
p ()
URL: http://www.elsevier.nl/locate/entcs/volume82.html 10 pages

Design for Testability for Highly Reconfigurable
Component-Based Systems

Andrea Baldini, Paolo Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, Torino, Italy

{baldini, prinetto}@polito.it

Giovanni Denaro, Mauro Pezzè

Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Via Bicocca degli Arcimboldi 8, Milano, Italy
{denaro, pezze}@disco.unimib.it

Abstract

Highly-reconfigurable component-based systems, i.e., systems that are built form
existing components and are distributed in many versions and configurations, are
becoming increasingly popular.

The design and verification of such systems presents new challenges. In this
paper we propose a design approach that facilitates analysis and testing of differ-
ent configurations by identifying and tracking relations among requirements, logic
components and resources. The approach proposed in the paper allows for easily
identifying different dependencies among resources, components and requirements
and thus spotting the tests that must be re-executed to assure the desired level of
quality.

1 Introduction

Highly-Reconfigurable Component-Based (HRCB) systems are built starting
from reusable hardware and software components [5]. In such systems, com-
ponents can be substituted, added or eliminated to obtain different configu-

1 This work has been partially founded by the Italian Government in the context of the
QUACK project (QUACK: A Platform for the Quality of New Generation Integrated Em-
bedded Systems.)

c©2003 Published by Elsevier Science B. V.

199

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Baldini, Denaro, Pezze and Prinetto

rations of the same system. The set of systems based on a common subset of
core components is often referred to as a family of systems.

HRCB systems are increasingly used in many application domains [1]. A
notable example of such systems is the board systems of new generation cars,
that combine several hardware devices, e.g., DVD, GSM and GPS devices,
and provide many complex software services, e.g., Internet facilities, car alarm
monitoring and integrated control of all available devices. Some of these com-
ponents are produced by third parties (for example, the GSM devices are
generally not proprietary). Different car models use different configurations.
For example, base models may not include GPS and Internet facilities. Config-
urations are obtained by changing, adding or updating subsets of components.

Design and verification of HRCB systems present new challenges [4,3]. The
many different evolving configurations and the often stringent quality require-
ments cannot be addressed by completely testing each different configuration.
New techniques are required to identify subsets of tests to be re-executed to
assure the quality of new configurations.

This position paper frames the problem and suggests a preliminary so-
lution for designing such systems that records different dependencies among
requirements, logical components and resources to allow for easily identifying
tests that must be re-executed when changing a resource, a component, or a
requirement. The technique proposed in the paper is presented referring to
the design of modern consoles of top-of-the-line cars.

2 Highly Reconfigurable Component-Based Systems

Many commercial systems are often available in many different versions and
configurations. We can refer to such classes of systems as system families.
A system family includes many different systems that provide a common set
of core functionalities, but differ in the number and combination of provided
functionalities, and in the accessibility to the offered functionalities.

Often systems that belong to the same family can be obtained from a
common set of hardware and software components suitably selected and as-
sembled. The reuse of components can greatly reduce costs and development
time, but presents new design and verification challenges.

Main characteristics of HRCB systems are:

• the presence of a common pool of components,

• the availability of the components and the systems in many different versions
and configurations and

• the presence of non-trivial both functional and non-functional requirements,
e.g., performance, usability and real-time requirements.

200

Baldini, Denaro, Pezze and Prinetto

Components

We use here a broad definition of component that includes both hardware
(physical) and software components. A general definition is not straightfor-
ward, so we will rely on the common knowledge to give a meaning to the
concept of components, but we will use the term usually at a very high ab-
straction level. A micro-chip can be a component, but also an entire display;
similarly, a particular encoder implementing a specific algorithm can be a
component, maybe directly a hardware one or a software component running
on a generic processor.

Configurations

We can infer many ways to configure or reconfigure a HRCB system: We
can add or eliminate a component in an existing system; We can substitute a
particular component with one or more components; We can update compo-
nents with new versions. For example, we can substitute a micro-chip to gain
more processing power, or a lower power dissipation, or new features. We can
have different versions of the same product with different displays, e.g., black
and white for cheap products and color high-resolution for expensive ones.
Even more complex, we can consider the case of an encoder, which we can
implement as hardware device (this is faster but usually more expensive) or
as software component. According to our definition this is just a substitution
of component.

Functional and Non-functional Properties

One of the major challenges for HRCB systems is the presence of non-trivial
functional and non-functional requirements. Many of such requirements are
expressed in terms of properties for the whole system. This entails that any
change in the configuration can impact on any of such properties. Good
examples are represented by real-time requirements for system reaction or
performance requirements for generic functionalities.

Such properties are not easy to verify at the system level, since they often
cannot be simply inferred from the properties of the single components, but
depend on several components of the system. Even if all components sat-
isfy a specific requirement, e.g., a real-time constraint, this is not a sufficient
condition for the same requirement to be satisfied at the system level. Even
if a specific configuration satisfies a specific requirement, e.g., a performance
requirement, this is not a sufficient condition for any other configuration to
satisfy such requirement.

201

Baldini, Denaro, Pezze and Prinetto

3 Motivating Example

This section presents a notable case of industrially relevant highly-configurable
component-based systems that motivates our research: top-of-the-line auto-
motive applications, such as modern consoles which group many controls of
correlated devices.

Such applications have various orders of complexity: the interaction with
the driver is guaranteed by a set of input and output devices, such as a dis-
play, a keyboard, audio input (microphone) and output; moreover, a set of
now common high-level-car components are integrated, such as positioning
system with navigation facilities, voice and data communications and vocal
commands.

Such systems are reconfigurable and come usually as families of systems,
meaning that different specific models are derived from the same general
model.

From our direct industrial experience we can affirm that such systems
are often produced by specialized companies that work for several different
brands. Each client can possibly request different versions of its specific appli-
cation, but the same project can cover more than one client, so that different
configurations are sold under different brand names.

It is evident that such systems have all the features that characterize HRCB
systems: they present a common pool of core components, they are highly
reconfigurable and have many families of different possible configurations, and
they certainly require non-trivial functional and non-functional properties,
e.g., performance requirements.

There are several commercially available car consoles. The model described
here conforms with industrial products of various manufacturers for the near
future.

The list of all the possible functionalities is out of the scope of this pa-
per, but we can present a set of representative functions usually performed
by such classes of systems. From the informal requirements for a full-optional
application, we can extract functions such as global positioning system (GPS)
navigation facilities, radio and CD player, on-board computer, upgrade and
maintenance facilities, safety mechanisms, TV and DVD player, integrated
mobile phone, Internet access and browsing and presence of various technolo-
gies such as bluetooth for wireless connections.

The system includes several functionalities: GPS navigation based on road
maps CD; radio and the CD player; on-board computer displaying planned
arrival time, average consumption, maximum distance that can be covered
with the remaining fuel; functions for upgrading and maintaining the software
of the console by authorized people connected by wire or GPRS/UMTS; Safety
signals; TV with Teletext and DVD players; GSM mobile phone; Internet
access; Bluetooth wireless connectivity to mobile phones, PDA and notebook
computers.

202

Baldini, Denaro, Pezze and Prinetto

Fig. 1. Schematic external appearance

Figure 1 shows a conceptual schema of the interface as seen from the driver.

Readers interested in further details about this industrial case are referred
to [1].

4 Approaching the Design of HRCB Systems

Traditional design and verification techniques are not tailored to the specific
characteristics of HRCB systems and thus their use may result in excessive
costs and unsatisfactory results.

This section outlines an approach for the design of HRCB systems. The
proposed approach augments a classic software development approach, e.g.,
UML based, by adding design for testability functionalities.

According to IEEE, testability can be defined as: (1) the degree to which
a system or component facilitates the establishment of test criteria and per-
formance of tests to determine whether those criteria have been met. (2) the
degree to which a requirement is stated in terms that permit establishment of
test criteria and the performance of tests to determine whether those criteria
have been met [2].

The process proposed here identifies different design steps particularly rel-
evant for the design of HRCB systems, namely requirements analysis, identifi-
cation of logic components, and resource allocation. The process defines a set
of relations among different design levels given in the form of mappings that
define the correspondence among levels. The mappings among levels facilitate
the identification of functionalities to be tested and the identification of fea-
tures shared between different system configurations that require additional

203

Baldini, Denaro, Pezze and Prinetto

testing.

The requirement analysis defines the requirements for the system. The
resulting requirement specifications may be given in many different ways, e.g.,
by means of UML use-case diagrams. In this paper, we assume that the
requirements are expressed as a list of items that may take the form of a
numbered list.

The logic components are the system counterparts of a requirement 2 , i.e.,
while a requirement describes a functionality as perceived by the drivers, a
logic component represents the subsystem that implements such functional-
ity. For example, the requirement assisted navigation is implemented by the
logic component satellite based navigation system. Logic components can be
associated with sets of constraints. In general, constraints are used to capture
non-functional requirements. For example, for the satellite based navigation
system, we may require real-time constraints or compliance with existing stan-
dards, such as UMTS standard.

Resources indicate entities at various abstraction levels, e.g., hardware
devices, software modules, protocols, and standards. Logic components are
mapped to resources, according to the functionalities to be satisfied and the
constraints on logic components. Some logic constraints may involve several
resources. For example timing requirements require the cooperation of differ-
ent resources.

The mapping among requirements, logic components and resources is or-
ganized as a dependency tree.

The design process described above can be applied at all development
stages, e.g., preliminary analysis of consistency of a given configuration. In
this case, we consider all requirements that frame the configuration and merge
the related dependency trees. This provides a global sketch of the system
resources and their dependencies.

The presence of different levels (requirements, logic components, resources)
and the mappings between them allow the identification of the elements to
test, and help in the definition of quality figures. For example, mappings are
useful to understand what is modified when a change in a configuration occurs,
both in terms of elements and in terms of integration and relationships among
them, and this allows for identifying test cases for regression testing.

5 Preliminary Application of the Technique

In this section we provide an early example of application of the methodology
introduced in the former section referring to the preliminary analysis of the
car console system presented in Section 3.

Figure 2 presents a subset of requirements for the car control system, given

2 Logic component are elsewhere referred to as features, for example in the domain of
telecommunication applications.

204

Baldini, Denaro, Pezze and Prinetto

(i) GPS navigation for assisted navigation: it avoids drivers consulting road
maps and searching for road signs, indicating directions to every destina-
tion stored in the proper road maps CD.

(ii) Audio and video reproduction: Radio and the CD player offer hi-fi quality
sound.

(iii) On-board computer management: the on-board computer acquires data
useful for the driver, from the possible arrival time and the average con-
sumption to the maximum distance that can be covered with the remain-
ing fuel.

(iv) System maintenance operations: authorized personnel can upgrade and
maintain the software of the console, connecting a specific wire or directly
via GPRS/UMTS connection.

(v) Car alarm monitoring: acoustic safety signals to remind the driver not
to exceed the speed limit.

(vi) TV with Teletext and DVD players: the driver can always obtain actual
news and entertainment for the passengers.

(vii) Handling of vocal communication: the GSM mobile phone offers full
phone capabilities, complete with SMS messaging and phonebook.

(viii) Internet navigation facilities: Internet access allows additional informa-
tion and connection to maintenance and emergency services.

(ix) Wireless access to external devices: the Bluetooth wireless technology
allows the driver to make effortless, wireless and instant connections to
various communication devices, such as mobile phones, PDA and note-
book computers.

Fig. 2. Few requirements for the car console system of Section 3

as a numbered list. This list conforms with the informal requirements already
presented in Section 3. Numbers are used to define the mapping to the logic
components.

Figure 3 shows a subset of logic components for the car console system.
The diagram presents a short-hand notation for the logic components: sat
is the satellite based navigation system, internet is the Internet browser and
so on. Shadowed components represent logic subsystems for which we expect
more interactions with the users. Some non-trivial constraints are indicated as
example: the satellite based navigation system must be UMTS compliant to
download additional information and maps, and the global positioning system
(GPS) services, used by the satellite based navigation system, must give the
driver a resolution on the position of 3 meters, meaning that the driver should
perceive a 3 mt precision, independently from the specific technology.

Figure 4 shows the dependency trees for some of the requirements. In-
dentation indicates association between requirements, logic components and
resources or dependence among resources. For instance, the first requirement,

205

Baldini, Denaro, Pezze and Prinetto

list of constraints:

- sat -> UMTS compliance

- gps -> perceived resolution: 3 meters

- ...

Fig. 3. A subset of logic components and constraints for a car console system

assisted navigation, is implemented with the logic component satellite based
navigation system, which must be UMTS compliant. Implementation is based
on a GUI software component built on top of a renderer, which manages
the physical display. Communication takes place via sockets using UMTS as
protocol. A radiomobile antenna is required as physical resource for commu-
nication. The resources indicated in the trees are taken from a list not shown
in this paper. The whole dependency tree is actually a forest of dependency
trees, one for each initial requirement of the specific configuration.

The dependency trees represent the relationships between different levels
and allow the identification of the tests that are necessary for each different
version. If we modify a specific resource in a configuration, the dependency
trees tell us which logic components and which requirements are affected by
such change, and must be re-tested. For example, referring to Figure 4, if we
modify the resource UMTS (e.g., adopting a new library that implements the
UMTS services), the dependency trees tell us that only the satellite navigation
system (SAT) and the Internet browser need regression testing. Conversely,
the integrated phone subsystem is not affected by such modification. Fur-
thermore, for the SAT subsystem, we need to re-test only the communication
infrastructure (socket-based), while the GUI, the renderer and the display
remain unaffected.

For resources, the issue is a bit more complex. When we want to integrate

206

Baldini, Denaro, Pezze and Prinetto

(i) assisted navigation (requirement)
• satellite based navigation system - sat (logic component)
• UMTS compliance (constraint on the logic component)
· navigation GUI (resource)

renderer (resource)
display (resource)

· socket (resource)
UMTS (resource)

radiomobile antenna (resource)

(ii) handling of vocal communication (requirement)
• integrated phone - GSM (logic component)
· vocal interface (resource)

microphone (resource)
speaker (resource)

· GSM (resource)
radiomobile antenna (resource)

(iii) Internet navigation facilities (requirement)
• Internet browser - internet (logic component)
· Internet browser software component (resource)

socket (resource)
UMTS (resource)

radiomobile antenna (resource)

Fig. 4. Some dependency trees for the car console system

different components, we obtain many cases of presence of the same resource
in different logic components. However we cannot merge directly the sub-
trees related to that particular resource, but we must first distinguish among
different situations.

We have classified such situations as:

Sharing: the same resource is used by different logic components, but there
is no direct dependency so the resource can be used by more than one
component at the same time.

Dependency: the resource can be shared but its sharing impacts on the
involved components, i.e., constraints are not violated but the behavior
of one component can affect the behavior of the others sharing the same
resource.

Conflict: the sharing of a resource represents an unacceptable dependency
among components, i.e., some constraints are violated. A conflict must be
solved as a design issue, e.g., adding resources.

Note that the expression dependency used above is not related to the ex-
pression dependency tree, even if from the merging of dependency trees such
situations can be highlighted.

207

Baldini, Denaro, Pezze and Prinetto

Sharing indicates that a change in that particular shared resource can af-
fect the components sharing the resource, while dependency indicates that
a change in any resource of a particular component could affect the compo-
nents depending from the same resource. In the latter case, the changes in
the behavior could cause the violation of a constraint of any of the sharing
components, and the dependency could become a conflict.

The early individuation of such new conflicts in different configurations
is possible only with a structure that contains information about resource
mappings, such as dependency trees.

6 Conclusions

HRCB systems, i.e., systems distributed in different versions and configura-
tions made of different subsets of components, are becoming increasingly used.
This type of systems entail many new verification requirements that cannot
be easily addressed by means of traditional design and testing techniques.

This paper proposes a design methodology to map requirements to logical
components and resources, to increase testability of HRCB systems. The ideas
presented in the paper are explained on a sample application in the field of the
automotive applications, where the HRCB technology is rapidly spreading.

We are currently developing and experimenting the proposed technique in
the context of the QUACK (A Platform for the Quality of New Generation
Integrated Embedded Systems) project 3 .

References

[1] Baldini, A., A. Benso, P. Prinetto, S. Mo and A. Taddei, A uml process for
system level functional test: an industrial perspective, in: Proceedings of the
Sixth Biennial World Conference on Integrated Design and Process Technology
(IDPT’02) (2002), p. 48.

[2] IEEE Standard Glossary of Software Engineering Technology ANSI/IEEE
610.12, IEEE Press (1990).

[3] Liu, C. and D. Richardson, Software components with retrospectors, in:
Proceedings of the International Workshop on the Role of Software Architecture
in Testing and Analysis (ROSATEA), 1998.

[4] Rosenblum, D., Challenges in exploiting architectural models for software
testing, in: Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis (ROSATEA), 1998.

[5] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,”
ACM Press and Addison-Wesley, New York, NY, 1998.

3 QUACK is partially supported by MIUR, the Italian Ministry of University and Education
through the Cofin Program

208

