The process has been
carried out for each method and each configuration. The
best performing topology of each method is reported in
Table 2 and the results are discussed in Section V-C.1.

o Training conducted on the real dataset: in this experi-
ment, the network architectures determined in the pre-
vious phase and reported in Table 2 have been trained
and evaluated on the real dataset. The validation set has
been used for early stopping, and the evaluation has been
conducted on test set of the real dataset. The obtained
results are discussed in Section V-C.2.

o Training conducted on the synthetic dataset, followed
by a test on the real dataset: the entire synthetic dataset
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has been used to train the network architectures reported
in Table 2. The evaluation has been conducted on the
overall real dataset and on the test set of the real dataset.
This experiment evaluates the effectiveness of the acous-
tic scene simulation strategy. The obtained results are
discussed in Section V-C.3.

Regarding the comparative method, we used the hyperparam-
eters values reported in [15], and training is performed on the
same training set of the proposed methods.

The performance has been evaluated by using the Area
Under the Precision-Recall Curve (PR-AUC) [34]. The PR-
AUC is calculated as follows:

PR-AUC = Z(Rn —Ry—1) - Py, (15)
n

where R, and P, are respectively the Recall and Precision for
the threshold n. Precision and Recall are calculated from the
true positives TP, the true negatives TN, the false positives
FP, and the false negatives FN as follows:

P TP

R=——\ P=——,
TP + FN TP + FP

(16)
where the subscript n has been omitted for simplicity.

C. RESULTS

The results of the experiments described above are reported
in Tables 3, 4 and 5. More in detail, Table 3 summarizes

51989



IEEE Access

M. Severini et al.: Automatic Detection of Cry Sounds in NICUs by Using Deep Learning and Acoustic Scene Simulation

TABLE 3. PR-AUC (%) on synthetic validation dataset (training on
synthetic dataset).

Algorithm Validation
Full-band 1Ch-DNN 85.31
Full-band 3Ch-DNN 90.54
Half-band 1Ch-DNN 82.97
Half-band 3Ch-DNN 89.12

SE-DNN 90.55

Raboshchuk er al. [15] 76.37

TABLE 4. PR-AUC (%) on the test set of the real dataset (training on real
dataset).

Algorithm Validation Test
Full-band 1Ch-DNN 97.50 86.18
Full-band 3Ch-DNN 97.00 81.72
Half-band 1Ch-DNN 91.63 84.53
Half-band 3Ch-DNN 96.29 81.28

SE-DNN 97.09 87.28

Raboshchuk ez al. [15] 92.89 74.96

the results obtained during the hyperparameters search pro-
cess by using the synthetic dataset. Table 4 summarizes the
results that the DNNs trained over the real dataset achieve
during the validation and the test conducted on the real
dataset. In Table 5, training has been performed on the whole
synthetic dataset, whereas the testing has been carried out,
respectively, on the overall real dataset and on the test set of
the real dataset.

From a general standpoint, we observe that the use of a
synthetic dataset for training can produce good cry-detection
results, up to 83.25% over the overall real dataset and up to
80.48% over the test set of the real dataset (Table 5). This
result proves that training the DNNs over a synthetic dataset
can represent a viable alternative to real life counterparts.
This performance is even more notable if we consider that
the synthetic dataset does not model the problem encountered
with the real dataset, i.e., the misalignment of the microphone
array with respect to its reference position.

1) HYPERPARAMETERS SEARCH

The results obtained in the hyperparameters search phase are
reported in Table 3, and the best performing methods are the
SE-DNN approach, and the multi-channel approach applied
to the full-band feature set, which achieve almost identi-
cal results. The half-band multi-channel approach achieves
a PR-AUC equal to 89.12%, whereas the worst perform-
ing method is the half-band single-channel approach with
a PR-AUC equal to 82.97%. The comparative method [15]
achieves a PR-AUC equal 76.37%, resulting the less perform-
ing approach.

2) REAL DATASET TRAINING

The results obtained by training the algorithms on the real
dataset are reported in Table 4. On the validation set, the
Full-band 1Ch-DNN is the best performing algorithm with
a PR-AUC equal to 97.50%. The Full-band 3Ch-DNN and
the SE-DNN attain almost identical results with a PR-AUC
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TABLE 5. PR-AUC (%) on real dataset (training on synthetic dataset - test
on the overall real dataset and on the test set of the real dataset).

Algorithm Overall Test
Full-band 1Ch-DNN 80.80 76.77
Full-band 3Ch-DNN 77.95 72.71
Half-band 1Ch-DNN 83.25 80.48
Half-band 3Ch-DNN 69.15 59.05

SE-DNN 74.06 70.61
Raboshchuk et al. [15] 54.12 46.18

equal to 97.00% and 97.09% respectively. The Half-band
3Ch-DNN achieves slightly lower results with a 96.29%
detection rate, whereas the half-band single-channel network
is the worst performer with a 91.63% score. The approach
proposed by Raboshchuk et al. [15] scores 92.89%, thus
superior to the Half-band 1Ch-DNN.

The second column of Table 4 shows the results obtained
on the test set. Comparing these results to the ones obtained
on the validation set, the performance drop is evident.
Multi-channel networks exhibit the highest reduction, with
a PRC-AUC below 82%, whereas the Full-band 1Ch-DNN
is more robust, with a PRC-AUC equal to 86.18%. The
SE-DNN is the best performer with an 87.28% detection
rate and a drop of roughly 10 percentage points (pp). The
Half-band 1Ch-DNN, although it does not achieve the high-
est PR-AUC, shows the lowest performance drop and a
PRC-AUC 2.75 pp lower than the most performing network.
The approach proposed by Raboshchuk ez al. [15] is the least
robust of the evaluated methods, with PR-AUC reduction of
about 18 pp.

3) SYNTHETIC DATASET TRAINING

In this experiment, training is performed on the entire syn-
thetic dataset and testing on the real dataset. Table 5 reports
both the results obtained on the overall real dataset and on the
test subset in order to compare them with results obtained in
Section V-C.2.

On the overall real dataset, the best performing algorithm
is the Half-band 1Ch-DNN, with a PR-AUC equal to 83.25%.
Notably, the PR-AUC is 0.28 pp greater than the one obtained
on the synthetic dataset during the hyperparameters search
phase (Table 3). The other investigated methods, on the
other hand, show a performance drop. The Full-band 1Ch-
DNN achieves a PR-AUC equal to 80.80%, with a reduction
of 4.51 pp. The SE-DNN approach reduces the PR-AUC to
74.06% and the multi-channel networks to 77.95% in the full-
band case, and to 69.15% in the half-band case.

A motivation for this behavior is that the SE-DNN method
and the multi-channel networks are affected by the deviation
of the microphone array from its target position, whereas
single-channel networks are not. Rather, the main differ-
ence between single-channel networks is that the Full-band
1Ch-DNN shows a performance reduction, whereas the Half-
band 1Ch-DNN shows an improvement. This suggests that in
this case the additional filtering step performed in the feature
extraction stage improves the detection abilities.
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TABLE 6. PR-AUC (%) on the test set of the real dataset when training is
performed on the real dataset and on the synthetic dataset.

Training set

Algorithm Real  Synthetic Difference
Full-band 1Ch-DNN 86.18 76.717 -9.41
Full-band 3Ch-DNN 81.72 72.71 -9.01
Half-band 1ICh-DNN  84.53 80.48 -4.05
Half-band 3Ch-DNN 81.28 59.05 -22.23

SE-DNN 87.28 70.61 -16.67
Raboshchuk ez al. [15]  74.96 46.18 -28.78

The third column of Table 5 reports the performance of the
different strategies limited to the test set of the real dataset.
Although a further performance reduction affects all the eval-
uated strategies, the overall situation remains unchanged: the
Half-band 1Ch-DNN approach is subject to a performance
reduction, but it is still the best performing method and it
exhibits the lowest performance drop among the different
approaches.

The comparative method [15] exhibits a significant perfor-
mance reduction: the PR-AUC on the overall real dataset is
equal to 54.13%, and it further reduces when the experiment
is carried out over the test set.

4) DISCUSSION

The third column of Table 4 and Table 5 reports the results
obtained on the test set of the real dataset. The same results
are reported in Table 6 to ease the comparison. Observing
Table 6, it is evident that training the algorithms over the
synthetic dataset causes a general performance reduction.
This is a common behavior that affects machine learning
algorithms when training and testing is conducted on mis-
matched conditions. In the case study of this paper, the perfor-
mance reduction is particularly evident for certain approaches
due the misalignment between the microphone array and the
target position that affects the real dataset.

Indeed, the performance reduction highly depends on the
algorithm, with the Half-band 3Ch-DNN being the most
affected method (22.23 pp), and the Half-band 1Ch-DNN
being the least affected one (4.05 pp). The SE-DNN approach
achieves the highest PR-AUC when training is performed on
the real dataset, but it is also affected by a significant per-
formance reduction (16.67 pp). Observing Table 2, it is also
evident that the SE-DNN and the Half-band 1Ch-DNN are the
networks with lowest number of trainable parameters. More
in detail, the Half-band 1Ch-DNN has one hundredth the
number of parameters of the Full-band 1Ch-DNN. Reducing
the size of the feature vector has the effect of reducing also
the size of the network, thus to improve its generalization
capabilities. Similarly, the SE-DNN has less than one tenth
the number of parameters of the multi-channel networks, and
better generalization capabilities, confirming the benefits of
introducing a pre-processing stage.

The notable performance exhibited by SE-DNN method
may give the impression that acquiring cry signals on-field
is worth the effort. NICUs and maternity wards, however,
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are very sensitive environments, and it can be difficult if
not impossible to properly record a significant amount of
data for training a learning algorithm. Moreover, on-field
acquisition has intrinsic constraints on the number of subjects
that can be monitored, which can affect the diversity of cry
samples. The same conclusion holds also if the hardware
requirements are considered. From this perspective, the Half-
band 1Ch-DNN may appear sub-optimal, but it represents
be the most cost effective and non-intrusive solution when
coupled with the acoustic data simulation strategy. It should
be also noted that, by taking into account the crib structure,
the microphone array deviation problems may be simulated,
thus better simulating the conditions of the real dataset.

Similarly to the proposed DNN-based algorithms, the com-
parative method exhibits a significant performance reduction
when training is performed on the synthetic dataset and test-
ing on the real dataset. Differently from the DNN-based solu-
tions, however, the PR-AUC reduces to 46.18%, suggesting
that a synthetic dataset cannot be used as an alternative to a
real dataset.

VI. CONCLUSION

In this paper, DNN-based methods for infant cry detection
have been proposed and the effectiveness of the acoustic
scene simulation strategy has been investigated. This strategy
has been proposed with the aim of avoiding the dependence
of the training algorithms on real data, and for reducing the
intrusiveness level required for collecting data in NICUs.
Moreover, algorithms can be more easily retargeted to other
NICUs without the need for additional acquisitions.

The analysis of real-life dataset highlighted a few prob-
lems, among which the deviation of the microphone array at
the basis of the monitoring device from its reference posi-
tion. From this, we proposed additional solutions based on
single-channel and multi-channel networks in order to better
evaluate the robustness and performance with respect to the
approach presented in [18].

The experiments have been conducted on a synthetic
dataset created by simulating the acoustic scene, and the real
dataset containing data acquired in the NICU. The proposed
methods have been compared with a state-of-the-art algo-
rithm for vocalization detection NICUs [15]. The evaluation
revealed that the SE-DNN method is the best performing
approach when training and evaluation are performed on the
same dataset, but that it shows a significant performance
reduction if trained on the synthetic dataset and evaluated on
the real dataset. At the same time, under the same conditions
the Half-band 1Ch-DNN approach is the best performing
solution with a PR-AUC equal to 80.48%. This allows us to
confirm about the effectiveness of the acoustic scene simula-
tion strategy.

The achieved results proved that a synthetic dataset can be a
useful replacement with respect to a real-life dataset. Indeed,
it allows to reduce the interaction with a sensitive environ-
ment such as a NICU, to the bare minimum. Moreover, it can
be adjusted to include changes to the environment as needed,
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without requiring an additional acquisition session. In this
regard, one of our future aims is to revise the simulation
dataset, to include some occurrences where the microphone
array does not target the intended subject, to bridge the still
existing gap with the DNN training by using real data. Further
studies will be addressed to cry classification, aimed at the
recognition of the cause of the cry.

ACKNOWLEDGMENT
The authors would like to thank the authors of paper [15] for
sharing the source code of their algorithm. They also want to
acknowledge the Italian University and Research Consortium
CINECA for the availability of high-performance computing
resources and support.

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. LaGasse, A. R. Neal, and B. M. Lester, “Assessment of infant
cry: Acoustic cry analysis and parental perception,” Mental Retardation
Develop. Disabilities Res. Rev., vol. 11, no. 1, pp. 83-93, Feb. 2005.

L. Abou-Abbas, C. Tadj, C. Gargour, and L. Montazeri, ‘““Expiratory and
inspiratory cries detection using different signals’ decomposition tech-
niques,” J. Voice, vol. 31, no. 2, pp. 259.e13-259.e28, Mar. 2017.

G. Naithani, J. Kivinummi, T. Virtanen, O. Tammela, M. J. Peltola, and
J. M. Leppidnen, “Automatic segmentation of infant cry signals using
hidden Markov models,” EURASIP J. Audio, Speech, Music Process.,
vol. 2018, no. 1, p. 1, Dec. 2018.

L. Abou-Abbas, H. F. Alaie, and C. Tadj, “Automatic detection of the
expiratory and inspiratory phases in newborn cry signals,” Biomed. Signal
Process. Control, vol. 19, pp. 35-43, May 2015.

M. A. R. Diaz, C. A. R. Garcia, L. C. A. Robles, J. E. X. Altamirano, and
A. V. Mendoza, ‘‘Automatic infant cry analysis for the identification of
qualitative features to help opportune diagnosis,” Biomed. Signal Process.
Control, vol. 7, no. 1, pp. 43—49, Jan. 2012.

A. Chittora and H. A. Patil, “Classification of normal and pathological
infant cries using bispectrum features,” in Proc. 23rd Eur. Signal Process.
Conf. (EUSIPCO), Nice, France, Aug./Sep. 2015, pp. 639-643.

O. F. Reyes-Galaviz, S. D. Cano-Ortiz, and C. A. Reyes-Garcia,
“Evolutionary-neural system to classify infant cry units for pathologies
identification in recently born babies,” in Proc. 7th Mexican Int. Conf.
Artif. Intell., Atizapan de Zaragoza, Mexico, Oct. 2008, pp. 330-335.
Z.Benyo, Z. Farkas, A. Illényi, G. Katona, and G. Varallyay, Jr., “Informa-
tion transfer of sound signals. A case study: the infant cry. Is it a noise or an
information?” in Proc. Int. Congr. Expo. Noise Control Eng., Aug. 2004,
no. 5, pp. 2774-2781.

V. K. Mittal, “Discriminating features of infant cry acoustic signal for
automated detection of cause of crying,” in Proc. 10th Int. Symp. Chin.
Spoken Lang. Process. (ISCSLP), Tianjin, China, Oct. 2016, pp. 1-5.

S. Ntalampiras, “Audio pattern recognition of baby crying sound events,”
J. Audio Eng. Soc., vol. 63, no. 5, pp. 358-369, Jun. 2015.

A. Chittora and H. A. Patil, “Newborn infant’s cry analysis,” Int. J. Speech
Technol., vol. 19, no. 4, pp. 919-928, Dec. 2016.

S. Orlandi, P. H. Dejonckere, J. Schoentgen, J. Lebacq, N. Rrugja, and
C. Manfredi, “Effective pre-processing of long term noisy audio record-
ings: An aid to clinical monitoring,” Biomed. Signal Process. Control,
vol. 8, no. 6, pp. 799-810, Nov. 2013.

B. Reggiannini, S. J. Sheinkopf, H. F. Silverman, X. Li, and B. M. Lester,
“A flexible analysis tool for the quantitative acoustic assessment of infant
cry,” J. Speech Lang. Hearing Res., vol. 56, no. 5, pp. 1416-1428,
Oct. 2013.

R. Cohen and Y. Lavner, “Infant cry analysis and detection,” in Proc. IEEE
27th Conv. Elect. Electron. Eng. Isr, Eilat, Israel, Nov. 2012, pp. 1-5.

G. Raboshchuk, C. Nadeu, S. V. Pinto, O. R. Fornells, B. M. Mahamud,
and A. R. de Veciana, “‘Pre-processing techniques for improved detection
of vocalization sounds in a neonatal intensive care unit,” Biomed. Signal
Process. Control, vol. 39, pp. 390-395, Jan. 2018.

Y. Lavner, R. Cohen, D. Ruinskiy, and H. Ijzerman, “Baby cry detection in
domestic environment using deep learning,” in Proc. IEEE Int. Conf. Sci.
Elect. Eng. (ICSEE), Eilat, Israel, Nov. 2016, pp. 1-5.

51992

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

R. Torres, D. Battaglino, and L. Lepauloux, “Baby cry sound detection:
A comparison of hand crafted features and deep learning approach,”
in Proc. Int. Conf. Eng. Appl. Neural Netw. (EANN), Athens, Greece,
Aug. 2017, pp. 168-179.

D. Ferretti, M. Severini, E. Principi, A. Cenci, and S. Squartini, “‘Infant
cry detection in adverse acoustic environments by using deep neural net-
works,” in Proc. 26th Eur. Signal Process. Conf. (EUSIPCO), Rome, Italy,
Sep. 2018, pp. 997-1001.

R. A. Polin, S. Denson, and M. T. Brady, “Strategies for prevention of
health care-associated infections in the NICU,” Pediatrics, vol. 129, no. 4,
pp. €1085-e1093, 2012.

H. Shoemark, E. Harcourt, S. J. Arnup, and R. W. Hunt, “Characterising
the ambient sound environment for infants in intensive care wards,” J. Pae-
diatrics Child Health, vol. 52, no. 4, pp. 436-440, Apr. 2016.

S. M. Hassanein, N. M. E. Raggal, and A. A. Shalaby, “Neonatal nurs-
ery noise: Practice-based learning and improvement,” J. Maternal-Fetal
Neonatal Med., vol. 26, no. 4, pp. 392-395, 2013.

K. Wermke, W. Mende, C. Manfredi, and P. Bruscaglioni, ‘“‘Developmental
aspects of infant’s cry melody and formants,” Med. Eng. Phys., vol. 24,
nos. 7-8, pp. 501-514, Sep./Oct. 2002.

S. loffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), Lile, France, Jul. 2015, pp. 448-456.

V. Nair and G. Hinton, ‘“Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
Haifa, Israel, Jun. 2010, pp. 807-814.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2016.

S. Gannot and I. Cohen, “Adaptive beamforming and postfiltering,”
in Springer Handbook of Speech Processing, J. Benesty, M. M. Sondhi,
and Y. A. Huang, Eds. Berlin, Germany: Springer, 2008, ch. 47,
pp. 945-978.

1. Cohen, ““Noise spectrum estimation in adverse environments: Improved
minima controlled recursive averaging,” IEEE Trans. Speech Audio Pro-
cess., vol. 11, no. 5, pp. 466475, Sep. 2003.

B. McFee et al., “librosa: Audio and music signal analysis in python,”
in Proc. 14th Python Sci. Conf., Austin, TX, USA, Jul. 2015, pp. 18-25.
S. J. Young et al., The HTK Book. Cambridge, U.K.: Cambridge Univ.
Press, 2002.

R. Scheibler, E. Bezzam, and 1. Dokmanic, ‘“Pyroomacoustics: A python
package for audio room simulation and array processing algorithms,” in
Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Calgary, AB,
Canada, Apr. 2018, pp. 351-355.

T. Robinson, J. Fransen, D. Pye, J. Foote, and S. Renals, “WSJ-CAMO:
A British english corpus for large vocabulary continuous speech recog-
nition,” in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Detroit, MI, USA, May 1994, pp. 81-84.

J. Bergstra and Y. Bengio, “‘Random search for hyper-parameter optimiza-
tion,” J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.

K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall
curve: Point estimates and confidence intervals,” in Machine Learning and
Knowledge Discovery in Databases, H. Blockeel, K. Kersting, S. Nijssen,
and F. Zelezny, Eds. Berlin, Germany: Springer, 2013, pp. 451-466.

MARCO SEVERINI received the degree in elec-
tronics engineering from the Universita Politec-
nica delle Marche, Italy, in 2012, where he is
currently a Research Fellow with the Department
of Information Engineering. His current research
interests include the design and development of
task and resource scheduling algorithms, energy
and power management optimization, mixed inte-
ger nonlinear programming, wireless sensor net-
works, embedded system programming, and smart
grids.

VOLUME 7, 2019



M. Severini et al.: Automatic Detection of Cry Sounds in NICUs by Using Deep Learning and Acoustic Scene Simulation

IEEE Access

DANIELE FERRETTI was born in Ancona, Italy,
in 1985. He received the M.Sc. and Ph.D. degrees
from the Universita Politecnica delle Marche,
Italy, in 2015 and 2019. He is currently a freelance
Software Engineer, working at the development of
efficient machine learning algorithms for embed-
ded platforms.

EMANUELE PRINCIPI was born in Senigallia,
Italy, in 1978. He received the Italian Laurea
(Hons.) degree in electronic engineering from the
University of Ancona (now Universita Politecnica
delle Marche), Italy, in 2004, and the Ph.D. degree
from the Universita Politecnica delle Marche,
in 2009. He has been a Postdoctoral Researcher,
since 2010. His current research interests are in the
area of digital signal processing and computational
intelligence, with the special focus on energy man-
agement and speech/audio processing. He has actively participated to vari-
ous (funded) regional, national, and European projects on multimedia Digital
Signal Processing. He is the author and coauthor of many international
scientific peer-reviewed articles, and has been serving as a Reviewer for
several international journals and conference proceedings. He is a member
of the Editorial Board of the Neural Computing and Applications (Springer)
and the Artificial Intelligence Review (Springer), since 2017, and a member
of the Program Committee of several international conferences. He has also
served as the Guest Editor for the Special Issue on Theory and Application of
Computational Intelligence in Electric Vehicles and their Integration within
Smart Energy Networksl (Energies, MDPI). He has organized the Special
Session on Deep Neural Audio processing within the IEEE International
Joint Conference on Neural Networks in 2017, 2018, and 2019, respectively.
He is also a member of the Texas Instrument Expert Advisory Panel and of
the International Neural Networks Society.

VOLUME 7, 2019

STEFANO SQUARTINI was born in Ancona,
Italy, in 1976. He received the Italian Laurea
(Hons.) in electronic engineering from the Uni-
versity of Ancona (now Polytechnic University of
Marche, UnivPM), Italy, in 2002, and the Ph.D.
degree from the University of Marche, in 2005.
He also worked as Postdoctoral Researcher with
UnivPM, from 2006 to 2007, and subsequently,
he joined the Department of Information Engineer-
ing (DII) as Assistant Professor in circuit theory.
He has been an Associate Professor with UnivPM, since 2014. His current
research interests are in the area of computational intelligence and digital
signal processing, with the special focus on speech/audio/music process-
ing and energy management. He is the author and coauthor of more than
200 international scientific peer-reviewed articles. He joined the Organiz-
ing and the Technical Program Committees of more than 70 International
Conferences and Workshops in the recent past. He is a Senior Member
of the IEEE and a member of the IEEE CIS. He is the Organizing Chair
of the IEEE CIS Task Force on Computational Audio Processing. He is
an Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING Systems, the IEEE TransacTions oN CYBERNETICS, and the IEEE
TRANSACTIONS ON EMERGING Topics IN COMPUTATIONAL INTELLIGENCE, and also
a member of the Cognitive Computation, Big Data Analytics, and Artificial
Intelligence Reviews Editorial Boards.

51993



	INTRODUCTION
	CASE STUDY
	THE PROPOSED APPROACH
	FEATURE EXTRACTION
	SINGLE-CHANNEL DNN APPROACH
	MULTI-CHANNEL DNN APPROACH
	SIGNAL ENHANCEMENT APPROACH
	BEAMFORMER
	POST-FILTER


	COMPARATIVE METHOD
	EXPERIMENTS
	DATASETS
	SYNTHETIC DATASET
	REAL DATASET

	EXPERIMENTAL SETUP
	RESULTS
	HYPERPARAMETERS SEARCH
	REAL DATASET TRAINING
	SYNTHETIC DATASET TRAINING
	DISCUSSION


	CONCLUSION
	REFERENCES
	Biographies
	MARCO SEVERINI
	DANIELE FERRETTI
	EMANUELE PRINCIPI
	STEFANO SQUARTINI


