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The natriuretic peptide (NP) system is an important endocrine, autocrine and paracrine system, consisting of a
family of peptides which provide cardiac, renal and vascular effects that, through their beneficial physiological
actions, play a key role inmaintaining overall cardiovascular health. Traditionally, the pathophysiological origins
of cardio-renal disease have been viewed as the domain of the renin–angiotensin–aldosterone system (RAAS)
and the sympathetic nervous system (SNS), with inappropriate activation of both systems leading to deleterious
changes in cardio-renal function and structure. Therapies designed to suppress the RAAS and the SNS have been
routinely employed to address the consequences of cardio-renal disease. However, it is now becoming increas-
ingly apparent that enhancing the beneficial physiological effects of the NP system may represent an attractive
alternative therapeutic approach to counter the pathophysiological effects of disease. In particular, innovative
therapeutic strategies aimed at enhancing the physiological benefits afforded by NPs while simultaneously
suppressing the RAAS are generating increasing interest as potential treatment options for the management of
cardio-renal disease.
© 2014 The Author. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Cardio-renal diseases such as hypertension, heart failure (HF), and
chronic kidney disease (CKD) are highly prevalent and associated with
significant morbidity and mortality, with the human and economic
burden of these diseases only expected to worsen as populations
progressively age. Existing therapies to combat cardio-renal disease
have traditionally targeted the renin–angiotensin–aldosterone system
(RAAS) and to a lesser extent the sympathetic nervous system (SNS)
[1–4]. However, despite the proven benefits of these therapies, there
is still a considerable unmet need in the effective management of
cardio-renal disease and it is clear that new therapeutic options are
required to improve patient care.

The natriuretic peptides (NPs) are a family of cardiac- and vascular-
derived hormoneswhich, viamultiple effects on vascular tone, intravas-
cular volume and redistribution, neurohormonal activity, cardiovascular
(CV) remodeling and energy metabolism, play an important role in the
maintenance of CV homeostasis [5–9]. As such, enhancing the beneficial
physiological effects mediated by NPs is seen as a potential therapeutic
approach for the treatment of cardio-renal disease.

This paper will review the physiology of the NP system and briefly
consider its interactions with the RAAS and the SNS in the neurohor-
monal control of cardio-renal function. It will discuss how the origin of
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the pathophysiology of cardio-renal disease, specifically hypertension,
HF and CKD, may extend beyond inappropriate activation of the RAAS
and SNS to include disruption of the NP system. It will also consider
how novel therapeutic agents that enhance NP levels, in particular
those that simultaneously suppress the RAAS, may open up a new
horizon in the management of cardio-renal disease.

2. The natriuretic peptide system

2.1. Natriuretic peptides

The NP system is an important endocrine, autocrine and paracrine
system, which acts to maintain CV homeostasis [9]. It consists primarily
of three genetically distinct, but structurally related peptides: atrial
natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-
type natriuretic peptide (CNP) [10,11] (Table 1). ANP is predominantly
synthesized in the atria and released in response to atrial distension [12,
13]. BNP is mainly produced and secreted by ventricular myocytes fol-
lowing volume overload, leading to ventricular wall stretch [12,14,15].
In contrast to ANP, the circulating physiological levels of BNP are gener-
ally very low and only become more notable in pathological disease
states [16]. This raises the intriguing possibility that ANPmay represent
the ‘physiological’ hormone of the NP system, influencing and control-
ling normal cardio-renal activities whereas, in contrast, BNP might
function more as a ‘cardiac stress response’ hormone, only coming to
prominence when compensatory responses are required to address
pathological challenges [17]. CNP is mainly secreted by the vascular
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 1
Overview of the three principal members of the NP system: ANP, BNP and CNP.

Natriuretic peptide ANP BNP CNP

Structure 28 amino acid peptide 32 amino acid peptide 22 amino acid peptide
Main site of synthesis Atria Ventricles Vascular endothelial cells
Main secretory trigger(s) Atrial distension Volume overload (leading to

ventricular wall stretch)
Cytokines e.g. IL-1, TNF, endothelium-
dependent agonists e.g. acetylcholine

Proposed main role Physiological hormone Cardiac stress response hormone ?
Receptor NPR-A NPR-A NPR-B
Receptor coupling mechanism/
second messenger

↑Guanylate cyclase/cGMP ↑Guanylate cyclase/cGMP ↑Guanylate cyclase/cGMP

Main physiological effects of NP Natriuresis and diuresis
Vasodilation
RAAS and SNS suppression
↑Renal blood flow and GFR
↑Myocardial relaxation
Lipid mobilization, metabolic effects
Antihypertrophic and
Antifibrotic
↑Endothelial permeability
Anti-inflammatory

Natriuresis and diuresis
Vasodilation
RAAS and SNS suppression
↑Renal blood flow and GFR
↑Myocardial relaxation
Lipid mobilization, metabolic effects
Antifibrotic

Vasodilation
Antihypertrophic and antifibrotic
Anti-inflammatory
Antithrombotic
Bone growth regulation

Clearance of NP/enzymatic
degradation

Clearance via NPR-C
NEP degradation

Clearance via NPR-C
NEP degradation

Clearance via NPR-C
NEP degradation

cGMP = cyclic guanosine monophosphate; GFR = glomerular filtration rate; IL-1 = interleukin-1; NEP = neprilysin; NP = natriuretic peptide; NPR = natriuretic peptide receptor;
RAAS = renin–angiotensin–aldosterone system; SNS = sympathetic nervous system; TNF = tumor necrosis factor.
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endothelium following stimulation by pro-inflammatory cytokines (e.g.
interleukin-1 and tumor necrosis factor) and endothelium-dependent
agonists (e.g. acetylcholine) [7,14,18,19]. Like BNP, circulating levels of
CNP are also low in the absence of disease [8].

2.2. Natriuretic peptide receptors

NPs interact with three different types of NP receptor: A (NPR-A), B
(NPR-B) and C (NPR-C). The NPR-A binds both ANP and BNP, whereas
NPR-B binds CNP [11,20]. Binding of NPs to either NPR-A or NPR-B acti-
vates membrane-bound particulate guanylate cyclase and leads to the
stimulation of the intracellular cyclic guanosine monophosphate
(cGMP)-dependent second messenger signaling cascade, which medi-
ates the majority of the physiological actions of NPs [11,20,21]. Such
actions help to control BP and intravascular volume, modulate vascular
tone, regulate cardiac and vascular remodeling, and influence energy
metabolism [5–9]. NPR-C is primarily viewed as a clearance receptor
that binds and internalizes NPs to remove them from the circulation
[22]. However, increasing evidence suggests that NPR-C may also fulfill
a variety of biological functions, potentially mediated via inhibition of
adenylate cyclase and activation of phospholipase C [22–24]. Although
the exact physiological role of the NPR-C is still to be confirmed, most
of its potential biological activity is thought to stem primarily from
NPR-C binding of CNP (in preference to ANP or BNP) [23].

2.3. Physiological effects of natriuretic peptides

2.3.1. Blood pressure and intravascular volume
NPs play a pivotal role in the maintenance of BP and intravascular

volume. BP control may be achieved through the regulation of vascular
tone, caused by a direct relaxant effect of NPs on vascular smooth mus-
cle cells [21]. Furthermore, the NPs help to regulate BP by suppressing
the RAAS, reducing sympathetic tone and inhibiting secretion of the
vasoconstrictor, endothelin-1 (ET-1) [6,11,21]. In addition, NPs are
also fundamental to the regulation of intravascular volume, influencing
electrolyte and fluid balance in the kidneys, andmediating direct effects
on endothelial permeability in the vasculature [25,26]. In the kidneys,
the inhibition of sodium reabsorption in the proximal and distal neph-
ron by NPs leads to the promotion of natriuresis and diuresis, driving
decreases in intravascular volume and BP [11,21]. These effects of NPs
on electrolyte/fluid balance are thought to be mediated more by ANP
and BNP than CNP [8]. ANP and BNP increase renal blood flow and
glomerular filtration rate (GFR), further optimizing renal function [6,
20,21]. In the vasculature, ANP causes an increase in endothelial perme-
ability that contributes towards hypovolemia, promoting redistribution
of plasma proteins and fluid from the intravascular space to the intersti-
tial space [16,25].

2.3.2. Cardiac and vascular remodeling
While the positive influence of NPs on BP and intravascular volume

is representative of classic endocrine activity, complementary autocrine
and paracrine actions of NPs are also thought to contribute towards
promotion of general cardio-renal health [7,9,27].

Cardiac and vascular remodeling is implicated in the pathogenesis of
cardio-renal disease, including hypertension, HF and CKD [28–30]. In-
creasing evidence suggests thatNPs play a significant role in attenuating
or inhibiting the processes that contribute to remodeling, including
hypertrophy, fibrosis and inflammation [27]. For example, preclinical
data have demonstrated the ability of ANP to inhibit cardiomyocyte
hypertrophy induced by either angiotensin II (Ang II) or ET-1, both va-
soactive peptides with deleterious effects on the cardio-renal system,
as a result of cGMP-dependent processes [31]. Recent data suggest
that ANP may protect against Ang II-induced cardiac remodeling by
minimizing events that are key to the inflammatory process including
macrophage infiltration and expression of pro-inflammatory factors
[32]. Meanwhile, in vitro evidence indicates that ANP can attenuate
norepinephrine-induced growth of cardiac myocytes and fibroblasts
due to a cGMP-mediated inhibition of norepinephrine-induced influx
of Ca2+ [33]. These findings may highlight a key role of the NP system
in countering the adverse effects of increased SNS activity on the myo-
cardium. In addition, antifibrotic effects of ANP have been reported in
cardiac fibroblasts, inhibiting cell proliferation and collagen synthesis
induced by transforming growth factor-β (TGF-β), a key mediator of
cardiac fibrosis, through cGMP-dependent pathways [34].

However, evidence to support the beneficial effects of NPs in coun-
tering CV remodeling is not restricted to ANP. In vitro data also support
the antifibrotic effects of BNP, with TGF-β-induced fibrosis inhibited by
BNP in cardiac fibroblasts [35]. Furthermore, in vivo data have demon-
strated that CNP attenuates cardiomyocyte hypertrophy and inhibits
myocardial interstitial fibrosis induced by Ang II [36]. The high concen-
tration of CNP in the endothelium is believed to facilitate an important
protective role within the vasculature, inhibiting pro-inflammatory
responseswithin the vascularwall (including inflammatory cell recruit-
ment and smooth muscle cell proliferation) and promoting angiogene-
sis [8]. Promotion of angiogenesis by NPs may prove to be particularly
beneficial in addressing the consequences of tissue ischemia [37]. In
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addition, experimental evidence has demonstrated that CNP can pre-
vent cardiac remodeling after myocardial infarction, further emphasiz-
ing the CV protective actions of NPs [38].

2.3.3. Energy metabolism
An additional important role of NPs in regulating energy homeosta-

sis is also emerging [5,39]. NPs are thought to interact with a number of
tissues and organs, including white and brown adipose tissues, skeletal
muscle, the liver and the pancreas, to control lipid and carbohydrate
metabolism [5]. ANP and BNP, via stimulation of NPR-A and the subse-
quent activation of intracellular cGMP, promote lipolysis and the mobi-
lization of free fatty acids in humanadipocytes [5,40]. BothANP andBNP
also enhance expression and secretion of adiponectin, an adipokine
with insulin-sensitizing properties, in primary cultures of human adipo-
cytes [41],withANP shown to increase adiponectin concentrations from
baseline in healthy subjects and in patients with congestive HF [41,42].
In addition, the ANP/cGMP signaling pathway increases β-cell mass and
insulin secretion in the pancreas [5]. Findings from a genetic variant
study have suggested that increased availability of ANP may confer
cardiometabolic protection, although further studies are required to
confirm these data [43]. Furthermore, it has been proposed that chronic
upregulation of NPR-C may contribute towards obesity and obesity-
related CV andmetabolic disorders such as type 2 diabetes andmetabolic
syndrome [5,39].

2.4. Enzymatic degradation of natriuretic peptides

In addition to clearance by NPR-C, NPs are removed from the circula-
tion through enzymatic degradation by neprilysin (NEP), a membrane-
bound enzyme expressed mostly in the kidneys [44,45]. ANP and CNP
are the NPs most susceptible to degradation by NEP, whereas the
enzyme has a lower affinity for BNP [46]. NEP also degrades other vaso-
active peptides including vasodilators, e.g. substance P and bradykinin,
and vasoconstrictors such as ET-1 and Ang II [47–51]. Consequently,
the net physiological effect of NEP will depend on the balance between
its actions on vasodilators versus vasoconstrictors.

Overall, when the wide range of beneficial physiological effects of
NPs is considered, it is evident that the NP system is a vital contributor
to the maintenance of CV homeostasis. Arguably the positive influence
of the NP system on key organs and tissues throughout the body should
be capitalized on to promote CV health and when necessary, negate the
effects of disease. Indeed, theNP systemmight be regarded as the body's
own natural defensemechanism, helping to counter the detrimental ef-
fects that stem from inappropriate over-activation of the RAAS and SNS.
However, it is reasonable to think that, at least in human disease, even a
maximal activation of the NP system may not be able to counteract or
prevail over the hyperactivation of ‘emergency’ mechanisms such as
the RAAS and the SNS, which are apparently prevalent in the human
species. Atfirst glance, NEP appears to represent a logical target for ther-
apeutic intervention— inhibiting NEP would lead to enhanced levels of
NPs and the potential for a greater physiological influence of NPs
throughout the body. However, there are multiple substrates for NEP,
some of which have opposing biological actions to NPs such as Ang II.
Therefore, later in this review we will address how NEP inhibition can
only be considered a viable therapeutic approach when in the context
of simultaneous suppression of the RAAS.

3. The role of the natriuretic peptide system in the neurohormonal
control of cardio-renal function

Neurohormonal systems such as the RAAS and the SNS play an im-
portant role in modulating key parameters of CV homeostasis including
vascular tone, electrolyte and fluid regulation, and CV remodeling
[52–57]. The NP system, together with the RAAS and SNS, is now recog-
nized as a key neurohormonal system and considerable interaction is
thought to take place between these three systems tomaintain efficient
cardio-renal homeostatic control [7,45,53,58]. In general, the beneficial
physiological actions of the NP system are counter-regulatory to those
of the other two systems, in particular the RAAS (Fig. 1). Indeed, the
NP system may be considered as a ‘natural antagonist’ of the RAAS
and the SNS. The NP system decreases renin and aldosterone secretion,
resulting in suppression of the RAAS [59,60]. In addition, NPs interfere
with autonomic and baroreflex control of the circulation, leading to an
inhibition of SNS effects and an increase in parasympathetic nerve
activity [61–63]. The RAAS and the SNS operate in a mutually coopera-
tive manner [64]. Ang II, the principal effector hormone of the RAAS,
binds with angiotensin type 1 (AT1) receptors to increase activation of
the SNS [65]. While sympathetic drive increases renin secretion from
the kidneys [66], thereby enhancing RAAS activity, data show that
endogenous activation of the SNS can reduce secretion of ANP [67].
What remains to be determined is the extent towhich the physiological
benefits mediated by NPs relate to their direct biological actions on end
organs and tissues versus any indirect effects from antagonizing the
detrimental actions of the RAAS and SNS.

4. Pathophysiology of cardio-renal disease

To date, the pathophysiology of cardio-renal disease has traditional-
ly been viewed as a consequence of inappropriate over-activation of the
RAAS and the SNS. Yet with increasing awareness of the multiple phys-
iological benefits of NPs, we should now consider how disruption of the
NP system may also lead to the development of disease. Therefore,
cardio-renal disease pathophysiology may be addressed not only by
targeting an inappropriately activated RAAS or SNS, but also by simulta-
neously enhancing the CV and renal health-promoting benefits of the
NP system.

First we provide a brief reminder below of why the deleterious
effects of the RAAS and the SNS are regarded as fundamental to the
development and progression of cardio-renal disease.We then consider
how attenuating the physiological benefits of the NP systemmay prove
detrimental to CV and renal health.

4.1. Renin–angiotensin–aldosterone system

The role of the RAAS in the regulation of the CV system, mediating
physiological effects including vasoconstriction, and sodium and water
retention to control BP and electrolyte/fluid balance, is well established
[45,53]. However, when activated inappropriately, it is widely recog-
nized that the RAAS becomes a significant contributor to the pathophys-
iology of cardio-renal disease [68–70], due in part to mediating cardiac
and vascular hypertrophy, renal fibrosis, pro-inflammatory processes
and oxidative stress [45,71]. As the subject of intensive interest and re-
search across several decades, the RAAS has taken on an increasing level
of complexity with the discovery of numerous additional components
and pathways [65,71]. However, the actions of Ang II and aldosterone
are believed to be fundamental to the majority of the physiological
and pathological effects of the system [4,45,71,72], and agents designed
to inhibit the RAAS are accepted as key components of the pharmaco-
logical armamentarium for the management of hypertension, HF and
CKD [1–4].

4.2. Sympathetic nervous system

Although perhaps less well documented than is the case for the
RAAS, evidence suggests that increased activation of the SNS is also a
key feature in the development of cardio-renal disease [73–75]. In addi-
tion to increased vasomotor tone and cardiac output, chronic activation
of the SNS causes sodium and water retention, pro-inflammatory pro-
cesses and cardiac and vascular remodeling [76]. In the early stages of
HF, the SNS responds to the ailing heart by restoring cardiac output
and increasing peripheral vasoconstriction in an effort to maintain
homeostasis [77,78]. This initial response by the SNS, accompanied by



Fig. 1. Schematic diagram to showhow theNP system, the RAAS and the SNS interact in order tomaintain cardio-renal homeostasis, and how the effects of theNP system and the RAAS on
key organs are generally counter-regulatory. ACE= angiotensin converting enzyme; Ang= angiotensin; ANP= atrial natriuretic peptide; BNP=B-type natriuretic peptide; BP= blood
pressure; NP = natriuretic peptide; RAAS = renin–angiotensin–aldosterone system; SNS = sympathetic nervous system.

633M. Volpe / International Journal of Cardiology 176 (2014) 630–639
a similar response by the RAAS, is compensatory (and beneficial). How-
ever, prolonged activation of the two systems becomes detrimental and
contributes to a worsening picture of HF pathophysiology [77,78].
Chronic activation of the SNS plays a role in the initiation and mainte-
nance of hypertension pathophysiology [79]. Excessive sympathetic
activity in hypertension not only drives pathophysiological changes
within the heart and the kidneys, but the vasculature is also vulnerable
to the deleterious effects of the overactive SNS. By promoting endothe-
lial dysfunction together with vascular smoothmuscle cell hypertrophy
and proliferation [76], sympathetic overactivity is a key factor in the
stiffening of large arteries [80], a possible precursor to the development
of hypertension [81].

4.3. Natriuretic peptide system

4.3.1. Hypertension
As discussed earlier, ANP is currently viewed as an important

component in the physiological control of cardio-renal function and
structure, and its role may be regarded as a physiological factor
counteracting, at least partially, the opposing actions of the RAAS and
the SNS. Should circumstances developwhereby the positive physiolog-
ical influence of ANP becomes impaired, then this might be the trigger
for the development of cardio-renal disease. Indeed, ANP appears to
be a key candidate among potential factors involved in the pathogenesis
of hypertension— likely due to the essential role of the kidney and renal
function in the development of hypertension, and the effects of ANP on
natriuresis, diuresis and hypertension itself [9]. Animal models have
demonstrated an exaggerated diuretic and natriuretic response to
exogenously administered ANP in spontaneously hypertensive rats
compared with normotensive strains [82]. Furthermore, genetically
reduced production of ANP has been shown to lead to salt-sensitive
hypertension in mice [83]. In humanswithmild essential hypertension,
increasing arterial plasma levels of synthetic atrial natriuretic factor
from two- to three-fold baseline values result in prolonged impact on
systolic BP, a shift in fluid from the intravascular to the extravascular
space, and a significant increase in salt excretion — with negligible
effects on urine volume or GFR, in addition to suppression of the RAAS
response of these hypotensive and natriuretic effects [84]. This would
suggest that ANP plays an important role in circulatory and renal
homeostasis in patients with hypertension.

Preliminary evidence suggests that hypertension might also be
the result of a deficiency in biologically active NPs. A lack of activation
of biologically active BNP has been reported in patients with grade 1
hypertension versus control subjects [85]. Although the levels of BNP
were found to increase with more advanced stages of hypertension,
supporting its proposed role as a cardiac stress response hormone, the
authors of the study concluded that there may be an impaired response
by BNP specifically in the early stages of hypertension [85]. Such a defi-
ciency of biologically active BNP in the initial stages of hypertension
may therefore be fundamental to the progression of disease [14,85].
Indeed, recent findings suggest that impaired production and/or in-
creased metabolism of the mature biologically active components of
theNP systemmight contribute to theNP-deficient state in early hyper-
tension [18]. Of interest, the same study also reported that therewas no
compensatory increase in ANP to counterbalance the apparent deficits
of BNP detected in hypertension [18]. Studies with genetic variants of
NP genes resulting in higher plasma concentrations of NPs have report-
ed lower BP and a reduced risk of hypertension [86], lending support to
what is still an embryonic hypothesis that hypertension may be the
result of a deficiency in biologically active NPs.

4.3.2. Heart failure
In chronic HF, early indications were that the NP systemwas upreg-

ulated. Increased levels of BNP and the inactive precursor N-terminal
proBNP (NT-proBNP) were linked to worse outcomes and both were
regarded as markers of prognosis in chronic HF [87]. This is consistent
with other CV disease states, in which elevated levels of BNP have
been associated with cardio-embolic stroke [88], myocardial infarction
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[89] and atrial fibrillation [90]. Furthermore, in patients with chronic HF
with reduced ejection fraction (HFrEF), decreases in NT-proBNP levels
were associated with improved CV outcomes [87]. However, perhaps
a more complete picture of the dysregulation of the NP system in dis-
ease states is now emerging. Using more sensitive mass spectrometry
techniques than the previously available diagnostic assays, several stud-
ies in patients with HF have reported a lack ofmature biologically active
BNP and the detection of less active BNP precursors and degradation
products [14]. It is proposed that the unexpectedly small physiological
responses to the apparently high levels of BNP previously observed in
patients with HF may be because most of the BNP detected using con-
ventional diagnostic assays is less biologically active [14]. Consequently,
HFmay in fact represent a deficient state of biologically active NPs [14].
The increased levels of biologically inert NPs detected by conventional
assays may be representative of a stress response of sorts by the NP sys-
tem to the types of pathological stimuli thatwould be normally encoun-
tered during the early stages of HF, such as cardiac injury or volume
overload. However, such a response mounted by the NP system would
be inadequate to initiate a physiologically meaningful compensatory
reaction to the deteriorating changes in cardio-renal function and struc-
ture. The raised levels of biologically inactive BNPdetected in chronic HF
may therefore signify a potential abnormality in the processing of NPs,
leading to a deficit of mature BNP. The observation that expression of
myocardial NEP mRNA is increased in patients with HF, leading to an
accelerated degradation of NPs, would seem to support the hypothesis
that HF may be defined by a deficiency of NPs [91].

4.3.3. Chronic kidney disease
As in patientswithHF, plasma levels ofNPs are also raised in patients

with CKD, again suggesting an upregulation of NPs [92]. Potentialmech-
anisms to explain this increase in NPs include reduced activity of NEP in
the kidney, impairment of renal function and the consequences of un-
derlying cardiac pathophysiology [92,93]. In an initial study of patients
with primary non-diabetic CKD, plasma concentrations of BNP and
NT-proBNP rose in parallel with decreasing renal function and were as-
sociatedwith an increased risk for progression ofmild ormoderate CKD
to end-stage renal disease (ESRD) [94]. After adjusting for factors recog-
nized to be associatedwith the progression of CKD, NT-proBNP (andnot
BNP) was found to be an independent predictor of CKD progression,
suggesting that it alone may be the more valuable marker of prognosis
in patients with CKD [94]. Nevertheless, a more recent study has dem-
onstrated that elevated BNP is suitable as an independent predictor of
CKD progression, leading to ESRD [95]. In addition, assessing plasma
BNP levels has been shown to be a valuable method to stratify CV risk
in patients with CKD, with the highest BNP quartile found to be associ-
ated with significantly higher CV risk than the lowest BNP quartile [96].
Our understanding of the full involvement of NPs in renal disease may
be further advanced by the utilization of sensitive mass spectrometry
assessment techniques. This approach may help determine whether
the NPs detected in renal studies to date represent biologically active
forms, and whether or not some of the study conclusions have been
based on the measurement of less biologically active precursors and
degradation products of NPs, as may appear to have been the case in
certain HF and hypertension studies.

It is probably a fair assessment that to date, the role of theNP system
in health and disease may not have received as much active interest
from the scientific research community as has perhaps been the case
for the RAAS and the SNS. However, as more evidence of the beneficial
physiological effects of the NP system becomes available, and an under-
standing of the role of NPs in disease states advances, the true value of
this family of cardiac and vascular hormones should become increasing-
ly apparent. While it would signify a major shift in mindset for the
treating physician, tapping into the potential therapeutic benefits of
NPs, with sites of action extending far beyond the vasculature and the
kidneys, may prove to be an attractive alternative approach to the
use of existing RAAS- and SNS-based therapies in the battle against
cardio-renal disease. The potential for NP-based strategies as a thera-
peutic approach is discussed in the following section.
5. Natriuretic peptide-based therapeutic strategies for the treatment
of cardio-renal disease

Given the increasing evidence that theNP systemappears to counter
the detrimental effects of the RAAS and the SNS, therapeutic strategies
aimed at restoring or enhancing the physiological function of the NP
systemwould appear to be a logical approach to address the pathophys-
iological consequences of cardio-renal disease.

Restoring or enhancing NP levels can be achieved by administration
of exogenous NPs. In addition, inhibiting the enzyme NEP will also en-
hance NP levels. Although in theory, attenuating the clearance of NPs
via blockade of the NPR-C might also augment NP levels, this is beyond
the scope of this review and will not be discussed further.
5.1. Administration of exogenous natriuretic peptides

5.1.1. M-atrial natriuretic peptide
The human recombinant form of ANP, carperitide, was approved for

the treatment of acute decompensated HF in Japan almost 20 years ago
[11]. However, the short half-life of carperitide restricted its routine use,
prompting the design and development of novel forms of ANP that are
more resistant to enzymatic degradation than both native and recombi-
nant forms [97]. M-ANP is a recently developed designer NP based on
native ANP, but with more resistance to enzymatic degradation [97].
In vivo studies in canines have demonstrated that M-ANP possesses a
greater ability to lower BP, enhance renal blood flow and GFR (despite
reductions in BP), mediate natriuresis and diuresis, and suppress the
RAAS compared with native ANP [97]. Similar findings were shown
withM-ANP in an in vivo caninemodel of acute hypertension involving
continuous infusion of Ang II [97]. Furthermore, the cardio-renal actions
of M-ANP were compared with those of nitroglycerin in an in vivo
canine model of HF and acute hypertension [98]. While both agents
lowered mean arterial pressure and pulmonary wedge pressure from
baseline,M-ANPwas shown to potentiate renal function by significantly
increasing GFR, renal blood flow, and natriuresis with significant inhibi-
tion of aldosterone activation; nitroglycerin had no significant impact
on renal function or on aldosterone activation [98]. Clearly, the ability
of M-ANP to lower BP and enhance renal function makes exploration
into its potential to address cardio-renal disease very appealing.
M-ANP has now entered clinical trials for further testing.
5.1.2. Nesiritide
Initial studies demonstrated that infusion of nesiritide, the recombi-

nant form of human BNP, decreased pulmonary capillary wedge pres-
sure, provided greater improvements in global clinical status and
further reduced dyspnea and fatigue versus placebo [99]. Nesiritide
was subsequently approved for the treatment of acute decompensated
HF in the USA in 2001 [11]. However, reports of an increased risk of
worsening renal function and death compared with control therapy
raised questions over the safety of nesiritide [100,101]. The Acute
Study of Clinical Effectiveness of Nesiritide in Decompensated Heart
Failure (ASCEND-HF) trial subsequently demonstrated that nesiritide
had no impact on the rate of death, norwas it associatedwithworsening
renal function [102]. However, nesiritide was associated with increased
rates of hypotension, which, together with its short bioavailability, has
most likely had a negative impact on the routine use of the drug in
clinical practice [45,102]. Of interest, data from the first patient recruited
to a safety and dose-finding pilot study investigating low-dose nesiritide
in patients with uncontrolled hypertension showed that nesiritide
provided sustained BP-lowering actions in the absence of concomitant
standard antihypertensive therapy [103].
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5.1.3. CD-natriuretic peptide (or cenderitide)
CD-natriuretic peptide (CD-NP) or cenderitide belongs to the new

breed of designer NPs. It is formed from the fusion of native human
CNP with a C-terminal sequence of Dendroaspis NP (DNP) found in
snake venom [104,105]. Crucially, CD-NP is less susceptible to degrada-
tion by NEP than native NPs [106]. In a canine model, CD-NP elicited
potent natriuretic and diuretic responses, increased GFR, inhibited
renin and induced less hypotension than BNP [104]. The antifibrotic
actions of CD-NP have been demonstrated in vivo in an experimental
rat model of early cardiac fibrosis [107]. CD-NP in vitro activated
cGMP and suppressed cell proliferation of human cardiac fibroblasts
induced by cardiotrophin-1 (a marker of HF and myocardial infarction)
[104]. Recent research has proposed that CD-NP-eluting polymeric films
may eventually be employed as cardiac patcheswhich, via local applica-
tion, could be used to suppress cardiac remodeling and fibrosis [108].
The first clinical trial in healthy human volunteers reported that CD-
NP was well tolerated and activated cGMP, induced natriuresis, and
suppressed aldosterone without causing excessive hypotension [109].
In patientswith chronic HF, subcutaneous infusion of CD-NP has recent-
ly been shown to provide a dose-dependent reduction in systolic BP
(SBP) and to be well tolerated [110]. CD-NP is currently undergoing
Phase II clinical trials for chronic therapy in patients with post-acute
HF [107].

5.1.4. CU-natriuretic peptide
An alternative version of CD-NP, known as CU-natriuretic peptide

(CU-NP), has also shown early promise. CU-NP is constructed using a
core component of native human CNP and the C- and N-termini of
urodilatin, a NP of renal origin that predominantly interacts with the
NPR-A [45,111]. Preliminary in vivo data in a canine model have sug-
gested that CU-NP may mediate beneficial cardiac and renal effects,
reducing pulmonary capillary wedge pressure and right atrial pressure
(without systemic hypotension), inducing natriuresis, increasing GFR
and suppressing the RAAS [112].

5.2. Inhibition of the degradation of natriuretic peptides by neprilysin

5.2.1. Neprilysin inhibitors
Candoxatril is an orally active NEP inhibitor [113]. By inhibiting NEP

and so enhancing levels of NPs, candoxatril would be expected to en-
hance the hemodynamic actions of NPs, so potentially delivering benefit
in the treatment of hypertension.However, in a study to examine the ef-
ficacy and tolerability of candoxatril in patients with hypertension, the
BP-lowering efficacy produced by candoxatril was shown not to be clin-
icallymeaningful despite a significant increase in ANP [113]. It is known
that NPs are not the only natural substrate for NEP — in addition to
degrading NPs, NEP degrades other vasoactive peptides including vaso-
dilators (e.g. substance P and bradykinin) and vasoconstrictors (such as
Ang II and ET-1) [47–51]. A later study in patients with hypertension
established that NEP inhibitionwith candoxatril leads to a significant in-
crease in Ang II compared with placebo, and the authors concluded that
the BP-lowering effects achieved with candoxatril alone may be offset
by enhanced RAAS activity [114]. Furthermore, the overall BP response
with NEP inhibition alone in patientswith hypertensionmay depend on
the relative balance between vasoconstrictor and vasodilator effects
[114].

5.2.2. Vasopeptidase inhibitors
Based on these findings, it seems a fair assumption that the potential

clinical benefits from NEP inhibition may only be fully realized if the
RAAS is suppressed simultaneously. To address this, omapatrilat, the
first in a new class of vasopeptidase inhibitors that combined inhibition
of angiotensin-converting enzyme (ACE) and NEP in one molecule was
developed [115]. In the Omapatrilat Cardiovascular Treatment versus
Enalapril (OCTAVE) Phase III study in patients with hypertension,
omapatrilat produced additional reductions in BP compared with ACE
inhibition with enalapril, indicating the benefits of concomitant NEP
inhibition and RAAS suppression over RAAS suppression alone [116].
However, in the Omapatrilat Versus Enalapril Randomized Trial of
Utility in Reducing Events (OVERTURE) Phase III study conducted in
patients with chronic HF, despite a trend towards a reduced primary
endpoint of combined risk of all-cause mortality or hospitalization for
HFwith omapatrilat, the vasopeptidase inhibitor was not deemed supe-
rior to enalapril alone [117]. Furthermore, omapatrilat was associated
with a greater frequency of angioedema than angiotensin-converting
enzyme inhibitor (ACEI) therapy in both studies [116,117]. Bradykinin
is thought to be a key mediator of angioedema [118]. Together with
ACE, aminopeptidase P (APP), NEP and dipeptidyl peptidase-4 (DPP-4)
are responsible for the enzymatic breakdown of bradykinin, although
NEP and DPP-4 are only thought to play minor roles in the process
[119]. Omapatrilat inhibits ACE, APP and NEP, and it may be that affect-
ing three of the four enzymes involved in bradykinin metabolism
accounts for the increased incidence of angioedema observed with
omapatrilat [119]. As a result, despite any potential efficacy benefits,
the increase in angioedema associated with omapatrilat leads to its
discontinuation.

5.2.3. Angiotensin receptor neprilysin inhibitors
In order to capitalize on the apparent clinical promise of omapatrilat,

while avoiding the associated increased risk of angioedema, intensive
research began to determine if simultaneous inhibition of NEP and sup-
pression of the RAAS could still be achieved without significant disrup-
tion to bradykininmetabolism. As a result, a newagent LCZ696 is now in
clinical development. LCZ696 is a first-in-class angiotensin receptor
neprilysin inhibitor (ARNI) — a novel compound that delivers simulta-
neous inhibition of NEP and suppression of the RAAS via blockade of
the AT1 receptor [120,121] (Fig. 2). Oral administration of LCZ696
delivers systemic exposure to the NEP inhibitor prodrug AHU377
(which is further metabolized by esterases to the active NEP inhibitor
LBQ657) and the angiotensin receptor blocker (ARB), valsartan [120].
A Phase II trial demonstrated the antihypertensive efficacy of LCZ696
in patients with hypertension [122]. LCZ696 provided significantly
greater reductions from baseline in BP than similar doses of valsartan
in patients with mild-to-moderate hypertension [122]. Of interest, the
authors highlighted how the magnitude of the reductions in SBP with
LCZ696 was considerably greater than that for diastolic BP (DBP)
[122]. Given the more notable impact on SBP than DBP, LCZ696 may
offer potential clinical benefits for the treatment of patients with systol-
ic hypertension [122].

A similar Phase II study conducted in Asian patients with mild-to-
moderate hypertension confirmed the BP-lowering efficacy profile of
LCZ696, showing significant reductions in BP and pulse pressure versus
placebo [123,124]. In both Phase II hypertension trials, LCZ696 was well
tolerated with no incidence of angioedema [122,124]. This is not entire-
ly surprising, for although blockade of the AT1 receptor with ARBs is
thought to cause some angioedema, the risk is far lower than that
found with ACEIs [125]. Unlike omapatrilat, LCZ696 only inhibits NEP
out of the four enzymes involved in bradykinin metabolism, crucially
with no direct effects on either ACE or APP [120].

It is well recognized that SBP becomes more difficult to control with
aging [126], with systolic hypertension representing the predominant
risk factor for adverse outcomes as patients age [127]. The aorta and
the large elastic arteries stiffen with advancing age and together with
the accompanying progressive increase in SBP, render hypertension
more resistant to treatment [128,129]. In turn, this can create the possi-
ble need formore aggressive intervention to lower SBP as patients grow
older, increasing the risks associated with unwanted DBP lowering in
this patient population [128–131]. LCZ696 has the potential to treat pa-
tients with systolic hypertension by delivering an effective reduction in
SBPwithout a similarmagnitude reduction inDBP. Furthermore, by pro-
viding greater reductions in SBP than DBP versus similar doses of
valsartan, LCZ696 also reduces pulse pressure more effectively than



Fig. 2. Schematic representation to show the mode of action of an ARNI. NPs are degraded to inactive fragments by the enzyme NEP. Inhibition of NEP by an ARNI enhances NP levels,
leading to biological effects that may have the potential to benefit CV health. However, Ang II is also a substrate for NEP, so NEP inhibition may lead to increased Ang II levels. Through
blockade of the AT1 receptor, an ARNI simultaneously suppresses the RAAS to counter the detrimental effects of elevated Ang II. Ang II = angiotensin II; ARNI =angiotensin receptor
neprilysin inhibitor; AT1= angiotensin type 1 receptor; CV= cardiovascular; NEP= neprilysin; NP= natriuretic peptide; NPR =natriuretic peptide receptor; RAAS = renin–an-
giotensin–aldosterone system.
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the ARB [122]. As pulse pressure is known to be an independent predic-
tor of CV events [132], the significance of thisfindingwith LCZ696 should
not be underestimated. Interestingly, the Prospective comparison of
Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor
blocker MEasuring arTERial stiffness in the elderly (PARAMETER) study
will assess the efficacy of LCZ696 versus olmesartan on central aortic
SBP and other measures of central hemodynamics and arterial stiffness
in patients aged ≥60 years with increased SBP and wide pulse pressure
[133].

LCZ696 has also been studied in patients with HF. The Prospective
comparison of ARNI with ARB on Management Of heart failUre with
preserved ejectioN fracTion (PARAMOUNT) trial was a Phase II study
that evaluated the efficacy and safety profile of LCZ696 compared with
valsartan in patients with chronic HF and preserved ejection fraction
(HFpEF) [134]. NT-proBNP, a marker of left ventricular wall stress asso-
ciated with adverse outcomes in patients with HFpEF [135], was signif-
icantly reduced from baseline by LCZ696 compared with valsartan
[134]. This study also assessed the effect of LCZ696 on left atrial struc-
ture and function by measuring left atrial width, volume and volume
index [134]. An enlarged left atrium is a characteristicfinding in patients
with HFpEF and is reflective of sustained increases in left ventricularfill-
ing pressures. These parameters were significantly reduced from base-
line to a greater extent in patients treated with LCZ696 compared
with those treatedwith valsartan, indicative of reverse left atrial remod-
eling [134]. The tolerability profile of LCZ696 was favorable and similar
to that with valsartan [134]. Meanwhile, the Prospective comparison of
ARNI with ACEI to Determine Impact on GlobalMortality andmorbidity
in Heart Failure (PARADIGM-HF) trial is a recently reported Phase III
study that assessed the effect of LCZ696 on outcomes compared with
enalapril in patients with HFrEF [136].

5.2.4. Endothelin-converting enzyme/neprilysin inhibitors
A further potential strategy targets ET-1 which, similar to Ang II, is a

potent vasoconstrictor and pro-inflammatory peptide implicated in the
development of CV disease [137]. ET-1 is derived from inactive big ET-1
by the actions of endothelin-converting enzyme (ECE) [138]. Agents
that provide concomitant inhibition of ECE and NEP offer the potential
to block the detrimental effects of ET-1 while enhancing the beneficial
physiological effects of NPs [138]. Daglutril is a novel potent inhibitor
of ECE and NEP, and has undergone Phase II clinical trial testing [138].
Recent evidence has indicated that in patients with type 2 diabetes
and nephropathy, daglutril demonstrated effective BP-lowering (de-
spite no significant effect versus placebo upon the primary endpoint of
24-hour urinary albumin excretion) [139]. Cardioprotective effects of
SLV338, another ECE/NEP inhibitor under investigation, have also
been reported in a study conducted in a rat model of renovascular hy-
pertension [140]. SLV338 prevented cardiac hypertrophy, fibrosis and
vascular remodeling in a BP-independent fashion [140]. In addition,
beneficial renoprotective effects of SLV338 have been demonstrated
in rat models of acute and chronic kidney failure, reducing mortality
and preventing renal tissue damage [141]. Further investigations are
warranted to uncover the full potential of ECE/NEP inhibitors in the
treatment of cardio-renal disease.

6. Summary

Despite the mechanical function performed by the heart, it is essen-
tially an endocrine organ which, in response to overload and cardiac
stretch, releases NPs as a form of endogenous ‘natural defense mecha-
nism’ to induce beneficial CV effects such as vasodilation, natriuresis
and diuresis, and thereby maintain CV homeostasis. Additional auto-
crine and paracrine activities of the NP system, including the regulation
of cardiac and vascular remodeling, and the control of energy homeo-
stasis, further contribute to the positive influence of the NP system on
key organs and tissues throughout the body.

Our understanding of the pathophysiology of cardio-renal disease is
continually evolving. To date, inappropriate activation of the RAAS and
SNS has been considered as the principal causal factor; however, evi-
dence is now accumulating to suggest that disruption of the NP system
also plays a key role in the pathogenesis of disease. As a result, strategies
aimed at restoring or enhancing the NP system are coming to promi-
nence,with the aim of capitalizing on the beneficial physiological effects

image of Fig.�2
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of NPs to maintain and restore CV health. NEP inhibitor monotherapy
failed to produce clinically meaningful BP reductions, most likely due
to an accompanying increase in Ang II levels. A more sophisticated
approach involved simultaneous inhibition of NEP and suppression of
the RAAS. The vasopeptidase inhibitors delivered effective BP reduc-
tions, but their clinical promise was limited by an increased incidence
of angioedema. The angiotensin receptor neprilysin inhibitor, or ARNI,
represents a favorable approach to inhibit NEP and suppress the RAAS
via blockade of the AT1 receptor, without the increased risk of angioede-
ma. LCZ696, the first-in-class ARNI, has already demonstrated BP-
lowering efficacy in patients with hypertension, in particular with
respect to SBP, and improves cardiac biomarkers and remodeling in
patients with HF. LCZ696 also has a favorable tolerability profile, both
in patients with hypertension and those with HF. As the findings from
ongoing and future planned studies with LCZ696 become known,
more comprehensive conclusions can bemade regarding the promising
therapeutic potential of LCZ696 in addressing cardio-renal disease.

This paper has been based on a review of the literature conducted
using PubMed. The only search criteria applied was to restrict articles
to those published in English. Therefore, a possible limitation of this re-
view is that it is based on thefindings froma literature search conducted
without amore formal structure, and so lacking explicit search inclusion
and exclusion criteria.

Moving forward, interest in agents that modulate the NP system
seems set to expand. Clearly this will not only enhance our understand-
ing of the beneficial physiology of NPs, but it should also help reveal the
full extent of how disruption of the NP system contributes to the path-
ophysiology of cardio-renal disease.
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