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Abstract: Static and kinematic matrix operator equations
are revisited for one-, two-, and three-dimensional de-
formable bodies. In particular, the elastic problem is for-
mulated in the details in the case of arches, cylinders,
circular plates, thin domes, and, through an induction
process, shells of revolution. It is emphasized how the
static and kinematic matrix operators are one the adjoint
of the other, and then demonstrated through the defini-
tion of stiffness matrix and the application of virtual work
principle. From the matrix operator formulation it clearly
emerges the identity of the usual Finite Element Method
definition of elastic stiffness matrix and the classical defi-
nition of Ritz-Galerkin matrix.

1 Introduction
The static-kinematic duality leads to a simple and direct
demonstration of the Principle of Virtual Work for de-
formable bodies, and vice-versa [2–5]. The two concepts
imply each other. Such a demonstration derives from the
representation of the elastic problem in a symmetrical
manner by combining the three fundamental relations –
indefinite equations of equilibrium, kinematic equations
as definition of deformation characteristics, and constitu-
tive equations– in a singlematrix operator equationwhere
the unknown is represented by the displacement vector.

The definition of the static and kinematic matrix op-
erator equations for 1-, 2-, 3-D deformable bodies and the
formulation of the elastic problem for arches, cylinders,
circular plates, thin domes, and shells of revolution will
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herein be presented. It is possible to verify that each kine-
matic matrix operator is the adjoint of the corresponding
static matrix operator, and vice-versa.

From the formulation of the Finite Element Method
stiffnessmatrix [1, 10], clearly emerges its identity with the
Ritz-Galerkin matrix. After more than half a century from
the pioneering proposal of the Finite Element Method, it
appears to be the right time today to reconsider its foun-
dations, to emphasize its strict connections with the more
general Ritz-Galerkin Method, and, based on the static-
kinematic duality, to reformulate it in a more modern way.
We can not exclude that such a new vision could pave the
way to more advanced and simple discretizationmethods.

2 Three-dimensional body
It is considered an elementary parallelepiped with the
sides parallel to the coordinate axes, of length dx, dy, dz,
respectively. On the opposite faces of the parallelepiped
there act components of stress which, but for an infinites-
imal increment, are equal to one another. Equilibrium to
translation in the X direction, for instance, imposes

∂σx
∂x dx(dydz) + ∂τyx∂y dy(dxdz) + ∂τzx∂z dz(dxdy) (1)

+ Fx(dxdydz) = 0

where only the increments of stress, multiplied by the el-
ementary areas on which they act, and the body force,
multiplied by the elementary volume in which it acts, are
present. Dividing Equation (1) by the elementary volume
dV = dx dy dz, we obtain the first of the indefinite equa-
tions of equilibrium:

∂σx
∂x + ∂τyx∂y + ∂τzx∂z + Fx = 0 (2)

The analogous equations of equilibrium in the Y and Z di-
rections appear as follows:

∂τxy
∂x + ∂σy∂y + ∂τzy∂z + Fy = 0 (3)

∂τxz
∂x + ∂τyz∂y + ∂σz∂z + Fz = 0 (4)
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The previous equations may also be obtained by integra-
tion.

We are now able to express in matrix form the systems
of differential equations that govern, on the one hand,
equilibrium and, on the other, congruence. These two sys-
tems have intimately connected formal structures, as we
shall show in this section.

As regards equilibrium, the indefinite equations of
equilibrium may be reproposed, in matrix form, with the
stress components ordered in a stress vector premultiplied
by a matrix operator (3 × 6):

⎡⎢⎣
∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σx
σy
σz
τxy
τxz
τyz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎣FxFy
Fz

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (5)

The static equations can be written in compact form

[∂]T{σ} + {F} = {0} (6)

As regards congruence, the six independent components
of deformation can be ordered in a strain vector, which can
be obtained by premultiplying formally the displacement
vector by a (6 × 3) matrix operator:⎡⎢⎢⎢⎢⎢⎢⎢⎣

εx
εy
εz
𝛾xy

𝛾xz

𝛾yz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x
0 ∂

∂z
∂
∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣uυ
w

⎤⎥⎦ (7)

The relations (7) can also be written in compact form,

{ε} = [∂]{η} (8)

and are called kinematic equations.
The purely differential static operator is exactly the

transpose of the kinematic one appearing in Equation (7).
In this way, just as in the mechanics of rigid bodies,

the static matrix is the transpose of the kinematic one [8],
also in themechanics of deformable bodies there exists the
same profound interconnection between the two matrix
operators. In the case of the mechanics of rigid bodies, we
know how this interconnection implies the validity of the
Principle ofVirtualWork. The validity of this principle can,
on the other hand, be extended to the case of deformable
bodies, precisely on the basis of the static-kinematic dual-
ity previously emphasized.

The three indefinite equations of equilibrium do not
suffice to determine the six components of stress. On the

other hand, by adding to them the six elastic constitutive
equations, we obtain a system of nine differential equa-
tions in nine unknowns: σx, σy, σz, τxy, τxz, τyz; u, υ, w.

In matrix form, it is possible to give a very synthetic
and expressive representation of the linear elastic prob-
lem, considering as the primary unknown the displace-
ment vector {η}. If in the static equation we introduce the
constitutive law, and then the kinematic equation, we ob-
tain a matrix operator equation, called Lamé equation:

([∂]T[H][∂]){η} = −{F} (9)

Thematrix and second order differential operator in round
brackets is called the Lamé operator,

[L]
(3×3)

= [∂]T
(3×6)

[H]
(6×6)

[∂]
(6×3)

(10)

It turns out to be a (3 × 3)matrix and, in non-homogeneous
problems,where theHessianmatrix [H] is a function of the
point, it too is a function of the point.

Recalling the boundary equations of equivalence and
assuming that they hold good on a portion Sp of the exter-
nal surface of the body and that, on the complementary
portion Sη, there is imposed a congruent field of displace-
ments {η0}, the three-dimensional elastic problem can be
synthesized as follows:

[L]{η} = −{F},∀P ∈ V (11)

([N]T[H][∂]){η} = {p},∀P ∈ Sp (12)

{η} = {η0},∀P ∈ Sη (13)

where [N] represents the direction cosine matrix corre-
sponding to the static matrix operator in the spirit of
Green’s Theorem.

3 Beam with rectilinear axis
It is considered an elementary portion of a beamwith recti-
linear axis and a cross section that is symmetrical with re-
spect to the Y axis. Let this portion be subjected to a bend-
ing moment Mx and to a shearing force Ty. Deformations
due to these two characteristics will produce relative dis-
placements between the centroids of the two extreme cross
sections of the beam portion, exclusively in the transverse
direction of the Y axis. In the case of the shear Ty, we have
(Fig. 1(a)):

dυT = 𝛾ydz (14)
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Figure 1: Contributions to the relative transverse displacement in a rectilinear beam due to: (a) shearing strain, (b) rigid rotation, (c) flexural
curvature, of the beam element.

where dυT is the relative displacement in the Y direction
due to the shear, 𝛾y is the shearing strain dual of the shear-
ing force and dz is the length of the infinitesimal element
of beam. In the case of bending moment, and considering
the rigid rotation φx of the element, we have (Fig. 1(b)):

dυM = −φxdz (15)

having neglected the infinitesimals of a higher order due
to the curvature, i.e. to the slope variation dφx (Fig. 1(c)):

d(dυM) = −12dφxdz (16)

Summingup the two significant contributions of the shear-
ing strain and of the rigid rotation, we obtain

dυ = dυT + dυM = 𝛾ydz − φxdz (17)

from which
dυ
dz = 𝛾y − φx (18)

At this point we are able to formulate the fundamental
equations of the elastic problem for beams with a rectilin-
ear axis. The kinematic equations constitute, as in the case
of the three-dimensional body, the definition of the char-
acteristics of deformation as functions of the generalized
displacements [7]:⎡⎢⎣𝛾yεz

χx

⎤⎥⎦ =

⎡⎢⎣ d
dz 0 +1
0 d

dz 0
0 0 d

dz

⎤⎥⎦
⎡⎢⎣ υw
φx

⎤⎥⎦ (19)

where among the components of the deformation vector
appear the shearing strain 𝛾y, the axial dilatation εz, and
the flexural curvature χx, whilst among the components of
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the displacement vector appears, in addition to the ordi-
nary components, υ andw, also the rotation φx. The trans-
formationmatrix is differential and shows on the diagonal
the total derivative d/dz, whereas the off-diagonal terms
are all zero except for one, which is equal to +1.

The same relation may be written in compact form,

{q} = [∂]{η} (20)

where {q} indicates the vector of the deformation charac-
teristics, {η} the vector of generalized displacements, and
[∂] the kinematic matrix operator.

On the other hand, also the indefinite equations of
equilibrium can be presented in matrix form [7]:⎡⎢⎣ d

dz 0 0
0 d

dz 0
−1 0 d

dz

⎤⎥⎦
⎡⎢⎣TyN
Mx

⎤⎥⎦ +

⎡⎢⎣ qp
mx

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (21)

where among the components of the vector of static char-
acteristics appear the shearing force Ty, the axial force N,
and the bending moment Mx, whilst among the compo-
nents of the vector of external generalized forces appears,
in addition to the transverse distributed load q and the ax-
ial distributed load, p, also the bending distributed mo-
mentmx. The matrix operator presents the total derivative
d/dz in all diagonal positions, whereas the off-diagonal
terms are all zero, except for one, which is equal to −1 and
expresses the identity of the shear with the derivative of
the bending moment (neglecting the distributed moment
mx). The static matrix operator (21) is equal to the trans-
pose of the kinematic matrix operator (19), but for the al-
gebraical terms which present opposite signs. This is said
to be the adjoint operator of the previous one, and vice
versa. The reason why the algebraical terms change sign
will emerge clearly afterwards.

In compact form we can write

[∂]*{Q} + {F} = {0} (22)

where {Q} is the vector of static characteristics, and {F} is
the vector of external forces.

It should be noted that, unlike in the case of the three-
dimensional body, thematrices [∂] and [∂]* are square (3 ×
3). This means that it is possible to determine the internal
reactions of a statically determinate beam by using only
the equilibrium equations. This, unfortunately, does not
occur in the case of a three-dimensional body, also if con-
strained isostatically, the stress field of which may be de-
termined only by applying, in addition to the static equa-
tions, also the constitutive and the kinematic equations.

Having now at our disposal the equations of kinemat-
ics and statics and the constitutive equations for the beam,

we can obtain Lamé equation in operator form:

([∂]*[H][∂]){η} = − {F} (23)

Thematrix and differential operator of the second order in
round brackets can be called the Lamé operator

[L]
(3×3)

= [∂]*
(3×3)

[H]
(3×3)

[∂]
(3×3)

(24)

It turns out to be a (3 × 3)matrix and, in non-homogeneous
problems, in which the Hessian matrix [H] is a function of
the axial coordinate z, is also a function of z.

Finally, the boundary conditionsmay be conditions of
equivalence at the ends,

[N]T {Q} = {Q0} (25)

where matrix [N]T is the identity matrix [1], with a value of
unity corresponding to each differential term of thematrix
[∂]*. The boundary conditions can, on the other hand, also
represent displacements imposed at the ends:

{η} = {η0} (26)

In conclusion, the elastic problem of the rectilinear beam
can be summarized as follows:

[L] {η} = − {F} , for 0 < z < l (27)

([H][∂]){η} = {Q0}, for z = 0, l (28)

{η} = {η0}, for z = 0, l (29)

where the static boundary condition (28) holds good in the
end point or points that are subjected to loading, as does
the kinematic boundary condition (29) in the constrained
end point or points. In the case where there are no condi-
tions on thedisplacements, the loads {Q0}must constitute
a self-balancing system.

4 Beam with curved axis
If we consider the element of beam with curved axis, the
curvilinear coordinate s is considered as increasing as we
proceed from left to right along the beam, while the angle
dϑ is considered to be positive if it is counterclockwise. In
accordance with the above conventions, also the radius of
curvature r acquires an algebraic sign on the basis of the
relation

ds = rdϑ (30)
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Figure 2: Curved beam element: (a) reference system, (b) rigid rotation to be subtracted from the total one and due to a uniform tangential
displacement, (c) additional axial dilation due to a uniform radial displacement.

As regards the generalized displacements of the generic
cross section, the radial displacement υ is positive if it is
in the positive direction of the Y* axis (where Y*Z* is a sys-
tem of right-handed axes travelling along the axis of the
beam), the tangential displacement w is positive if it is in
the positive direction of the curvilinear coordinate s, and
finally the variation of the angle φ is positive if it is coun-
terclockwise (Fig. 2(a)).

We shall now show how the kinematic equation must
be modified to take into account the intrinsic curvature
of the beam. The tangential displacement w produces, in
fact, an apparent rotation φ(w), which is to be subtracted
from the total rotation (Fig. 2(b)):

φ(w) = wr (31)

On the other hand, the radial displacement υ produces an
additional axial dilation ε(υ) which is given by (Fig. 2(c))

ε(υ) = υr (32)

As a consequence of an infinitesimal relative rotationdφ of
the extreme cross sections of the beam element, the angle
between the sections can be obtained as the sum (dϑ + dφ)
of the initial and intrinsic relative rotation with the elastic
and flexural relative rotation. The new curvature is then

χtotal =
(dϑ + dφ)

ds (33)

so that the variation of curvature is

χ = χtotal −
1
r =

dφ
ds (34)

Substituting the relations (31), (32) and (34), which furnish
respectively the rotation to be deducted, the additional ax-
ial dilation, and the variation in curvature, the kinematic
equations for the curved beam appear as follows:⎡⎢⎣𝛾ε

χ

⎤⎥⎦ =

⎡⎢⎣ d
ds − 1

r +1
1
r

d
ds 0

0 0 d
ds

⎤⎥⎦
⎡⎢⎣υw
φ

⎤⎥⎦ (35)

The indefinite equations of equilibrium, or static equa-
tions, may be proposed in matrix form:⎡⎢⎣ d

ds − 1
r 0

1
r

d
ds 0

−1 0 d
ds

⎤⎥⎦
⎡⎢⎣TN
M

⎤⎥⎦ +

⎡⎢⎣ qp
m

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (36)

It should be noted that, but for the algebraic signs of the
non-differential terms, the static matrix is the transpose of
the kinematic one.

The rotationmatrix which transforms the global refer-
ence system YZ into the local reference system Y*Z* is the
following:

[N] =

⎡⎢⎣ cos ϑ sin ϑ 0
− sin ϑ cos ϑ 0
0 0 1

⎤⎥⎦ (37)

so that the vectors of the external forces and of the gener-
alized displacements in the local reference systemmay be
expressed by premultiplying the respective vectors evalu-
ated in the global reference system by the matrix [N]

{F*} = [N]{F} (38)

{η*} = [N]{η} (39)

The static and kinematic equations can thus be expressed
as follows:

[∂]*{Q} + {F*} = {0} (40)

{q} = [∂]{η*} (41)

which, on the basis of equations (38), (39), become

[∂]*{Q} + [N]{F} = {0} (42)

{q} = [∂][N]{η} (43)

Unauthenticated
Download Date | 7/25/18 5:40 PM



Static-kinematic duality in beams, plates, shells and its role | 43

Figure 3: Cylindrical shell.

Substituting equation (43) into equation (42), we have

[∂]*[H][∂][N]{η} + [N]{F} = {0} (44)

Premultiplying both sides of equation (44) by [N]T, we ob-
tain finally

([N]T[∂]*[H][∂][N]){η} = −{F} (45)

which is Lamé equation for curved beams, arches, and
rings.

The elastic problem can then be summarized as fol-
lows:

[L]{η} = −{F}, for 0 < s < l (46)

([N]T[H][∂][N]){η} = {Q0}, for s = 0, l (47)

{η} = {η0}, for s = 0, l (48)

5 Cylindrical shell
Let us consider a cylindrical shell.

The longitudinal coordinate along the generatrix is in-
dicated with x, as well as the finite principal radius of cur-
vature coincides with the radius R of the circular directrix
(Fig. 3).

The kinematic equations are:⎡⎢⎢⎢⎢⎢⎣
εx
εϑ
𝛾x

χx
χϑ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
d
dx 0 0
0 1

R 0
0 d

dx +1
0 0 d

dx
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ uw
φx

⎤⎥⎦ (49)

where εx and εϑ are the longitudinal and circumferential
dilations, respectively, 𝛾x is the shearing strain, χx and
χϑ are the longitudinal and circumferential curvatures, re-
spectively, as well as u is the longitudinal displacement,
w the transverse or normal displacement, and φx the rota-
tion about the circumferences.

On the other hand, the static equations are:

⎡⎢⎣ d
dx 0 0 0 0
0 − 1

R
d
dx 0 0

0 0 −1 d
dx 0

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Nx
Nϑ
Tx
Mx

Mϑ

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎣0q
0

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (50)

where Nx and Nϑ are the longitudinal and circumferential
unit forces, respectively, Tx is the longitudinal shearing
force,Mx andMϑ are the longitudinal and circumferential
bending moments, respectively.

We observe that the only external force acting on the
shell is assumed to be a load q(x), normal to the middle
surface. The variation in curvature χϑ vanishes, just as the
momentMϑ is not involved in any of the three equations of
equilibrium.

The first of Equations (50) is the equation of equilib-
rium with regard to longitudinal translation,

dNx
dx = 0 (51)

which givesNx = constant. The second of Equations (50) is
the equation of equilibriumwith regard to radial or normal
translation,

−NϑR + dTx
dx = −q (52)

while the third is the equation of equilibrium with regard
to rotation about the parallel,

Tx =
dMx
dx (53)

Also in the case of the cylindrical shell the static and the
kinematic matrix operators are the adjoint of one another.
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Figure 4: Circular plate: (a) equilibrium to the normal or transverse translation, (b) equilibrium to the rotation about the tangent to the cir-
cumference.

6 Circular plate
The kinematic equations for a circular plate are:⎡⎢⎢⎢⎢⎢⎣

εr
εϑ
𝛾r

χr
χϑ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
d
dr 0 0
1
r 0 0
0 d

dr +1
0 0 d

dr
0 0 1

r

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ uw
φr

⎤⎥⎦ (54)

where εr and εϑ are the radial and circumferential dila-
tions, respectively, 𝛾r is the radial shearing strain, χr and
χϑ are the radial and circumferential curvatures, respec-
tively, as well as u is the radial displacement, w the trans-
verse or normal displacement, and φx the rotation about
the circumferences.

On the other hand, the static equations are:

⎡⎢⎣
(︀ d
dr +

1
r
)︀
− 1
r 0 0 0

0 0
(︀ d
dr +

1
r
)︀

0 0
0 0 −1

(︀ d
dr +

1
r
)︀
− 1
r

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Nr
Nϑ
Tr
Mr

Mϑ

⎤⎥⎥⎥⎥⎥⎦ (55)

+

⎡⎢⎣FrFn
0

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦
where Nr and Nϑ are the radial and circumferential unit
forces, respectively, Tr is the radial shearing force,Mr and
Mϑ are the radial and circumferential bending moments,
respectively.

Restricting the analysis to the flexural regime only and
excluding the in-plane ormembrane regime,we obtain the
following equations, which are kinematic and static, re-
spectively (Fig. 4):⎡⎢⎣𝛾rχr

χϑ

⎤⎥⎦ =

⎡⎢⎣ d
dr +1
0 d

dr
0 1

r

⎤⎥⎦
⎡⎢⎣w
φr

⎤⎥⎦ (56)

[︃(︀ d
dr +

1
r
)︀

0 0
−1

(︀ d
dr +

1
r
)︀
− 1
r

]︃⎡⎢⎣ TrMr

Mϑ

⎤⎥⎦ +
[︃
−q
0

]︃
=
[︃
0
0

]︃
(57)

The indefinite equations of equilibrium (57) represent a
systemof twodifferential equations in the three unknowns
Tr,Mr,Mϑ. The polar symmetry thus reduces the degree of
static indeterminacy of the deflected plate from two to one.

The first of equations (57) represents the condition
of equilibrium with regard to the normal translation of a
plate element identified by two radii forming the angle dϑ,
and by two circumferences of radius r and r + dr

dTrrdϑ + Tr dr dϑ − qr dr dϑ = 0 (58)

The second term of the foregoing equation is due to the
greater length presented by the outermost arc of circum-
ference. Dividing by the elementary area rdrdϑ, we obtain
the first of equations (57).

The second of equations (57) represents the condition
of equilibriumwith regard to rotation of the same plate el-
ement about the circumference of radius r:

−Trrdϑdr + dMrrdϑ +Mrdrdϑ −Mϑdrdϑ = 0 (59)

Unauthenticated
Download Date | 7/25/18 5:40 PM



Static-kinematic duality in beams, plates, shells and its role | 45

Figure 5: Thin dome or shell of revolution.

Also in this case the contribution of the third term is due to
the greater length of the outermost arc of circumference.

In the case of the circular plate the matrix [∂]* can be
obtained as before, by transposing and changing the sign
of the algebraical terms of matrix [∂], but also by perform-
ing the following substitution [6, see Appendix]:

d
dr −→ d

dr +
1
r

7 Thin dome
Thin shells are shells of such small thickness that they
present an altogether negligible flexural rigidity. These el-
ements can sustain only compressive or tensile forces con-
tained in the tangent plane.

As regards thin shells of revolution (thin domes), the
kinematic and static equations simplify notably, since only
forces along the meridians and the parallels, Ns and Nϑ,
are present, as well as the displacements along the merid-
ians and those normal to the middle surface, u and w, re-
spectively (Fig. 5):[︃

εs
εϑ

]︃
=
[︃

d
ds

1
R1

sin α
r

1
R2

]︃[︃
u
w

]︃
(60)

[︃(︀ d
ds +

sin α
r
)︀
− sin α

r
− 1
R1 − 1

R2

]︃[︃
Ns
Nϑ

]︃
+
[︃
ps
q

]︃
=
[︃
0
0

]︃
(61)

The first of equations (61) represents the equilibrium to
translation along the meridian, whereas the second rep-
resents the equilibrium to translation along the normal.

From the second of Equations (61) we obtain the fun-
damental algebraic relation which links the forces Ns and
Nϑ

Ns
R1

+ NϑR2
= q (62)

while from the first we obtain the following differential
equation:

dNs
ds + sin α

r Ns −
sin α
r Nϑ + ps = 0 (63)

On the other hand, by means of equation (62) we can ex-
press Nϑ as a function of Ns,

Nϑ = R2
(︂
q − NsR1

)︂
(64)

and this expression, inserted in equation (63), gives

dNs
ds +

(︂
1
R1

+ 1
R2

)︂
tan αNs = q tan α − ps (65)

which is a differential equation with ordinary derivatives
in the unknown function Ns(s).

As in the case of the circular plate, the matrix [∂]* can
be obtained by transposing and changing the sign of the
algebraical terms of matrix [∂], but also by performing the
following substitution [6, see Appendix]:

d
ds −→ d

ds +
sin α
r

8 Shell of revolution
When a shell of revolution is loaded symmetrically with
respect to the axis of simmetry Z, only the curvilinear co-
ordinate s is present as an independent variable, while the
displacement υ along the parallels vanishes, as well as the
deformations 𝛾sϑ, 𝛾ϑ, χsϑ, and the corresponding internal
reactions Nsϑ, Tϑ, Msϑ (Fig. 5):⎡⎢⎢⎢⎢⎢⎣

εs
εϑ
𝛾s

χs
χϑ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
d
ds

1
R1 0

+ sin α
r

1
R2 0

− 1
R1

d
ds +1

0 0 d
ds

0 0 + sin α
r

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ uw
φs

⎤⎥⎦ (66)

⎡⎢⎣
(︀ d
ds +

sin α
r
)︀
− sin α

r
1
R1 0 0

− 1
R1 − 1

R2

(︀ d
ds +

sin α
r
)︀

0 0
0 0 −1

(︀ d
ds +

sin α
r
)︀
− sin α

r

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Ns
Nϑ
Ts
Ms

Mϑ

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎣psq
0

⎤⎥⎦ =

⎡⎢⎣00
0

⎤⎥⎦ (67)
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Figure 6: Element isolated from a shell of revolution: (a) equilibrium to translation along the meridian, (b, c) equilibrium to rotation about
the parallel, (d, e) equilibrium to translation along the normal to the surface.

Observe that, again for reasons of symmetry, the condi-
tions of equilibrium to translation along the parallel and
to rotation about the meridian are identically satisfied
and thus do not appear in Equation (67). Finally, we have
three equations of equilibrium (respectively, with regard
to translation along the meridian, to translation along the
normal, and to rotation about the parallel) in the five static
unknowns Ns, Nϑ, Ts, Ms, Mϑ.

The elastic problem for shells of revolution thus has
two degrees of internal redundancy, while the more gen-
eral problem of shells with double curvature appears to
have three degrees of internal redundancy.

Equations (67) are verified by imposing the above
three conditions of equilibriumonan infinitesimal shell el-
ement, bounded by two meridians located at an infinites-
imal angular distance rdϑ and by two parallels located at
an infinitesimal distance ds.

The condition of equilibrium with regard to transla-
tion along themeridian yields the equation (Fig. 6(a), 6(c),
6(e)):

dNsrdϑ + Nsdrdϑ − Nϑ sin αds dϑ + Ts
ds
R1
r dϑ (68)

+ psr ds dϑ = 0

Unauthenticated
Download Date | 7/25/18 5:40 PM



Static-kinematic duality in beams, plates, shells and its role | 47

which, divided by rdsdϑ, coincides with the first of equa-
tions (67).

The condition of equilibrium with regard to transla-
tion along the normal n furnishes the equation (Fig. 6(c),
6(d), 6(e)):

− Ns
ds
R1
rdϑ − Nϑds dϑ cos α + dTsrdϑ + Tsdr dϑ (69)

+ q r ds dϑ = 0

which, divided by rdsdϑ, coincides with the second of
equations (67).

Finally, the condition of equilibriumwith regard to ro-
tation about the parallel furnishes the equation (Fig. 6(b),
6(c)):

− Tsr dϑ ds + dMsr dϑ +Ms dr dϑ (70)
−Mϑ sin α ds dϑ = 0

which, divided by rdsdϑ, coincides with the third of equa-
tions (67).

Notice that, in the indefinite equations of equilibrium
(67), five terms sinα/r are present. These contributions are
due to the fact that the parallel curved sides of the shell
element of Figures 6(a), 6(b) differ by the amount drdϑ, as
well as that the different action lines of the forces acting
on the remaining two meridian sides are convergent and
present a radial component. In the static matrix (67) they
appear in the first element of the first row (Ns), in the sec-
ond element of the first row (Nϑ), in the third element of
the second row (Ts), in the fourth element of the third row
(Ms), and in the fifth element of the third row (Mϑ). It is re-
markable that Ns, Ts, Ms are related to the parallel sides,
whereas Nϑ, Mϑ are related to the meridian sides.

Whilst the static Equations (67) can be obtained
straight-forwardly, the derivation of the kinematic Equa-
tions (66),where the terms sinα/r arepartially absent (only
the terms related to εϑ, χϑ, and to the meridian actions Nϑ,
Mϑ aremaintained), ismore troublesome. From the Princi-
ple of Virtual Work and the static Equations (67), it is pos-
sible to derive the kinematic Equations (66). Such demon-
stration is reported in the Appendix [6].

It is important to emphasize that different terms of the
kinematicmatrix operator are determined for the first time
in the present treatment based on the static-kinematic du-
ality concept [9].

9 Static vs kinematic adjoint
matrices and identity between
FEM stiffness matrix and
Ritz-Galerkin matrix

We shall define the Finite Element Method on the basis of
the Principle of Virtual Work, and we shall show how this
is equivalent to the one based on the Principle ofMinimum
Total Potential Energy.

Let the elastic domain V be divided into subdo-
mains Ve, called finite elements of the domain V, and
let each element contain m nodal points. Usually in the
two-dimensional cases (plane stress or strain conditions,
plates or shells, axisymmetrical solids, etc.), the elements
are triangular or quadrangular, with the nodes at the ver-
tices, on the sides and, in some cases, inside. In three-
dimensional cases, the elements are usually tetrahedrons
or prisms with quadrangular sides. To each of the nodal
points of the element Ve let there correspond a spline, de-
fined on the sole element Ve if the node is internal, also on
the adjacent element if the node is on one side, and also
on all the other elements to which the node belongs if this
coincides with a vertex. To each node k of the element Ve
let there then correspond a diagonalmatrixmade up of the
g vectors

[ηk]
(g×g)

=

⎡⎢⎢⎢⎢⎣
ηk

ηk
. . .

ηk

⎤⎥⎥⎥⎥⎦ , k = 1, 2, · · · ,m (71)

if g are the degrees of freedom, i.e., the dimension of the
displacement vector.

These matrices are referred to as shape functions, and
have the following properties:

[ηk]k = [1] (72)

[ηk]j = [0], k ≠ j (73)

Using the Kronecker symbol, we can write more syntheti-
cally

[ηk]j = [δkj] (74)

The displacement vector can be expressed by interpola-
tion, via the shape functions and on the basis of the nodal
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displacements:

{η}
(g×1)

=
(g×g)
[ηl] · · ·

(g×g)
[ηk] · · ·

(g×g)
[ηm]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ1
...
δk
...
δm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(g × l)

(g × l)

(g × l)

(75)

In compact form, the displacement vector field de-
fined on the element Ve may be represented as

{ηe}
(g×l)

= [ηe]
g×(g×m)

[δe]
(g×m)×1

(76)

The deformation characteristics vector is obtained by
derivation

{qe}
(d×l)

= [∂]
(d×g)

{ηe}
(g×l)

(77)

whence, applying relation (76), we obtain

{qe}
(d×l)

= [∂]
(d×g)

[ηe]
g×(g×m)

{δe}
(g×m)×l

(78)

or, in synthetic form

{qe}
(d×l)

= [Be]
d×(g×m)

{δe}
(g×m)×l

(79)

where the matrix

[Be]
d×(g×m)

= [∂]
(d×g)

[ηe]
g×(g×m)

(80)

is calculated by derivation of the splines.
The static characteristics vector is obtainedbypremul-

tiplying the deformation characteristics vector by the Hes-
sian matrix of strain energy

{Qe}
(d×l)

= [H]
(d×d)

[Be]
d×(g×m)

{δe}
(g×m)×l

(81)

Let the Principle of Virtual Work be now applied to the el-
ement Ve. In the cases where there is the presence of an
intrinsic curvature, it is sufficient to substitute the opera-
tors [∂], [∂]*, [N], and [N]T, respectively, with

[∂][N], [N]T [∂]*, [N][N], [N]T[N]T (82)

Let a field of virtual displacements {∆η} be imposed on
the element Ve. The Principle of Virtual Work implies the
following equality:∫︁
Ve

{∆q}T{Qe}dV =
∫︁
Ve

{∆η}T{F}dV +
∫︁
Se

{∆η}T{p}dS

(83)

On the basis of equations (76), (79), and (81), we deduce∫︁
Ve

{∆δ}T[Be]T[H][Be] {δe} dV (84)

=
∫︁
Ve

{∆δ}T[ηe]T{F}dV +
∫︁
Se

{∆δ}T[ηe]T{p}dS

Cancelling on both sides the virtual nodal displacement
{∆δ}T, we obtain∫︁

Ve

[Be]T
(g×m)×d

[H]
(d×d)

[Be]
d×(g×m)

dV {δe}
(g×m)×1

(85)

=
∫︁
Ve

[ηe]T
(g×m)×g

{F}
(g×l)

dV +
∫︁
Se

[ηe]T
(g×m)×g

{p}
(g×l)

dS

The vector of the nodal displacements of the element Ve,
{δe}, has been carried out from the integral sign since it
is constant. The integral on the left-hand side is called the
local stiffness matrix:

[Ke]
(g×m)(g×m)

=
∫︁
Ve

[Be]T
(g×m)×d

[H]
(d×d)

[Be]
d×(g×m)

dV (86)

Equation (85) therefore takes on the following form:

[Ke]
(g×m)(g×m)

{δe}
(g×m)×l

= {Fe}
(g×m)×l

+ {pe}
(g×m)×l

(87)

The two vectors on the right-hand side are the vec-
tors of the equivalent nodal forces, and represent the in-
tegrated effect of the forces distributed in the domain and
on the boundary of the element Ve. Once the local stiff-
ness matrix is calculated, it would be possible to deter-
mine the vector of the nodal displacements {δe} on the
basis of the local relation (87), only if the forces {p} act-
ing on the boundary of the element were known before-
hand and hence the vector of the equivalent forces {pe}
were obtained by integration. Whereas, that is, the body
forces {F} are a datum of the problem, the forces {p},
which exchange between them the elements at the recip-
rocal boundaries, are a priori unknown.

To get round this obstacle and, at the same time, to
resolve the general problem of the determination of the
vector of all the nodal displacements {δ} of the solid, one
must add the relation (87), valid for the element Ve, to
all the similar relations valid for the other elements of the
mesh. In this way, the surface contributions {pe} all can-
cel out, except for those that do not belong to interfaces
between elements, but which belong to the outer bound-
ary. This operation is called assemblage, and involves an
expansion of the vectors {δe}, {Fe}, {pe}, from the local
dimension (g ×m) to the global dimension (g × n), where n
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is the global number of nodal points of the mesh. The pro-
cedure will therefore be to order all the nodes of the mesh
of finite elements, so as to be able to insert the nodes of the
generic element Ve in the positions that they should have.
This may be achieved by premultiplying the vector of the
local nodal displacements {δe} by a suitable assemblage
matrix [Ae]T, of dimension (g × n) × (g × m), where all the
elements are zero, except for (g × m) elements having the
value of unity set in the (g × m) different rows to be filled,
and corresponding to the (g ×m) columns

{δe} = [Ae]T{δe} (88)

{Fe} = [Ae]T{Fe} (89)

{pe}
(g×n)×l

= [Ae]T
(g×n)(g×m)

{pe}
(g×n)×l

(90)

Substituting the inverse relations in equation (87), we ob-
tain

[Ke][Ae]{δe} = [Ae]{Fe} + [Ae]{pe} (91)

which, premultiplied by [Ae]T, yields

([Ae]T[Ke][Ae]
(g×n)(g×n)

) {δe}
(g×n)×l

=
{︀
Fe
}︀

(g×n)×l
+ {pe}
(g×n)×l

(92)

The relation (92) remains valid even if the expanded vector
of local displacements {δe} is substituted with the global
vector of nodal displacements {δ}

[Ke]{δ} = {Fe} + {pe} (93)

where [Ke] is the local stiffness matrix in expanded form:

[Ke]
(g×n)(g×n)

= [Ae]T
(g×n)(g×m)

[Ke]
(g×m)(g×m)

[Ae]
(g×m)(g×n)

(94)

The local relation in expanded form (93) may be added to
the similar relations for the other finite elements:(︃∑︁

e
[Ke]

)︃
(g×n)(g×n)

{δ}
(g×n)×l

= {F}
(g×n)×l

(95)

having gathered to a common factor the vector of the nodal
displacements {δ}, and where

{F} =
∑︁
e
({Fe} + {pe}) (96)

From equations (85), (88), (89), (90) we deduce

{F} =
∫︁
V

[Ae]T[ηe]T{F}dV +
∫︁
S

[Ae]T[ηe]T{p}dS (97)

where the integrals extended to the boundaries of the ele-
ments cancel out two by two, since the forces that the in-
terfaces of the elements exchange are equal and opposite.
It is easy to verify that the vector (97) has equations

Fi =
∫︁
V

{ηi}T {F}dV+
∫︁
S

{ηi}T{p}dS (98)

as its components.
Finally, we thus derive the equation

[K] {δ} = {F} (99)

which coincides with equation

[L] {δ} = {F} (100)

Where

Lij = −
∫︁
V

{ηi}T[L]{ηj}dV+
∫︁
S

{ηi}T[L0]{ηj}dS (101)

once the identity of the global stiffness matrix [K] with the
Ritz-Galerkin matrix [L] has been demonstrated.

However, this is possible on the basis of relations (86)
and (80):

[Ke] =
∫︁
Ve

[Be]T[H][Be]dV =
∫︁
Ve

(︀
[∂][ηe]

)︀T [H][∂][ηe]dV
(102)

Applying the rule of integration by parts on a three-
dimensional domain, we have

[Ke] = −
∫︁
Ve

[ηe]T[∂]*[H][∂][ηe]dV (103)

+
∫︁
Se

[ηe]T[N]T[H][∂][ηe]dS

The negative algebraic sign in front of the first integral,
which derives from the rule of integration by parts and
is necessary for the terms of the matrix [∂] which are dif-
ferential operators, constitutes the reason why the non-
differential terms of the matrix [∂] must change their al-
gebraic sign in the adjoint matrix [∂]*.

In equation (103) the presence of the Lamé operators
[L] and [L0] can be recognized:

[Ke] = −
∫︁
Ve

[ηe]T[L][ηe]dV (104)

+
∫︁
Se

[ηe]T[L0][ηe]dS

The global stiffness matrix is therefore obtained by sum-
ming up all the contributions (104), after premultiplying
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them by the matrices [Ae]T and postmultiplying them by
the matrices [Ae]:

[K] =
∑︁
e
[Ke] = −

∫︁
V

[Ae]T[ηe]T [L][ηe][Ae]dV (105)

+
∫︁
S

[Ae]T[ηe]T [L0][ηe][Ae]dS

The contributions corresponding to the interface between
elements cancel each other out. It is easy to verify that the
matrix (105) has equations (101) as its elements, and hence
the identity between the global stiffness matrix and the
Ritz-Galerkin matrix holds:

[K] = [L] (106)
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Static-kinematic duality in the
shells of revolution: Reasons for the
absence of the terms sin α/r from
the kinematic matrix operator
As clearly shown by Equations (66) and (67), in the shells
of revolution, the static and kinematic matrix operators
are not exactly one the transpose of the other but for the
change of sign in the algebraic terms, as occurs for de-
formable three-dimensional solids, beams, and cylindri-

cal plates. From a mathematical point of view, this pe-
culiarity derives from the application of the Green theo-
rem to a surface element whose area cannot be expressed
simply as the product of two differentials. In the present
appendix we will prove this fundamental result, i.e. the
static-kinematic duality for the shells of revolution loaded
symmetrically, where actually the infinitesimal element
area is given by rdϑds.

More in detail, we are going to show how the kine-
matic equations can be derived from the static equations
by means of the Principle of Virtual Work. Let us consider
a finite portion of a shell of revolution (S being its surface).
Without losing generality, we can assume the portion to be
bounded by two parallels and by two meridians (together
forming its contour C). The Principle of VirtualWork states
that the external virtual work equals the internal one, i.e.:∫︁

S

(psu + qw + msφs) r dϑ ds (A.1)

+
∮︁
C

(Nsu + Tsw +Msφs) r dϑ =

=
∫︁
S

(Nsεs + Nϑεϑ + Ts𝛾s +Msχs +Mϑχϑ) r dϑ ds

provided that the static system is equilibrated and the
kinematic system is congruent.

Bymeans of the static Equations (67), the external dis-
tributed forces can be substituted in the first integral at the
left-hand side, which thus reads:∫︁

S

[︂(︂
−dNsds −

sin α
r Ns +

sin α
r Nϑ −

Ts
R1

)︂
u (A.2)

+
(︂
Ns
R1

+ Nϑ
R2
− dTs

ds −
sin α
r Ts

)︂
w

+
(︂
Ts −

dMs
ds − sin α

r Ms +
sin α
r Mϑ

)︂
φs
]︂
r dϑ ds

The integrand function contains threederivatives. To these
terms we apply the Green theorem. The first one reads:

−
∫︁
S

dNs
ds u r dϑ ds =

∫︁
S

Ns
d (u r)
ds dϑ ds (A.3a)

−
∮︁
C

Nsu r dϑ =
∫︁
S

Ns
(︂
du
ds +

sin α
r u

)︂
r dϑ ds

−
∮︁
C

Nsu r dϑ

Analogously for the other two terms we have:

−
∫︁
S

dTs
ds w r dϑ ds =

∫︁
S

Ts
(︂
dw
ds + sin α

r w
)︂
r dϑ ds
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−
∮︁
C

Tsw r dϑ (A.3b)

−
∫︁
S

dMs
ds φs r dϑ ds =

∫︁
S

Ms

(︂
dφs
ds + sin α

r φs
)︂
r dϑ ds

−
∮︁
C

Msφs r dϑ (A.3c)

Upon substitution of Equations (A.3a), (A.3b), (A.3c),
into (A.2) and then into (A.1), we observe that several terms
cancel each other, particularly the line integrals along the
contour C. Thus, the Principle of Virtual Work (A.1) reads
now:∫︁

S

[︂
Ns
(︂
du
ds +

w
R1

)︂
+ Nϑ

(︂
sin α
r u + w

R2

)︂
(A.4)

+ Ts
(︂
− uR1

+ dw
ds + φs

)︂
+Ms

(︂
dφs
ds

)︂
+Mϑ

(︂
sin α
r φs

)︂]︂
r dϑ ds

=
∫︁
S

(Nsεs + Nϑεϑ + Ts𝛾s +Msχs +Mϑχϑ) r dϑ ds

For the arbitrariness of the integration domain, the two in-
tegrand functions must be equal. Furthermore, because of
the arbitrariness of the static system, the integrand func-
tions equal each other if and only if:

εs =
du
ds +

w
R1

(A.5a)

εϑ =
sin α
r u + w

R2
(A.5b)

𝛾s = −
u
R1

+ dw
ds + φs (A.5c)

χs =
dφs
ds (A.5d)

χϑ =
sin α
r φs (A.5e)

Equations (A.5) represent the kinematic equations for
the shells of revolution, which, in matrix form, are given
by Equation (66). This demonstration highlights how the
static-kinematic duality is still valid, although three of the
sinα/r terms are absent from the kinematic matrix opera-
tor. This can be easily extended to the general case of the
shells with double curvature [6].
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