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Periodic modulations of an acoustic feature, such as amplitude over a certain frequency range, leads to
phase locking of neural responses to the envelope of the modulation. Using electrophysiological methods
this neural activity pattern, also called the auditory steady-state response (aSSR), is visible following
frequency transformation of the evoked response as a clear spectral peak at the modulation frequency.
Despite several studies employing the aSSR that show, for example, strongest responses for ~40 Hz and
an overall right-hemispheric dominance, it has not been investigated so far to what extent within
auditory cortex different modulation frequencies elicit aSSRs at a homogenous source or whether the
localization of the aSSR is topographically organized in a systematic manner. The latter would be sug-
gested by previous neuroimaging works in monkeys and humans showing a periodotopic organization
within and across distinct auditory fields. However, the sluggishness of the signal from these neuro-
imaging works prohibit inferences with regards to the fine-temporal features of the neural response. In
the present study, we employed amplitude-modulated (AM) sounds over a range between 4 and 85 Hz to
elicit aSSRs while recording brain activity via magnetoencephalography (MEG). Using beamforming and
a fine spatially resolved grid restricted to auditory cortical processing regions, our study revealed a
topographic representation of the aSSR that depends on AM rate, in particular in the medial-lateral
(bilateral) and posterior-anterior (right auditory cortex) direction. In summary, our findings confirm
previous studies that showing different AM rates to elicit maximal response in distinct neural pop-
ulations. They extend these findings however by also showing that these respective neural ensembles in
auditory cortex actually phase lock their activity over a wide modulation frequency range.

© 2017 Published by Elsevier B.V.
1. Introduction

Apart from spectral content, temporal amplitude modulations
(i.e. derived from the temporal envelope of the signal) constitute an
important feature of naturally occurring sounds. An example par
excellence is speech, where diverse relevant acoustic features
exhibit characteristic modulation rates (Kraus et al., 2000). Of
particular importance for the intelligibility of speech appears to be
the syllabic rate at ~3e6 Hz corresponding to the neural theta
frequency range. Furthermore, higher frequencies in the low
gamma range (~30 Hz) have been linked to phonemic processing.
Using an amplitude modulated (AM) sound that shifted its
alzburg, Centre for Cognitive
Austria.
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modulation frequency across time, Lehongre et al. (2011) were able
to show abnormal left-hemispheric processing in a group of
dyslexia patients. Underlining the functional relevance of these
measures of the brain's ability to follow rhythmic auditory infor-
mation, the authors reported correlations with deficits in linguistic
performance. Another relevant example in which acoustic rhythms
play an outstanding role is music (Levitin et al., 2012). Based on
observations that relevant acoustic rhythms strongly overlap in
their frequency ranges with relevant neural rhythms, a functional
link by which perceptual performance can be optimized has been
suggested (Giraud and Poeppel, 2012). This is putatively imple-
mented by neural rhythms which provide the auditory systemwith
temporally predictable time windows for sampling the acoustic
environment (Arnal and Giraud, 2012). Next to this sensory aspect
the rhythmic structure of acoustic stimuli also enables strong
integration with the motor system (Fujioka et al., 2009), which
shares strong connections to auditory processing regions (Kraus
tion rate dependent topographic organization of the auditory steady-
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and White-Schwoch, 2015). In particular, the idea is gaining
increased attention in cognitive neuroscience under the label of
“entrainment”, which posits the brain to align temporal high/low
excitability phases to (predictable) periods of relevant/irrelevant
sensory input respectively.

However, as compared to spectral organization, little is known
about the organization of temporal modulations in auditory cortex.
An early magnetoencephalography (MEG) study by Langner et al.
(1997) hinted at a topographical organization of periodicity in
auditory cortex, that was orthogonal to tonotopic representation.
This rather crude spatial estimate which used a single moving
dipole approach was supported and detailed by later animal neu-
roimaging studies that illustrated a topographical organization of
modulation rates in auditory cortex. In particular, a recent study in
awake macaques studying BOLD responses using a 4.7T MRI,
Baumann et al. (2015) were able to identify modulation rate
(studied between 0.5 and 128 Hz) dependent gradients along the
superior temporal plane: while high modulation rates elicited
maximal activation in posterior-medial (core) auditory regions, low
rates elicited maximal activation in anterior core as well as lateral
belt regions of auditory cortex. In humans, while it is generally
accepted that sensitivity to faster modulation rates decreases along
the ascending auditory system (~2e4 kHz at the level of the audi-
tory nerve to max. 100e200 Hz in auditory cortex; see e.g. (Wallace
et al., 2002)), the issue of topographical organization of modulation
rates in the auditory cortex is less developed. Using fMRI and
modulation rates between 4 and 128 Hz, Giraud et al. (2000) were
unable to find a systematic spatial organization of modulation
rates, which is in contrast to the macaque work. In another fMRI
study, Herdener et al. (2013) observed a spatial organization, in
particular along the medial-lateral axis, with higher AM rates being
localized more towards medial parts of the auditory cortex. Similar
to the macaque work (Baumann et al., 2015), representation of AM
rateswas orthogonal to the tonotopic organization (see also (Barton
et al., 2012)).

A clear disadvantage of the aforementioned studies is that
investigating the sluggish BOLD response does not allow to assess
to what extent relevant neural populations indeed track AM rates
by aligning their activity to the temporal envelope of the acoustic
stimulus. These temporal features of neural responses are much
better captured using electrophysiological techniques. A classical
approach applies rhythmic sensory stimulation to elicit a so-called
steady state response (Galambos, 1980). In the auditory modality,
the steady-state response (aSSR) appears to elicit a maximum
response in auditory cortex at ~40 Hz with a right-sided laterali-
zation (Ross et al., 2005). However, whether the aSSR also exhibits a
topographical representation, as suggested by the aforementioned
fMRI studies, is not conclusively known. This was also not shown by
the classically cited MEG study by Langner et al. (1997), which
focused its analysis on low pass filtered transient evoked responses,
in particular the M100, M200 and the sustained field. Li�egeois-
Chauvel et al. (2004) investigated the aSSR in epilepsy patients
implanted with stereotactic electrodes, but were unable to identify
clear modulation rate dependent spatial gradients. However, it
could be argued that the spatial sampling with electrodes was
insufficient to uncover fine spatially distributed patterns. In a
noninvasive electrophysiological work using electroencephalog-
raphy (EEG) and a predefined source montage, Herdmann et al.
(Herdman et al., 2002) reported that aSSRs driven by a modulation
frequency of 39 Hz have generators dominantly in primary auditory
cortex (this finding is in line with several other reports also using
alternative approaches; see e.g. (Draganova et al., 2007)). A faster
modulation at 88 Hz elicits maximum responses in the brainstem,
which is conform with the notion outlined previously that the ca-
pacity of auditory cortex to track faster amplitude modulations
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decreases. . In a recent study Farahani et al. (2017) also show re-
sponses that suggest aSSRs outside of the classical auditory
pathway. However, the approaches in the described studies do not
allow for any conclusions regarding a systematic spatial organiza-
tion pattern for the different modulation frequencies along the
supratemporal plane.

The goal of the present work was to elucidate the existence of a
topographic organization of amplitude modulation rates in human
auditory cortex as captured using the aSSR. By using beamforming
applied to MEG data on a spatially fine (2 mm) grid and eliciting
aSSRs with modulation frequencies between 4 and 85 Hz, we are
able to show a spatial organization along the superior temporal
plane, in particular in the medial-alteral and anterior-posterior
direction very similar to previously published human and primate
fMRI studies (Baumann et al., 2015).

2. Material and methods

2.1. Participants

Nineteen participants took part in the experiment (11 females;
mean age: 29.4, SD: ±5 years). All participants reported normal
hearing and absence of previous or current psychiatric or neuro-
logical problems. All participants gave written informed consent
before the experiment. The procedure was approved by the Ethics
Committee of the University of Trento.

2.2. Stimuli and procedure

Auditory stimuli were generated in Matlab (MathWorks, Natick,
MA) at a sampling rate of 44.1 kHz. For this purpose, a 200 kHz tone
of 3 s durationwas amplitude modulated (100% modulation depth)
at seven different rates: 4, 10, 15, 25,40, 65 and 85 Hz. Stimuli were
binaurally presented at an ambient intensity level via air-
conducting tubes with ear inserts (SOUNDPixx, VPixx technolo-
gies, Canada). Every AM frequency was presented 80 times,
pseudo-randomly distributed over four measurement blocks. Inter-
trial intervals were jittered uniformly between 2 and 4 s. During
sound presentation, participants watched a silent movie.

2.3. Data acquisiton

MEG recordings were obtained at a sampling rate of 1 kHz using
a 306-channel (204 first order planar gradiometers, 102 magne-
tometers) VectorViewMEGsystem (Elekta-Neuromag Ltd., Helsinki,
Finland) in a magnetically shielded room (AK3B, Vakuumschmelze,
Hanau, Germany). Before the experiment, individual head shapes
were acquired for each participant including relevant anatomical
landmarks (nasion, pre-auricular points) and around 200 digitized
points on the scalp with a Polhemus Fastrak digitizer (Polhemus,
Vermont, USA). Head positions of the individuals relative to the
MEG sensors were continuously controlled using five coils. Head
movements did not exceed 1.5 cm within and between blocks.

2.4. Data analysis and statistics

Data were analyzed offline using the Fieldtrip toolbox
(Oostenveld et al., 2011). First, a high-pass filter at 1 Hz (6th order
Butterworth IIR) was applied on continuous data. Then, trials of 1 s
pre- and 4 s post-stimulus were extracted and trials containing
physiological or acquisition artifacts were rejected (average num-
ber of rejected trials per condition: 6.55; range across all condi-
tions: 0e17). The number of trials were equalized across the seven
conditions for each subject to ensure that our results were not
confounded by systematic differences in signal-to-noise ratio
tion rate dependent topographic organization of the auditory steady-
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(average number of trials retained in analysis: 69.84; range across
participants: 63e74). Bad channels were excluded from the whole
data set (average number of rejected sensors: 6.84; range across
participants: 4e10). Sensor space trials were projected into source
space using linearly constrained minimum variance beamformer
filters (Van Veen et al., 1997) and further analysis was performed on
the obtained time-series of each brain voxel. Since structural MRIs
were available only for few participants, we decided to use a
template MRI in the Fieldtrip toolbox, that were morphed to the
individual head shape in MEG space using affine transformation.
The aligned brain volumes were also used to create single-sphere
head models and lead field matrices (Nolte, 2003). Using a grid in
MNI space warped to the individual anatomy allowed us to average
and compute statistics since each grid point in the warped grid,
despite different space coordinates, belongs to the same brain re-
gion across participants. For the creation of this template grid we
chose a resolution of 2 mm in MNI space. Furthermore, using the
Brainnetome atlas (http://atlas.brainnetome.org), we restricted the
placement of grid points to primary and secondary auditory re-
gions, in particular along the superior temporal gyrus (STG) for the
left and right hemisphere respectively (7304 grid points per
hemisphere,14,608 in total). These areas are depicted in Fig.1A. The
Fig. 1. a) Bilateral regions of the STG according to the Brainnetome atlas. b) Temporal evoluti
averaged between 0.4 and 2.9 s following sound onset shows the established maximum resp
effect towards the right hemisphere. Post-hoc analysis showed that this effect was particular
level.
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average covariance matrix (calculated for a period between 0 and
3 s), the head model and the lead field matrix were used to
calculate a common beamformer filter for all conditions. The filters
were subsequently multiplied with the sensor space trials, result-
ing in source space trials (see www.fieldtriptoolbox.org/tutorial/
shared/virtual_sensors). To estimate the aSSR at the different AM
frequencies two strategies were used. In one approach time-series
of trials belonging to each AM condition were averaged separately
to derive an evoked response. This averaged signal was then
entered into a time-frequency analysis, estimating power at each
AM frequency using FFTs calculated on time windows of 0.5 s
(hanning-tapered) shifted between �0.5 and 4 s in steps of 0.05 s.
The time-resolved evoked power at each AM was subsequently
baseline normalized using a pre-sound time-window of �0.3
to �0.1 s, to obtain changes of power in decibel (dB). In a second
approach time-frequency analysis using the identical parameters
for the evoked response was applied to the single-trial time-series.
Using the complex valued Fourier spectra, we then calculated for
each AM condition separately the so-called Inter-Trial Phase
Coherence (ITPC), a measure that describes the phase consistency
across trials (Delorme and Makeig, 2004). Analogous to evoked
power, ITPC was baseline normalized using a pre-sound time-
on of the aSSR (evoked power) at different modulation rates. c) Evoked power and ITPC
onse at ~40 Hz. d) Lateralization of the aSSR evoked power and ITPC showed an overall
ly pronounced for the 40 Hz AM and efor ITPC also- 65 Hz, albeit only at an uncorrected

tion rate dependent topographic organization of the auditory steady-
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window of �0.3 to �0.1 s, to obtain changes in decibel (dB).
To assess the validity and data quality of our study, one part of

the analysis pertained to replicating previously reported effects:
such as the maximum evoked power for AMs around 40 Hz
(Draganova et al., 2007) and the stronger right lateralization of the
aSSR (Ross et al., 2005). To this end, evoked power and ITPC values
were averaged over a time-window in which aSSRs appeared
relatively stable (0.4e2.9 s) and values (left - right in the case of the
laterality analysis) were entered into a repeated measures ANOVA,
followed up by post-hoc testing using Tukey's Honestly Significant
Difference procedure (implemented in Matlab's multcompare func-
tion). For our main analysis, namely the topographic organization
of AM rates, peak location along the x-, y- and z-axis for the three
highest and three lowest frequencies within the 0.4 to 2.9 s period
were averaged separately for each hemisphere and participant.
These average locations were compared using paired sample t-tests
in x, y and z direction to yield a coarse hint at potential peridotopic
organization (see Fig. 1A for directions). In a more rigorous test
targeting the spatial organization of AM rates we determined for
each individual, separately for AM frequency and hemisphere, the
peak location along the x-, y- and z-axis. To assess linear relation-
ships between the AM rates and spatial location on each axis, we
used a robust regression method (the rlm function implemented in
R using default parameters; https://cran.r-project.org/web/
packages/rlm/rlm.pdf) and extracted the respective regression co-
efficient. The coefficients were averaged across individuals to yield
an empirically observed regression coefficient for each hemisphere
and spatial axis. To test for statistical significance, we implemented
a permutation test in which the sequence of AM rates was
randomly shuffled and the robust regression recalculated. This was
repeated 1000 times to obtain a distribution of mean regression
coefficients for each hemisphere and spatial axis. This allowed the
determination of the probability of observing the empirically
determined average regression coefficient under the H0, assuming
no topographic relationship between AM rate and spatial location.
Since this test was performed in a two-sided manner separately for
each hemisphere and spatial axis, only probabilities surviving
Bonferroni-correction (i.e. at both sides of the distribution more
extreme than (0.05/2)/6 ¼ 0.0042) are considered as significant.
While evoked power and ITPC yielded comparable results, in this
manuscript we restrict the description of the topographic organi-
zation of the aSSR to ITPC.

3. Results

3.1. ASSR emergence and laterality

AM sounds elicited reliable evoked responses reflecting the
modulation frequency, namely so-called aSSRs. Exemplary evoked
power time courses are depicted for auditory cortical ROIs (see
Fig. 1A) in Fig. 1B, descriptively showing for all frequencies the
robust emergence of a SSR following ~200ms after sound onset and
lasting for the duration of stimulation. The depiction also shows
that, on average, strongest aSSRs are obtained at 40 Hz, which
conforms to previous reports. This overall impression is confirmed
by the statistical analysis performed over an averaged time-window
of .4e2.9 s (see Fig. 1C). A repeated measures ANOVA results in a
highly significant effect formodulation frequency results for evoked
power (F6,108 ¼ 20.87, p < 0.001) as well as for ITPC (F6,108 ¼ 23.35,
p < 0.001). Post-hoc testing using Tukey's HSD shows, as expected
for evoked power and for ITPC, that the aSSR elicited by the 40 Hz
AM sound is significantly stronger than the aSSR of all other AM
sounds (all p's < 0.007). Further, for evoked both 65 Hz and 85 Hz
aSSRsweremore pronounced than those recorded for the 10Hz and
15HzAMsounds (all p's<0.05). The samewas the case for ITPCwith
Please cite this article in press as: Weisz, N., Lithari, C., Amplitude modula
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the exception of the 65 vs 15 Hz AM sound, which did not survive
multiple comparison testing. Finally, the aSSR observed for the 4 Hz
AM sound was stronger than the respective response to the 10 Hz
sound for evoked power (p < 0.03) as well as ITPC (p < 0.009). We
also investigated whether the AM sounds lead to lateralized re-
sponses, the outcome of which is shown in Fig. 1D. While on a
descriptive level it appears as if higher AM frequencies (S40 Hz)
elicited more right-lateralized aSSRs, a repeated measures ANOVA
could not find a significant difference between AM frequencies
neither for evoked power (F6,108 ¼ 1.45, p ¼ 0.2) nor for ITPC
(F6,108 ¼ 2.09, p¼ 0.06). A highly significant effect was found for the
intercept (evoked power: F1,18 ¼ 8.93, p ¼ 0.008; ITPC: F1,18 ¼ 11.11,
p ¼ 0.004), implying an overall lateralization of aSSRs towards the
right auditory cortex. Following up on this effect using a one-sample
t-test of the lateralization value against 0 points to a significant
right-lateralization, in particular for the 40 Hz AM sound
(puncorrected ¼ 0.02) in case of evoked power and 40 an 65 Hz AM
sound in case of ITPC (puncorrected ¼ 0.02 and 0.007 respectively).
While this observation is well in line with previous reports (Ross
et al., 2005), only the 65 Hz AM sound ITPC effect survises correc-
tion for multiple comparison using fdr (pcorrected ¼ 0.046).

3.2. Topographic organization of AM frequency in auditory cortex

Themain goal of the current studywas to assess towhich degree
different rates of AM frequencies engage auditory cortex in a
topographical manner, as has been previously reported in monkeys
(Baumann et al., 2015). Since ITPC lead to similar findings as evoked
power and appeared somewhat more robust overall (e.g. clearer
lateralization effect; see Fig. 1), this analysis was continued with
ITPC. Extracting the peak coordinates for each individual AM fre-
quency in the left and right ROI descriptively suggests the presence
of a topographical organization (see Fig. 2A): in both hemispheres
the faster AM rates (�40 Hz) peaked in more posterior regions as
compared to the slower AM rates ( � 15 Hz; difference right
hemisphere ~ �1.1 cm, t18 ¼ �4.67, p < 0.001; difference left
hemisphere ~ �0.94 cm, t18 ¼ �3.11, p ¼ 0.006). Another clear ef-
fect, conforming to the aforementioned literature, was observed on
the medial-lateral axis, with higher AM rates being localized more
medially (difference right hemisphere ~ �0.79 cm, t18 ¼ �3.9,
p ¼ 0.001; difference left hemisphere ~ �0.59 cm, t18 ¼ 2.76,
p ¼ 0.01). Furthermore, conforming with the anatomical organi-
zation of the superior temporal plane being more elevated at pos-
terior sites (see Fig. 1A), higher AM frequencies overall lead to more
superior localized maxima than slower AM frequencies. This effect
was significant however only for the left auditory cortex (~0.88 cm,
t18 ¼ 3.61, p ¼ 0.005) and reached trend level in the right auditory
cortex (~0.66 cm, t18 ¼ 1.87, p ¼ 0.08). Relating the mean position
for slow and fast AM rates to the Brainnetome atlas, points to slow
AM rates ( � 15 Hz) enganging predominantly more belt regions of
the auditory cortex (BA22), faster AM rates (�40 Hz) seem to
engage predominantly core regions of the auditory cortex (BA41
and 42; Te1.0 and Te1.2). While these analyses are very suggestive
of a topographical organization of AM rates, we implemented a
more rigorous testing procedure, using the location information
from all AM frequencies to compute the relationship using robust
regression in each individual and tested the significance of the
mean regression coefficient using a permutation test (see Fig. 2B).
This analysis underlines the aforementioned relationship between
AM frequency and peak location for the posterior-anterior direction
in the right hemisphere, with the negative coefficient indicating a
more posterior localization of higher A. A similar trend was also
obtained for the left hemisphere, however the coefficient did not
exceed the rigorous threshold given by Bonferroni correction
(middle panel of Fig. 2B). Concerning the medial-lateral direction,
tion rate dependent topographic organization of the auditory steady-
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Fig. 2. a) Points representing grand averaged Cartesian coordinates (error bars representing standard error of mean) color-coded for different AM rates based on ITPC. c) Robust
regression between AM rate and location in x-, y- and z-direction for each individual subject indicates a significant relationship in the posterior-anterior direction for the right
hemisphere and in the medial-lateral direction for both hemispheres. Significance was determined by comparing empirically observed (mean) regression coefficients (red dotted
lines) with a distribution of (mean) regression coefficients obtained from 1000 permutations. Grey dotted lines represent thresholds given by Bonferroni correction. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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clear effects were observed in both hemispheres, with regression
coefficients suggesting a more medial localization of higher AM
frequencies (note that positive and negative coefficients imply
more medial locations of high AM frequencies in left and right
auditory cortex respectively). With respect to the inferior-superior
direction, while both hemispheres exhibited, on average, positive
coefficients, namely more superior locations of higher AM fre-
quencies, the effect was not significant at a Bonferroni-corrected
level (see right panel of Fig. 2B).

4. Discussion

The goal of the present study was to assess to what extent
processing of AM rate in auditory cortex as assessed via the aSSR
follows a topographic representation. It may be noted that while
Please cite this article in press as: Weisz, N., Lithari, C., Amplitude modula
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the resolution of MEG is insufficient to resolve simultaneously
active sources in close vicinity, the accuracy of isolated peak loca-
tions for stimuli presented in isolation could be sufficient to esti-
mate periodotopic gradients. Indeed, a previous MEG study
(Langner et al., 1997) on six individuals illustrated spatial gradients
according to periodicity of the acoustic stimulus. Yet to the best of
our knowledge no study thus far has reported a systematic spatial
arrangement for the aSSR. This is of particular interest, since
neither these transient evoked responses, nor the sluggish re-
sponses as captured using fMRI actually allow for conclusions as to
whether the spatially resolved neural activity patterns track the
temporal envelope of the acoustic stimulus in a faithful manner,
that is, by phase locking its respective activity. Also, the afore-
mentioned study by Langner et al. (1997) used complex tones to
elicit periodicities� 50 Hz, temporal modulations that can go along
tion rate dependent topographic organization of the auditory steady-
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with clear perception of pitch, which, however, are beyond the
slower AM rates that carry important information, for example, for
speech comprehension (Kraus et al., 2000). Here, we used seven
AM frequencies between 4 and 85 Hz and applied beamforming to
MEG data using a grid with 2 mm resolution, focusing on areas
along the STG. Using evoked power as well as ITPC, our analysis
confirmed relevant, previously reported aSSR effects, such as the
relative maximum for AM rates of 40 Hz and the overall right
lateralization of the aSSR (Ross et al., 2005; Draganova et al., 2007).
While in particular our lateralization finding (Fig. 1D) is fully
conform with the aforementioned aSSR literature, it is interesting
to point out that the popular asymmetric sampling in time hy-
pothesis (Poeppel, 2003) proposes a left auditory cortical domi-
nance of gamma rhythms and a right auditory cortical dominance
of theta rhythms. This is supported among other things by hemi-
spheric differences in resting state rhythms (Giraud et al., 2007).
This may seem contradictory to our findings, however these works
usually make strong claims with regards to endogenous rhythms.
Also, the empirical situation regarding this hypothesis is not
straight-forward (see e.g. Millman et al., 2011). We do not aim to
make any links or claims between the rhythms evoked by phase-
locking of neural responses to the amplitude envelope and
endogenous rhythm.

Our most important finding is the topographic organization of
the aSSR depending on AM rate, especially in the anterior-posterior
direction auditory cortices in both hemispheres when comparing
high vs low AM rates and for the right hemisphere using our
nonparametric permutation test of regression coefficients. A strong
topographic organization of AM rates was also identified in the
medial-lateral direction of both auditory cortices. Overall, faster AM
rates lead to aSSRs located inmore posterior andmedial parts of the
STG, whereas slower AM rates peaked at more anterior and lateral
locations. The general trend aligns well with a recent monkey study
(Baumann et al., 2015), as well as human fMRI studies (Barton et al.,
2012; Herdener et al., 2013); however, the spatial resolution in the
current study is too limited to make claims for subfields of the
auditory cortex. This is not only due to basic limitations of the
technique with regards to localization, but also due to the fact that
we decided to use a template anatomy for all participants since
structural data was largely missing. This will lead to inaccuracies of
the headmodel and by extension the resolution of our localization
will suffer to some extent. Despite these methodological limita-
tions, when grouping over different AM rates, faster modulation
rates lead to maxima more in primary auditory regions (BA 41/42)
as compared to slower modulation rates that overall more located
in secondary auditory regions (BA22). Based on these results, it is
likely that different AM rates engage auditory fields (core and belt
regions) of auditory cortex in a differential manner. This finding is
in line with animal electrophysiology showing a decreased syn-
chronization of more rostral regions of the auditory cortex, in
particular, to faster AM rates (Bendor and Wang, 2008). These ef-
fects may in part be due to timing advantages of neural responses of
more caudal auditory regions as compared to rostral regions, that
could belong to dorsal and ventral auditory streams respectively
(Camalier et al., 2012). However, to investigate to what extent these
animal works reflect similar processes as observed in our study
would require high spatially-resolved invasive mapping of the aSSR
in animals. One potential aspect that could contribute to the pre-
sented findings is that the faster periodicities (>30 Hz) used in the
present study could be accompanied by a distinct perception of
pitch (or roughness, when individual beats are not anymore
perceived), which would be absent for the lower AM rates (when
individual beats are still perceived. While this is theoretically
possible, it does not seem to fit with current ideas of dedicated
pitch processing areas, which would suggest a more lateral
Please cite this article in press as: Weisz, N., Lithari, C., Amplitude modula
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localization (Bendor andWang, 2006); however, increasing AM rate
and putatively sensation of pitch does not showany tendency in the
medial-lateral axis along these lines. On the contrary, higher AM
rates appear to elicit stronger aSSRs in medial portions of the
auditory cortex. Nevertheless, the relationship of our patterns to
perceptual features is a complex issue, that cannot be conclusively
addressed based on our results. Also, in the current study, we
cannot make any claims of a potential orthogonal representation of
tonotopy as compared to AM rate of the aSSR, since only a single
carrier frequency was used here (as mentioned previously, the
work by Langner et al. (1997) did not study the aSSR). A previous
MEG study by Wienbruch et al. (Wienbruch et al., 2006; see also
Pantev et al., 1996) suggests that the spatial gradients for carrier
frequency may be similar to those observed in our study for AM
rate. Next to a tonotopic gradient in the posterior-anterior and
inferior-superior direction, the authors also report an overall more
medial localization of 40 Hz AM aSSRs with higher carrier fre-
quencies. This would be somewhat in contradiction to aforemen-
tioned neuroimaging works (Barton et al., 2012; Herdener et al.,
2013; Baumann et al., 2015) which showed an orthogonal organi-
zation of AM rates to tonotopy. Upcoming M/EEG studies similar to
ours should therefore parametrically manipulate the carrier fre-
quency next to the AM rate. Finally, we want to point out that our
approach of using (robust) linear regressions, gives a coarse
“global” relationship between AM rate and maximum (ITPC) loca-
tion. Naturally, this is a great simplification and indeed our results
hint at the true complexities in periodotopic organization (see
Fig. 2A) that will be partially driven by individual factors (e.g.
anatomical organization) as well as interindividual variability.

Taken together, we show for the first time a topographic orga-
nization of the aSSR to varying AM rates, especially in the posterior-
anterior direction and medial-lateral. While being in line with
previous works, our results illustrate that spatially separate neural
populations in auditory cortex faithfully track the temporal enve-
lope of the stimulus by phase locking their activity accordingly.
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