
Quasi-Nelson Algebras

Umberto Rivieccio1,2
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Abstract

We introduce a generalization of Nelson algebras having a not-necessarily involutive negation; we suggest to
dub this class quasi-Nelson algebras in analogy with quasi-De Morgan lattices, these being a non-involutive
generalization of De Morgan lattices. We show that, similarly to the involutive case (and perhaps sur-
prisingly), our new class of algebras can be equivalently presented as (1) quasi-Nelson residuated lattices,
i.e. models of the well-known Full Lambek calculus with exchange and weakening, extended with the Nelson
axiom; (2) non-involutive twist-structures, i.e. special products of Heyting algebras, which generalize the
well-known construction for representing algebraic models of Nelson’s constructive logic with strong nega-
tion; (3) quasi-Nelson algebras, i.e. models of non-involutive Nelson logic viewed as a conservative expansion
of the negation-free fragment of intuitionistic logic. The equivalence of the three presentations, and in par-
ticular the extension of the twist-structure representation to the non-involutive case, is the main technical
result of the paper. We hope, however, that the main impact may be the possibility of opening new ways
to (i) obtain deeper insights into the distinguishing feature of Nelson’s logic (the Nelson axiom) and its
algebraic counterpart; (ii) be able to investigate certain purely algebraic properties (such as 3-potency and
(0,1)-congruence orderability) in a more general setting.

Keywords: Nelson logic, quasi-Nelson algebra, quasi-Nelson residuated lattice, semi-De Morgan algebra,
non-involutive twist-structure, Nelson identity.

1 Introduction

Nelson’s constructive logic with strong negation N3 [12,15,17,21] can be viewed

as either a conservative expansion of the negation-free fragment of intuitionistic

logic by a new unary connective of strong negation (∼) or, to within definitional

1 The first author would like to thank Fei Liang for several preliminary discussions on the topic of this
paper; in particular Fei provided part of the proof of Proposition 2.4 (x).
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equivalence, as the axiomatic extension of FLew, the full Lambek calculus with

exchange and weakening [4] 4 . Accordingly, the algebraic models of N3 are known

as either Nelson algebras or as Nelson residuated lattices [20]. It is well known that

FLew is the logic of all commutative integral residuated lattices [4]; adding the axiom

of double negation (∼∼x ⇒ x), one obtains the logic NInFLew of commutative

integral residuated lattices that satisfy the involutive identity (∼∼x ≈ x). Further

adding the Nelson axiom:

� ((x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x))) ⇒ (x ⇒ y) (Nelson�)

one obtains precisely Nelson’s constructive logic with strong negation N3, whose

algebraic counterpart is the class of Nelson residuated lattices. These are precisely

the commutative integral residuated lattices that satisfy the involutive identity and

the algebraic counterpart of the Nelson axiom, which is the Nelson identity :

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y. (Nelson)

The Nelson axiom/identity is a powerful and somewhat mysterious one. When

one adds it to NInFLew, one readily obtains the distributive law

(x ∧ (y ∨ z)) ⇒ ((x ∧ y) ∨ (x ∧ z))

as well as (3, 2)-contraction

(x ⇒ (x ⇒ (x ⇒ y))) ⇒ (x ⇒ (x ⇒ y))

while neither of them is valid inNInFLew. Furthermore, the algebraic models ofN3

turn out to admit a nice representation as products (so-called twist-structures) of

Heyting algebras [18,13], and this construction also uses crucially the Nelson axiom.

In the recent series of papers [10,11,19] we have been taking a closer look at

logics in the Nelson family and at the Nelson axiom/identity, focusing on its mean-

ing and consequences in the context of logics extending FLew. Specifically, the

papers [10,11] study the logic and algebras obtained from N3 by dropping the Nel-

son axiom while keeping double negation and (3, 2)-contraction; whereas in [19]

we identify and investigate a number of conditions (algebraic, syntactic, and order-

theoretic) that turn out to be equivalent to the Nelson axiom/identity in the context

of NInFLew. As mentioned in [19, Problems 8.2 and 8.3], one of the main questions

that have been left open is which, if any, of the above-mentioned characterizations

could be obtained in a more general context than NInFLew, namely (to begin with)

that of FLew, the logic of all commutative integral residuated lattices.

In other words, we may ask what are the consequences of the Nelson axiom once

we drop the double negation law; does any of the above-mentioned results hold,

for instance, does the Nelson axiom still allow us to prove (3, 2)-contraction and

distributivity? What is the algebraic counterpart of the corresponding logic? Is

4 By extension (of a given logic) we mean a stronger logic over the same language; by expansion we mean
a logic obtained by adding new connectives.
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there a sensible notion of “non-involutive Nelson residuated lattice”, and do these

algebras also admit a product-like representation?

Perhaps surprisingly, the answers to these questions are mostly positive, and the

present paper is our first effort at understanding the Nelson axiom in the context

of not-necessarily-involutive residuated lattices. Our strategy will be as follows.

Mimicking the approach that proved successful in the study of Nelson’s constructive

logic with strong negation N3 and its algebraic models, we shall introduce and view

“non-involutive Nelson residuated lattices” under three guises:

(1) as quasi-Nelson residuated lattices, i.e. models of FLew plus the Nelson axiom;

(2) as non-involutive twist-structures, i.e. special products of Heyting algebras,

which generalize the well-known construction for representing algebraic models

of N3;

(3) as quasi-Nelson algebras, i.e. models of non-involutive Nelson logic viewed as an

expansion of the negation-free fragment of intuitionistic logic.

The main result of this paper, generalizing the well-known equivalence concerning

models of N3, is that the above three classes are all term equivalent 5 .

We shall thus begin by introducing quasi-Nelson residuated lattices in Section 2

as commutative integral residuated lattices that additionally satisfy the Nelson iden-

tity (1); we then single out certain properties that all quasi-Nelson residuated lat-

tices satisfy (Proposition 2.5), which we shall later on take as basis for our defini-

tion of quasi-Nelson algebra (3). Justifying our nomenclature, we shall point out

(Proposition 2.7) that, just like every Nelson residuated lattice has a De Morgan

algebra reduct, every quasi-Nelson residuated lattice has a quasi-De Morgan algebra

reduct [16]. In Section 3 we introduce non-involutive twist-structures (2), showing

that every such structure is a quasi-Nelson residuated lattice (Theorem 3.3). It

may be worth pointing out that, until the recent papers [7,8], no construction of

this kind was known in the literature that would allow one to represent algebras

carrying a non-involutive negation. Finally, in Section 4 we close the circle of our

equivalences, introducing quasi-Nelson algebras (3) and showing that every such

algebra is representable as a non-involutive twist-structure. The overall equivalence

is summarized in the final Theorem 4.4.

We would like to point out that our indirect proof strategy is not only unavoid-

able, for the time being (we do not yet have a direct proof of, e.g., Proposition 2.7),

but also insightful, because our representation of quasi-Nelson residuated lattices

as twist-structures affords an easy way of constructing concrete examples of such

algebras. Lastly, let us stress that, although in this paper we work exclusively with

algebras, it is important for the logically-minded reader to keep in mind that we

think of algebras as the algebraic counterpart of logics; this strategy is justified

because we are dealing with algebraizable logics [1], so we can transfer our results

back and forth from algebra to logic in a straightforward way.

5 Loosely speaking, this means that the three definitions can be seen as alternative presentations of the
“same” class of algebras in a different algebraic language, analogous to the presentation of Boolean algebras
as Boolean rings or to that of MV-algebras as certain lattice-ordered groups.
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2 Quasi-Nelson residuated lattices

We assume familiarity with the rudiments of general algebra and model theory, espe-

cially that part of first-order logic known as equational logic. For general algebraic

background, see [3,5,9].

Definition 2.1 A commutative integral bounded residuated lattice (CIBRL) is an

algebra A = 〈A;∧,∨, ∗,⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is commutative monoid, (Mon)

(ii) 〈A;∧,∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)

(iii) a ∗ b ≤ c iff a ≤ b ⇒ c for all a, b, c ∈ A. (Res)

On a CIBRL A, the presence of the 0 constant allows us to define a negation

operation (∼) given by ∼ a := a ⇒ 0 for all a ∈ A. Another abbreviation that we

shall need is an := a ∗ · · · ∗ a
︸ ︷︷ ︸

n times

(by convention we let a0 := 1 and a1 := a). As we shall

see, all quasi-Nelson residuated lattices satisfy the identity x2 ≈ x3. This is indeed

a crucial property for the understanding of such algebras: it is called 3-potency (or

2-potency by other authors) and is the algebraic counterpart of (3, 2)-contraction.

Using these abbreviations, we list in the following proposition a few well-known

properties of CIBRLs that we shall use in the sequel (they are proved in [4, Lemmas

2.6 and 2.8] or are easy consequences thereof).

Proposition 2.2 Let A be a CIBRL and a, b, c, d ∈ A. The following properties

hold:

(i) a ≤ b iff a ⇒ b = 1.

(ii) (a ∗ b) ⇒ c = a ⇒ (b ⇒ c).

(iii) a ∗ b ≤ a.

(iv) If a ≤ b and c ≤ d, then a ∗ c ≤ b ∗ d.
(v) ∼(a ∨ b) = ∼ a ∧ ∼ b.

(vi) ∼(a ∗ b) = a ⇒ ∼ b.

(vii) a ∗ (a ⇒ b) ≤ a ∧ b.

(viii) a ≤ ∼∼ a.

(ix) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c).
(x) a ∗ ∼ a = 0.

(xi) If a ≤ b, then ∼ b ≤ ∼ a.

(xii) ∼∼∼ a = ∼ a.

(xiii) a ⇒ ∼ b = ∼∼ a ⇒ ∼ b.

(xiv) ∼ a ⇒ ∼ b = ∼∼(∼ a ⇒ ∼ b).

A non-empty subset F of a CIBRL A is a filter if for all a, b ∈ A it holds

that: (i) a ≤ b and a ∈ F implies b ∈ F ; and (ii) a, b ∈ F implies a ∗ b ∈ F
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(one easily verifies that such an F must then be a lattice filter in the usual sense,

though the converse may not be true, for (ii) may fail to hold). For a ∈ A, the

set [a) = {b ∈ A : ak ≤ b, for some positive integer k} is a filter, namely the filter

generated by a. Moreover, if A is n + 1-potent, then [a) = {b ∈ A : an ≤ b}. The

study of filters on CIBRLs is particularly important because, from a logical point

of view, they correspond to logical theories of FLew and, algebraically, they are in

one-to-one correspondence with congruences. In particular it is well known that,

denoting by ΘA(x, 1) the principal congruence generated by the pair (x, 1), one has

[a) ⊆ [b) if and only if ΘA(a, 1) ⊆ ΘA(b, 1). We shall use this fact in the proof of

Proposition 2.4 below (see [19] for further details).

Definition 2.3 A quasi-Nelson residuated lattice is a CIBRL that satisfies the Nel-

son identity:

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y (Nelson)

By Proposition 2.2 (ii), we can equivalently reformulate the Nelson identity in

the following way (which shall be useful in the sequel):

(x2 ⇒ y) ∧ ((∼ y)2 ⇒ ∼x) ≈ x ⇒ y. (Nelson’)

We collect below a few useful properties that hold on all quasi-Nelson residuated

lattices.

Proposition 2.4 Let A be a quasi-Nelson residuated lattice and a, b, c ∈ A. The

following properties hold:

(i) If a2 ≤ b and (∼ b)2 ≤ ∼ a, then a ≤ b.

(ii) a = a2 ∨ (a ∧ ∼ a).

(iii) a2 = a3.

(iv) a ≤ b iff ΘA(b, 1) ⊆ ΘA(a, 1) and ΘA(a, 0) ⊆ ΘA(b, 0).

(v) The lattice reduct of A is distributive.

(vi) a ∗ b = a ∧ b ∧ ∼(a ⇒ ∼ b).

(vii) ∼∼(a ∗ b) = ∼∼ a ∗ ∼∼ b.

(viii) (a ∗ b)2 = (a ∧ b)2.

(ix) (∼∼(a ∧ b))2 = (∼∼ a ∧ ∼∼ b)2.

(x) (∼(a ⇒ b))2 = (∼∼(a ∧ ∼ b))2.

(xi) (∼(a2 ⇒ b))2 = (∼∼(a ∧ ∼ b))2.

Proof. (i). If a2 ≤ b, then a2 ⇒ b = 1 by Proposition 2.2 (i). Similarly we obtain

(∼ b)2 ⇒ ∼ a = 1. Then using (Nelson) we have a ⇒ b = (a2 ⇒ b) ∧ ((∼ b)2 ⇒
∼ a) = 1 ∧ 1 = 1, which gives us a ≤ b as required.

(ii). Observe that a2 ∨ (a ∧ ∼ a) ≤ a holds in all CIBRLs, because a2 ≤ a by

Proposition 2.2 (iii), and a ∧ ∼ a ≤ a by the lattice properties. It thus remains to

prove that a ≤ a2∨(a∧∼ a). We shall use item (i) above and check on the one hand
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that a2 ≤ a2∨(a∧∼ a), which is trivial, and on the other that (∼(a2∨(a∧∼ a)))2 ≤
∼ a. We have:

(∼(a2 ∨ (a ∧ ∼ a)))2 = (∼(a2) ∧ ∼(a ∧ ∼ a))2 by Prop. 2.2 (v)

= ((a ⇒ ∼ a) ∧ ∼(a ∧ ∼ a))2 by Prop. 2.2 (vi)

≤ (a ⇒ ∼ a) ∗ ∼(a ∧ ∼ a) (x ∧ y)2 ≤ x ∗ y by Prop. 2.2 (iv).

It will thus be sufficient to show that (a ⇒ ∼ a) ∗ ∼(a ∧ ∼ a) ≤ ∼ a. Using (Res),

we have (a ⇒ ∼ a) ∗ ∼(a ∧∼ a) ≤ ∼ a iff a ∗ (a ⇒ ∼ a) ∗ ∼(a ∧∼ a) ≤ 0 iff a ∗ (a ⇒
∼ a) ≤ ∼∼(a ∧ ∼ a). The result then follows, because by Proposition 2.2 (vii) and

(viii) we have a ∗ (a ⇒ ∼ a) ≤ a ∧ ∼ a ≤ ∼∼(a ∧ ∼ a).

(iii). Using item (ii) above, we will show that (a2 ∨ (a ∧ ∼ a))2 ≤ a3. Using

Proposition 2.2 (ix), we have (a2∨(a∧∼ a))∗(a2∨(a∧∼ a)) = (a2∗(a2∨(a∧∼ a)))∨
((a ∧∼ a) ∗ (a2 ∨ (a ∧∼ a))) = a4 ∨ (a2 ∗ (a ∧∼ a)) ∨ ((a ∧∼ a) ∗ a2) ∨ (a ∧∼ a)2 =

a4 ∨ (a2 ∗ (a ∧ ∼ a)) ∨ (a ∧ ∼ a)2. By Proposition 2.2 (x) we have a ∗ ∼ a = 0

and, as observed in the proof of item (ii) above, (a ∧ ∼ a)2 ≤ a ∗ ∼ a = 0. Hence,

a4∨(a2∗(a∧∼ a))∨(a∧∼ a)2 = a4∨(a2∗(a∧∼ a)). By Proposition 2.2 (iii) a4 ≤ a3,

and a2 ∗ (a∧∼ a) ≤ a3 by Proposition 2.2 (iv). Thus, a4∨ (a2 ∗ (a∧∼ a)) = a2 ≤ a3

as required.

(iv). Assume a ≤ b and (a, 1) ∈ θ for an arbitrary congruence θ of A. Then

(a ∨ b, 1 ∨ b) = (b, 1) ∈ θ as well. This shows that ΘA(b, 1) ⊆ ΘA(a, 1). Similarly,

(b, 0) ∈ θ implies (a ∧ b, a ∧ 0) = (a, 0) ∈ θ, which means that ΘA(a, 0) ⊆ ΘA(b, 0).

Conversely, assume ΘA(b, 1) ⊆ ΘA(a, 1) and ΘA(a, 0) ⊆ ΘA(b, 0). As observed

earlier, the first assumption entails [b) ⊆ [a), i.e. b ∈ [a). By [19, Lemma 2.5]

we have ΘA(∼ a, 1) = ΘA(a, 0) and ΘA(∼ b, 1) = ΘA(b, 0). Hence the second

assumption implies [∼ a) ⊆ [∼ b), i.e. ∼ a ∈ [∼ b). Having proved 3-potency in item

(iii) above, we have [a) = {c ∈ A : a2 ≤ c} and [∼ b) = {c ∈ A : (∼ b)2 ≤ c}.
Thus, a2 ≤ b and (∼ b)2 ≤ ∼ a. At this point we apply (Nelson’) together with

Proposition 2.2 (i) to obtain a ⇒ b = (a2 ⇒ b)∧ ((∼ b)2 ⇒ ∼ a) = 1∧1 = 1. Hence,

again by Proposition 2.2 (i), we have a ≤ b.

(v). In view of a contradiction, suppose that the lattice reduct of A is not dis-

tributive. Then, by a well-known result in lattice theory, A contains as a sublattice

either the ‘diamond’ or the ‘pentagon’ [3, Theorem I.3.6]. In either case, there exist

three distinct elements a, b, c ∈ A such that a ∧ c = b ∧ c and a ∨ c = b ∨ c. We

are going to show that ΘA(a, 1) = ΘA(b, 1) and ΘA(a, 0) = ΘA(b, 0) and so, by

item (iv) above, we will conclude that a = b against our assumption. Let θ be an

arbitrary congruence on A. Assume (a, 1) ∈ θ. Then (a ∧ c, 1 ∧ c) = (b ∧ c, c) ∈ θ

and (a ∨ c, 1 ∨ c) = (b ∨ c, 1) ∈ θ as well. From the former (and the absorp-

tion law) we have (b ∨ (b ∧ c), b ∨ c) = (b, b ∨ c) ∈ θ, thus from the latter and

transitivity of θ we have (b, 1) ∈ θ. A symmetric reasoning shows that (b, 1) ∈ θ

implies (a, 1) ∈ θ, and so ΘA(a, 1) = ΘA(b, 1). Next, assume (a, 0) ∈ θ. Then

(a ∧ c, 0 ∧ c) = (b ∧ c, 0) ∈ θ and (a ∨ c, 0 ∨ c) = (b ∨ c, c) ∈ θ as well. As before,

by absorption we get (b ∧ (b ∨ c), b ∧ c) = (b, b ∧ c) ∈ θ, which gives us (b, 0) ∈ θ by
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transitivity. A symmetric reasoning shows that (b, 0) ∈ θ implies (a, 0) ∈ θ, and so

ΘA(a, 0) = ΘA(b, 0). Thus, by item (iv) above, we conclude that a = b, against our

hypothesis.

(vi). The inequality a ∗ b ≤ a ∧ b ∧ ∼(a ⇒ ∼ b) holds in any CIBRL. In fact,

by (Res) we have a ∗ b ≤ ∼(a ⇒ ∼ b) iff a ∗ b ∗ (a ⇒ ∼ b) ≤ 0. The latter

inequality holds because, applying Proposition 2.2 (iv), (viii) and (x), we have

a ∗ b ∗ (a ⇒ ∼ b) = b ∗ a ∗ (a ⇒ ∼ b) ≤ b ∗ (a ∧∼ b) ≤ b ∗ ∼ b = 0. Since a ∗ b ≤ a ∧ b

by Proposition 2.2 (iii), we obtain a ∗ b ≤ a∧ b∧∼(a ⇒ ∼ b) by monotonicity of ∧.
To check that a∧ b∧∼(a ⇒ ∼ b) ≤ a∗ b, we shall use item (iv) above and show that

ΘA(a∗b, 1) ⊆ ΘA(a∧b∧∼(a ⇒ ∼ b), 1) and ΘA(a∧b∧∼(a ⇒ ∼ b), 0) ⊆ ΘA(a∗b, 0).
Let then θ be an arbitrary congruence of A. Assume (a ∧ b ∧ ∼(a ⇒ ∼ b), 1) ∈ θ.

Then, by absorption, (a ∨ (a ∧ b ∧ ∼(a ⇒ ∼ b)), a ∨ 1) = (a, 1) ∈ θ and similarly

(b, 1) ∈ θ. Then (a ∗ b, 1 ∗ 1) = (a ∗ b, 1) ∈ θ as well. Suppose now that (a ∗ b, 0) ∈ θ.

Using Proposition 2.2 (vi), we have (∼∼(a ∗ b),∼∼ 0)) = (∼(a ⇒ ∼ b), 0) ∈ θ.

Then (a ∧ b ∧ ∼(a ⇒ ∼ b), a ∧ b ∧ 0) = (a ∧ b ∧ ∼(a ⇒ ∼ b), 0) ∈ θ as required.

(vii). Using item (iv) above, we shall check that ΘA(∼∼(a∗b), 1) = ΘA(∼∼ a∗
∼∼ b, 1) and ΘA(∼∼(a ∗ b), 0) = ΘA(∼∼ a ∗ ∼∼ b, 0). We shall also use the

following:

∼(∼∼ a ∗ ∼∼ b) = ∼∼ a ⇒ ∼∼∼ b by Prop. 2.2 (vi)

= ∼∼ a ⇒ ∼ b by Prop. 2.2 (xii)

= a ⇒ ∼ b by Prop. 2.2 (xiii)

= ∼(a ∗ b) by Prop. 2.2 (vi).

Let θ be an arbitrary congruence ofA. Assume (∼∼(a∗b), 1) ∈ θ. Since ∼∼(a∗b) ≤
∼∼ a (by items (iii) and (xi) of Proposition 2.2), we have (∼∼(a ∗ b) ∨ ∼∼ a, 1 ∨
∼∼ a) = (∼∼ a, 1) ∈ θ. Similarly we obtain (∼∼ b, 1) ∈ θ and hence (∼∼ a ∗
∼∼ b, 1∗1) = (∼∼ a∗∼∼ b, 1) ∈ θ. Conversely, assume (∼∼ a∗∼∼ b, 1) ∈ θ. Using

∼(a ∗ b) = ∼(∼∼ a ∗ ∼∼ b), we immediately obtain (∼∼(∼∼ a ∗ ∼∼ b),∼∼ 1) =

(∼∼(a ∗ b), 1) ∈ θ. Now assume (∼∼(a ∗ b), 0) ∈ θ. Reasoning as before, we have

(∼∼(a∗b), 0) = (∼∼(∼∼ a∗∼∼ b), 0) ∈ θ. Since ∼∼ a∗∼∼ b ≤ ∼∼(∼∼ a∗∼∼ b)

(by item (viii) of Proposition 2.2), we have (∼∼(∼∼ a∗∼∼ b)∧ (∼∼ a∗∼∼ b), 0∧
(∼∼ a ∗ ∼∼ b)) = (∼∼ a ∗ ∼∼ b, 0) ∈ θ as required. Finally, assume (∼∼ a ∗
∼∼ b, 0) ∈ θ. As before, we have (∼∼(∼∼ a ∗ ∼∼ b),∼∼ 0) = (∼∼(a ∗ b), 0) ∈ θ

as required.

(viii). By Proposition 2.2 (iii) we have a ∗ b ≤ a ∧ b and thus (a ∗ b)2 ≤ (a ∧ b)2

by Proposition 2.2 (iv). On the other hand, again by Proposition 2.2 (iv), from

a ∧ b ≤ a and a ∧ b ≤ b we get (a ∧ b)2 ≤ a ∗ b and thus (a ∧ b)4 ≤ (a ∗ b)2. Now

applying 3-potency (item (iii) above) we obtain (a ∧ b)2 = (a ∧ b)4 ≤ (a ∗ b)2 as

required.

(ix). It is easy to show that ∼∼(a ∧ b) ≤ ∼∼ a ∧ ∼∼ b using Proposition 2.2

(xi), from which we obtain (∼∼(a∧ b))2 ≤ (∼∼ a∧∼∼ b)2 by Proposition 2.2 (iv).

It remains to check that (∼∼ a ∧ ∼∼ b)2 ≤ (∼∼(a ∧ b))2. By item (viii) above we

have (∼∼ a∧∼∼ b)2 = (∼∼ a∗∼∼ b)2, and by item (vii) above, (∼∼ a∗∼∼ b)2 =
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(∼∼(a∗b))2. By Proposition 2.2 (iii) we have a∗b ≤ a∧b, which implies ∼∼(a∗b) ≤
∼∼(a ∧ b) and thus (∼∼(a ∗ b))2 ≤ (∼∼(a ∧ b))2 by Proposition 2.2 (xi). Joining

these facts, we have (∼∼ a∧∼∼ b)2 = (∼∼ a∗∼∼ b)2 = (∼∼(a∗b))2 ≤ (∼∼(a∧b))2
as required.

(x). Notice that (∼∼(a∧∼ b))2 = (∼∼ a∧∼ b)2. This holds because, by item (ix)

above, we have (∼∼(a∧∼ b))2 = (∼∼ a∧∼∼∼ b)2 and, by Proposition 2.2 (xii), we

have (∼∼ a∧∼∼∼ b))2 = (∼∼ a∧∼ b))2. Hence, it will be sufficient to check that

(∼∼ a ∧ ∼ b)2 = (∼(a ⇒ b))2. Let us begin with (∼∼ a ∧ ∼ b))2 ≤ (∼(a ⇒ b))2.

Observe that ∼∼ a ∗ ∼ b ≤ ∼(a ⇒ b). This holds because, by (Res), we have

∼∼ a∗∼ b ≤ ∼(a ⇒ b) iff (a ⇒ b)∗∼∼ a∗∼ b ≤ 0 iff (a ⇒ b)∗∼∼ a ≤ ∼∼ b iff a ⇒
b ≤ ∼∼ a ⇒ ∼∼ b = a ⇒ ∼∼ b. The last equality holds by Proposition 2.2 (xiii).

By (Res), we have a ⇒ b ≤ a ⇒ ∼∼ b iff a ∗ (a ⇒ b) ≤ ∼∼ b and the latter holds

because, by Proposition 2.2 (vii) and (viii), we have a∗(a ⇒ b) ≤ b ≤ ∼∼ b. Having

shown that ∼∼ a ∗ ∼ b ≤ ∼(a ⇒ b), we can invoke Proposition 2.2 (iv) to obtain

(∼∼ a∗∼ b)2 ≤ (∼(a ⇒ b))2. We have shown that (∼∼ a∗∼ b)2 = (∼∼ a∧∼ b)2 in

item (viii) above, so we conclude that (∼∼ a∧∼ b)2 = (∼∼ a∗∼ b)2 ≤ (∼(a ⇒ b))2

as required. For the converse inequality, let us begin by observing that ∼ a ≤ a ⇒ b

and b ≤ a ⇒ b. The latter is an immediate consequence of Proposition 2.2 (iii); as

to the former, by (Res) we have ∼ a ≤ a ⇒ b iff a ∗ ∼ a ≤ b, which is true because

a ∗ ∼ a = 0, by Proposition 2.2 (x). Then by monotonicity of ∨ we have ∼ a ∨ b ≤
a ⇒ b. By Proposition 2.2 (xi), we obtain ∼(a ⇒ b) ≤ ∼(∼ a ∨ b) = ∼∼ a ∧ ∼ b,

the last equality holding true by Proposition 2.2 (v). Then we can use once more

Proposition 2.2 (iv) to obtain (∼(a ⇒ b))2 ≤ (∼∼ a ∧ ∼ b)2 as required.

(xi). By the preceding item, we have (∼(a2 ⇒ b))2 = (∼∼(a2 ∧ ∼ b))2. It will

thus be sufficient to show that (∼∼(a2 ∧ ∼ b))2 = (∼∼(a ∧ ∼ b))2. Using items

(viii) and (iii) above, we have (a2 ∧∼ b)2 = (a2 ∗ ∼ b)2 = a4 ∗ (∼ b)2 = a2 ∗ (∼ b)2 =

(a ∗∼ b)2 = (a∧∼ b)2. Thus (a2 ∧∼ b)2 = (a∧∼ b)2, and applying double negation

to both sides, we obtain ∼∼(a2∧∼ b)2 = ∼∼(a∧∼ b)2. Now observe that, by item

(vii) above, we have ∼∼x2 = (∼∼x)2, and so ∼∼(a2 ∧ ∼ b)2 = (∼∼(a2 ∧ ∼ b))2.

Similarly we have ∼∼(a ∧ ∼ b)2 = (∼∼(a ∧ ∼ b))2, which concludes our proof. �

Let us briefly comment on the most important properties proven in Proposi-

tion 2.4. The identity (ii) was shown in [19, Theorem 6.1] to be equivalent, in

the context of compatibly involutive CIBRLs, to the identity (Nelson); we do not

know at present whether such an equivalence holds also for arbitrary CIBRLs. Item

(iii), i.e. 3-potency, is one of the characterizing features of Nelson residuated lat-

tices [19, Corollary 4.3], and one that greatly simplifies the algebraic study of these

structures, for it allows one to prove that they form a a variety of weak Brouwe-

rian semilattices with 1-filter preserving operations: see [19, Lemma 2.4] for further

details. Condition (iv), which we have introduced and dubbed (0,1)-congruence

orderability in [19], is a generalization of the well-known algebraic property called

congruence orderability. In fact, one of the main results of [19, Corollary 7.2] is

that a compatibly involutive CIBRL is (0,1)-congruence orderable if and only if it

satisfies the identity (Nelson). This equivalence could be proved also for arbitrary

CIBRLs, although we will not pursue this here; we refer the reader to [19] for further
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discussion on (0,1)-congruence orderability. Finally, item (vi) is worth highlighting,

for it entails that it would be possible to give a definition of quasi-Nelson residuated

lattices omitting the monoid operation from the algebraic language, for it could

be introduced via the term x ∧ y ∧ ∼(x ⇒ ∼ y). This generalizes a well-known

fact about involutive CIBRLs, where one can define x ∗ y := ∼(x ⇒ ∼ y), and it

also explains why we shall not need to introduce ∗ as a primitive operation in our

definition of quasi-Nelson algebras (Definition 4.1).

The next proposition will be one of the main ingredients for establishing our

equivalent characterization of quasi-Nelson residuated lattices. We shall write x → y

as a shorthand for x2 ⇒ y (recall that this is also equivalent, in our context, to

x ⇒ (x ⇒ y)). As mentioned earlier, one of the main features of Nelson’s construc-

tive logic with strong negation N3 (which is inherited by its algebraic counterpart)

is that it can be defined as either an expansion of the negation-free fragment of

intuitionistic logic or as an axiomatic extension of FLew. This alternative corre-

sponds to presenting N3 and the corresponding algebras either in the primitive

language 〈∧,∨,→,∼, 0, 1〉 or 〈∧,∨,⇒,∼, 0, 1〉. The above-introduced connective

→ is known as weak implication, and coincides with intuitionistic implication on

the negation-free fragment of N3; the residuated strong implication ⇒, which is

the one inherited from FLew, can in turn be recovered from the weak by letting

x ⇒ y := (x → y) ∧ (∼ y → ∼x). One of main results of the present paper is that

this inter-definability can be carried over rather painlessly to the non-involutive

setting.

Proposition 2.5 Let A be quasi-Nelson residuated lattice. Then:

(i) The reduct 〈A;∧,∨, 0, 1〉 is bounded distributive lattice (with order ≤).

(ii) The relation � on A defined for all a, b ∈ A by a � b iff a → b = 1 is a

quasiorder (i.e. is reflexive and transitive).

(iii) The relation ≡ := � ∩ (�)−1 is a congruence on the reduct 〈A;∧,∨,→, 0, 1〉
and the quotient algebra A+ = 〈A;∧,∨,→, 0, 1〉/≡ is a Heyting algebra 6 .

(iv) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼∼(a ∧ ∼ b).

(v) For all a, b ∈ A, it holds that a ≤ b iff a � b and ∼ b � ∼ a.

(vi) For all a, b ∈ A, it holds that

(vi.1) ∼∼(∼ a → ∼ b) ≡ ∼ a → ∼ b

(vi.2) ∼(a ∨ b) ≡ ∼ a ∧ ∼ b

(vi.3) ∼∼ a ∧ ∼∼ b ≡ ∼∼(a ∧ b)

(vi.4) ∼ a ≡ ∼∼∼ a

(vi.5) a � ∼∼ a

(vi.6) a ∧ ∼ a � 0.

Proof. (i). Certainly 〈A;∧,∨, 0, 1〉 is a bounded lattice; distributivity follows from

Proposition 2.4 (v). Items (ii) and (iii) are not difficult to prove directly, but one

6 Recall that a Heyting algebra A can be defined as a CIBRL satisfying a ∗ b = a∧ b for all a, b ∈ A. Since
the monoid and meet operations coincide, it is customary to delete the former from the algebraic signature.
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rely on the fact that, being 3-potent (Proposition 2.4 (iii)), quasi-Nelson residuated

lattices form a variety of weak Brouwerian semilattices with 1-filter preserving op-

erations [19, Lemma 2.4]. Then (ii) and (iii) correspond, respectively, to conditions

(WBSO2) and (WBSO3). Concerning (iv), notice that the definition of ≡ imme-

diately implies that x ≡ y iff x2 = y2. Then item (iv) is precisely Proposition 2.4

(xi). The leftward implication of item (v) has been proven in Proposition 2.4 (i).

As to the rightward one, if a ≤ b, then ∼ b ≤ ∼ a by Proposition 2.2 (xi). Then

a ⇒ b = ∼ b ⇒ ∼ a = 1. Thus a fortiori a → b = ∼ b → ∼ a = 1, because

x ⇒ y ≤ x2 ⇒ y in any CIBRL. Item (vi.1) is an easy consequence of Proposi-

tion 2.2 (xiv). Proposition 2.2 (v) implies (vi.2). Item (vi.3) is precisely Propo-

sition 2.4 (ix). Proposition 2.2 (xii) implies (vi.4). Item (vi.5) follows from item

(v) together with Proposition 2.2 (viii). Finally, regarding (vi.6), notice that, by

Proposition 2.4 (viii) and Proposition 2.2 (x), we have (a ∧ ∼ a)2 = (a ∗ ∼ a)2 = 0.

Then (a ∧ ∼ a) → 0 = (a ∧ ∼ a)2 ⇒ 0 = 0 ⇒ 0 = 1. �

We shall see in Section 4 that the above conditions are not only necessary, but

also sufficient to provide an equivalent presentation of the class of Nelson residu-

ated lattices. Formally, we shall call an algebra A = 〈A;∧,∨,→,∼, 0, 1〉 of type

〈2, 2, 2, 1, 0, 0〉 that satisfies all the conditions of Proposition 2.5 a quasi-Nelson al-

gebra (Definition 4.1). Using this terminology, we can restate the above proposition

as follows.

Theorem 2.6 For every quasi-Nelson residuated lattice A, the algebra 〈A;∧,∨,→
,∼, 0, 1〉 is a quasi-Nelson algebra.

For the reader’s convenience, we state here the next proposition without proof;

we shall obtain a proof as a corollary of our main result (Theorem 4.4).

Proposition 2.7 The 〈∧,∨, 0, 1〉-reduct of any quasi-Nelson residuated lattice A

is a lower quasi-de Morgan algebra according to the terminology introduced in [16,

Definition 2.2]. That is, for all a, b, c ∈ A, it holds that:

(i) 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice (with order ≤),

(ii) ∼(a ∨ b) = ∼ a ∧ ∼ b,

(iii) ∼∼(a ∧ b) = ∼∼ a ∧ ∼∼ b,

(iv) ∼∼∼ a = ∼ a,

(v) a ≤ ∼∼ a.

Moreover,

(vi) a ∧ ∼ a ≤ b ∨ ∼ b.

Besides explaining the name we have chosen for our non-involutive generaliza-

tion of Nelson algebras, Proposition 2.7 generalizes the well-known fact that the

〈∧,∨, 0, 1〉-reduct of a Nelson algebra is a De Morgan algebra (i.e. a quasi-De Mor-

gan algebra satisfying ∼∼ a = a); or actually a Kleene algebra, that is a De Morgan

algebra satisfying item (vi) of our proposition [19, Proposition 4.9].

U. Rivieccio, M. Spinks / Electronic Notes in Theoretical Computer Science 344 (2019) 169–188178



3 Non-involutive twist-structures

In this section we introduce a construction that will allow us to obtain a better

insight into our new class of algebras, as well as to prove equivalence between

the alternative presentations. Our definitions obviously generalize/are inspired by

the well-known twist-structure constructions used to represent Nelson residuated

lattices and related algebras (see e.g. [14]). The crucial part of our construction,

however, relies on the non-involutive twist-stuctures introduced in [7,8], and in

particular on the idea of using two Heyting algebras related by maps rather than a

single Heyting algebra 7 .

Definition 3.1 Let H+ = 〈H+,∧+,∨+,→+, 0+, 1+〉 and H− = 〈H−,∧−,∨−,→−
, 0−, 1−〉 be Heyting algebras and n : H+ → H− and p : H− → H+ be maps satisfying

the following properties:

(i) n preserves finite meets, joins and the bounds (i.e., one has n(x ∧+ y) =

n(x) ∧− n(y), n(x ∨+ y) = n(x) ∨− n(y), n(1+) = 1− and n(0+) = 0−),

(ii) p preserves meets, the implication and the bounds (i.e., one has p(x ∧− y) =

p(x) ∧+ p(y), p(x →− y) = p(x) →+ p(y), p(1−) = 1+ and p(0−) = 0+),

(iii) n · p = IdH− and IdH+ ≤+ p · n.
The algebra H+ �� H− = 〈H+ ×H−,∧,∨,→,∼, 0, 1〉 is defined as follows. For all

〈a+, a−〉, 〈b+, b−〉 ∈ H+ ×H−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

∼〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉
〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.

A twist-structure A over H+ �� H− is a {∧,∨,→,∼, 0, 1}-subalgebra of H+ �� H−
with carrier set A satisfying π1(A) = H+ and a+ ∧+ p(a−) = 0+ for all 〈a+, a−〉 ∈
A 8 .

Using our terminology, one readily sees that the standard twist-structures cor-

responding to Nelson algebras (see e.g. [14]) are precisely those where the maps n

and p are mutually inverse Heyting algebra isomorphisms.

7 The informed reader may recall that the pre-bilattice product construction used e.g. in [2] also employs
two different algebras; however, no negation operator is defined on the resulting structure. It may be
interesting to notice that the representation of semi-De Morgan algebras introduced in [6] – which has been
an inspiration for us too – although not involving a product-like construction, is also based on the idea
of representing a semi-De Morgan algebra as a quadruple consisting of two algebras related by maps that
satisfy very similar requirements to ours.
8 We note that these conditions imply n(a+) ∧− a− = 0− for all 〈a+, a−〉 ∈ A and π2[A] = H−. The
first holds because, since a+ ∧+ p(a−) = 0+, we can apply n to both sides of the equation and, using its
properties, we obtain n(a+ ∧+ p(a−)) = n(a+) ∧− n(p(a−)) = n(a+) ∧− a− = 0− = n(0+) as required.
Likewise, π2[A] = H− follows from π1[A] = H+. In fact, for all a− ∈ H−, we know that a− = n(p(a−)),
where p(a−) ∈ H+. Then π1[A] = H+ guarantees that there is b− ∈ H− such that 〈p(a−), b−〉 ∈ A, which
means that ∼〈p(a−), b−〉 = 〈p(b−), n(p(a−)〉 = 〈p(b−), a−〉 ∈ A. Thus a− ∈ π2[A] as required.
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Because we want to endow a twist-structure A with a quasi-Nelson residuated

lattice structure, we need to define on A a pair of operations 〈∗,⇒〉 satisfying (Res)

in Definition 2.1. We let:

x ⇒ y := (x → y) ∧ (∼ y → ∼x) x ∗ y := x ∧ y ∧ ∼(x ⇒ ∼ y).

Notice that the definition of ⇒ is the same as for standard twist-structures, while

that of ∗ is designed to take into account the failure of the identity x ∗ y = ∼(x ⇒
∼ y) in a non-involutive context. Consider 〈a+, a−〉, 〈b+, b−〉 ∈ A. Doing the calcu-

lations, we immediately obtain:

〈a+, a−〉 ⇒ 〈b+, b−〉 = 〈(a+ →+ b+) ∧+ (p(b−) →+ p(a−)), n(a+) ∧− b−)〉.

It is more involved to check that the ∗ operation reduces to the following expression:

〈a+, a−〉 ∗ 〈b+, b−〉 = 〈a+ ∧+ b+, (n(a+) →− b−) ∧− (n(b+) →− a−)〉.

Proof. Direct calculation tells us that 〈a+, a−〉 ∗ 〈b+, b−〉 is equal to the following

expression:

〈a+∧+b+∧+p(n(a+)∧−n(b+)), a−∨−b−∨−(n(a+ →+ p(b−))∧−n((pn(b+) →+ p(a−)))〉.

Regarding the first component, notice that

a+ ∧+ b+ ∧+ p(n(a+) ∧− n(b+)) = a+ ∧+ b+

because, using IdH+ ≤+ p · n and the fact that n preserves ∧−, we obtain

a+ ∧+ b+ ≤+ pn(a+ ∧+ b+) = p(n(a+) ∧− n(b+)).

Regarding the second component, first of all observe that n(a+ →+ p(b−)) =

n(a+) →− b− and n((pn(b+) →+ p(a−))) = n(b+) →− a−. The latter is easily

shown using the fact that p preserves the implication together with n · p = IdH− ,

for n((pn(b+) →+ p(a−))) = np(n(b+) →− a−) = n(b+) →− a−. As to the former,

the inequality n(a+ →+ p(b−)) ≤− n(a+) →− b− follows easily using residuation

and the fact that n preserves meets: we have n(a+ →+ p(b−)) ≤− n(a+) →− b− iff

b− ≥− n(a+) ∧− n(a+ →+ p(b−)) = n(a+ ∧+ (a+ →+ p(b−))) = n(a+ ∧+ p(b−)) =
n(a+) ∧− np(b−) = n(a+) ∧− b−, once again recalling that n · p = IdH− . As to the

inequality n(a+) →− b− ≤− n(a+ →+ p(b−)), we start from pn(a+) →+ p(b−) ≤+

a+ →+ p(b−) which holds because Id ≤ p ·n, and since p preserves the implication,

we have pn(a+) →+ p(b−) = p(n(a+) →− b−) ≤+ a+ →+ p(b−). We now apply

n to both sides (using monotonicity of n) to get np(n(a+) →− b−) = n(a+) →−
b− ≤+ n(a+ →+ p(b−)), where the first equality holds because n · p = Id. Putting

these facts together, we have that

a− ∨− b− ∨− (n(a+ →+ p(b−)) ∧− n((pn(b+) →+ p(a−)))

is equal to

a− ∨− b− ∨− ((n(a+) →− b−) ∧− (n(b+) →− a−)).
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We proceed to show that a−∨−b− ≤− (n(a+) →− b−)∧−(n(b+) →− a−). Obviously

(by integrality) we have b− ≤− n(a+) →− b−, moreover a− ≤− n(a+) →− b−
because the latter is equivalent, by residuation and the requirement that a− ∧−
n(a+) = 0−, to 0− = a− ∧− n(a+) ≤− b−. Thus a− ∨− b− ≤− n(a+) →− b−.
Analogously we have a− ∨− b− ≤− n(b+) →− a− because, on the one hand a− ≤−
n(b+) →− a− by integrality, on the other b− ≤− n(b+) →− a− by residuation and

the requirement that b− ∧− n(b+) = 0−. Thus

a− ∨− b− ∨− ((n(a+) →− b−) ∧− (n(b+) →− a−))

is equal to (n(a+) →− b−) ∧− (n(b+) →− a−) as required. �

We proceed to check that any twist-structure A can be endowed with a quasi-

Nelson residuated lattice structure.

Proposition 3.2 Let A = 〈A;∧,∨,→,∼, 0, 1〉 be a twist-structure over H+,H−.
Then:

(i) 〈A, ∗, 1〉 is a commutative monoid and the pair 〈∗,⇒〉 satisfies (Res) of Defi-

nition 2.1.

(ii) A satisfies the Nelson identity (x ⇒ (x ⇒ y))∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y.

(iii) 〈A;∧,∨,∼, 0, 1〉 is a lower quasi-De Morgan algebra and satisfies the Kleene

identity x ∧ ∼x ≤ y ∨ ∼ y.

Proof. (i). Commutativity of ∗ is immediate. Let 〈a+, a−〉, 〈b+, b−〉 ∈ H+ × H−.
Let us check that 〈1+, 0−〉 is the neutral element. We have 〈1+, 0−〉 ∗ 〈a+, a−〉 =

〈a+, a−〉 ∗ 〈1+, 0−〉 = 〈a+ ∧+ 1+, (n(a+) →− 0−) ∧− (n(1+) →− a−)〉 =

〈a+, (n(a+) →− 0−)∧−(1− →− a−)〉 = 〈a+, (n(a+) →− 0−)∧−a−〉 = 〈a+, a−〉. The
last passage is justified by the fact that a− ≤− n(a+) →− 0− holds (by residuation)

iff a− ∧− n(a+) ≤− 0− which is one of the requirement in the twist-structure defini-

ton. For associativity, we have, on the one hand, (〈a+, a−〉 ∗ 〈b+, b−〉) ∗ 〈c+, c−〉 =
〈a+∧+ b+, (n(a+) →− b−)∧− (n(b+) →− a−)〉∗〈c+, c−〉 = 〈a+∧+ b+∧+ c+, (n(a+∧+

b+) →− c−) ∧− (n(c+) →− ((n(a+) →− b−) ∧− (n(b+) →− a−)))〉. On the

other hand, 〈a+, a−〉 ∗ (〈b+, b−〉 ∗ 〈c+, c−〉) = 〈a+, a−〉 ∗ 〈b+ ∧+ c+, (n(b+) →−
c−)∧−(n(c+) →− b−)〉 = 〈a+∧+b+∧+c+, (n(a+) →− ((n(b+) →− c−)∧−(n(c+) →−
b−))) ∧− (n(b+ ∧+ c+) →− a−〉. Thus we only need to check that the second com-

ponents are equal. We have: (n(a+ ∧+ b+) →− c−) ∧− (n(c+) →− ((n(a+) →−
b−) ∧− (n(b+) →− a−))) = ((n(a+) ∧− n(b+)) →− c−) ∧− (n(c+) →− ((n(a+) →−
b−)∧− (n(b+) →− a−))) = (n(a+) →− ((n(b+) →− c−)))∧− (n(c+) →− (n(a+) →−
b−)))∧−(n(c+) →− (n(b+) →− a−)) = (n(a+) →− ((n(b+) →− c−)))∧−(n(a+) →−
(n(c+) →− b−))) ∧− (n(c+) →− (n(b+) →− a−)) = (n(a+) →− ((n(b+) →−
c−) ∧− (n(c+) →− b−))) ∧− (n(c+) →− (n(b+) →− a−)) = (n(a+) →− ((n(b+) →−
c−) ∧− (n(c+) →− b−))) ∧− (n(b+ ∧+ c+) →− a−).

Concerning (Res), we have that 〈a+, a−〉 ∗ 〈b+, b−〉 ≤ 〈c+, c−〉 means (1)

a+ ∧+ b+ ≤+ c+ and c− ≤− (n(a+) →− b−) ∧− (n(b+) →− a−), that is (2)

c− ≤− n(a+) →− b− and (3) c− ≤− n(b+) →− a−. On the other hand 〈b+, b−〉 ≤
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〈a+, a−〉 ⇒ 〈c+, c−〉 means b+ ≤+ (a+ →+ c+) ∧+ (p(c−) →+ p(a−)), that is (1’)

b+ ≤+ a+ →+ c+ and (3’) b+ ≤+ p(c−) →+ p(a−), and (2’) n(a+) ∧− c− ≤− b−.
The only non-trivial equivalence is the one between (3) and (3’). Assume (3) holds,

that is c− ≤− n(b+) →− a−. Then by residuation we have n(b+) ≤− c− →− a−,
and applying p to both sides, we get pn(b+) ≤− p(c− →− a−) = p(c−) →+ p(a−).
Since b+ ≤+ pn(b+), we have b+ ≤+ pn(b+) ≤− p(c−) →+ p(a−) as required.

Conversely, assume (3’) holds, that is b+ ≤+ p(c−) →+ p(a−), which gives us

p(c−) ≤+ b+ →+ p(a−) by residuation. Applying n to both sides, we have

np(c−) = c− ≤− n(b+ →+ p(a−)) because n · p = IdH− . Since n preserves meets,

we also have n(b+ →+ p(a−)) ≤− n(b+) →− np(a−) = n(b+) →− a−, from which

the desired result immediately follows.

(ii). By item (i) above, we have that A satisfies x ⇒ (x ⇒ y) ≈ (x ∗ x) ⇒ y.

We shall use this fact to check that A satisfies x ⇒ (x ⇒ y) ≈ x → y, which easily

implies the desired result. Let 〈a+, a−〉, 〈b+, b−〉 ∈ H+ ×H−. We have

〈a+, a−〉 ⇒ (〈a+, a−〉 ⇒ 〈b+, b−〉) = (〈a+, a−〉 ∗ 〈a+, a−〉) ⇒ 〈b+, b−〉
= 〈a+ ∧+ a+, (n(a+) →− a−) ∧− (n(a+) →− a−)〉 ⇒ 〈b+, b−〉
= 〈a+, n(a+) →− a−〉 ⇒ 〈b+, b−〉
= 〈(a+ →+ b+) ∧+ (p(b−) →+ p(n(a+) →− a−)), n(a+) ∧− b−〉
= 〈a+ →+ b+, n(a+) ∧− b−〉

where last passage uses a+ →+ b+ ≤+ p(b−) →+ p(n(a+) →− a−), which we

can justify as follows. First observe that b− ∧− n(b+) = 0− by definition of twist-

structure, hence b−∧−n(a+)∧−(n(a+) →− n(b+)) = b−∧−n(a+)∧−n(b+) ≤− b−∧−
n(b+) = 0− ≤− a−. Now b−∧−n(a+)∧− (n(a+) →− n(b+)) ≤− a− is equivalent, by

residuation, to n(a+) →− n(b+) ≤− b− →− (n(a+) →− a−). Applying p on both

sides (using monotonicity) we get p(n(a+) →− n(b+)) ≤+ p(b− →− (n(a+) →−
a−)). Thus we have:

a+ →+ b+ ≤+ pn(a+ →+ b+) IdH+ ≤+ p · n
≤+ p(n(a+) →− n(b+)) n preserves meets

≤+ p(b− →− (n(a+) →− a−))
= p(b−) →+ p(n(a+) →− a−) p preserves implication

as required.

(iii) We need to check that A satisfies the items in Proposition 2.7. It is straight-

forward to check that 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice: just notice that

〈A;∧,∨, 0, 1〉 is isomorphic to 〈H+,∧+,∨+, 0+.1+〉 × 〈H−,∧−,∨−, 0−, 1−〉δ, where
〈H−,∧−,∨−, 0−, 1−〉δ denotes the order-theoretic dual of 〈H−,∧−,∨−, 0−, 1−〉.
Joining this fact with item (i), we have that 〈A;∧,∨, ∗,⇒, 0, 1;≤〉 is a (distribu-

tive) CIBRL. Then items (v), (viii) and (xii) of Proposition 2.2 guarantee that

items (ii), (v) and (iv), respectively, of Proposition 2.7 are satisfied. Item (iii) of

Proposition 2.7, i.e. ∼∼(a ∧ b) = ∼∼ a ∧ ∼∼ b, can be proven as follows. For
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〈a+, a−〉, 〈b+, b−〉 ∈ H+ ×H−, we have:

∼∼(〈a+, a−〉 ∧ 〈b+, b−〉) = ∼∼〈a+ ∧+ b+, a− ∨− b−〉
= 〈pn(a+ ∧+ b+), np(a− ∨− b−)〉
= 〈pn(a+ ∧+ b+), a− ∨− b−〉 n · p = IdH−
= 〈pn(a+) ∧+ pn(b+), a− ∨− b−〉 p & n pre-

serve meets

= 〈pn(a+) ∧+ pn(b+), np(a−) ∨− np(b−)〉 n · p = IdH−
= 〈pn(a+), np(a−)〉 ∧ 〈pn(b+), np(b−)〉
= ∼∼〈a+, a−〉 ∧ ∼∼〈b+, b−〉.

Finally, concerning the Kleene identity (last item of Proposition 2.7), we have

〈a+, a−〉 ∧ ∼〈a+, a−〉 = 〈a+, a−〉 ∧ 〈p(a−), n(a+)〉
= 〈a+ ∧+ p(a−), a− ∨− n(a+)〉
= 〈0+, a− ∨− n(a+)〉 a+ ∧+ p(a−) = 0+

≤ 〈b+ ∨+ p(b−), 0−〉
= 〈b+ ∨+ p(b−), b− ∧− n(b+)〉 b− ∧− n(b+) = 0−
= 〈b+, b−〉 ∨ 〈p(b−), n(b+)〉
= 〈b+, b−〉 ∨ ∼〈b+, b−〉.

�

From the preceding proposition we immediately obtain the following:

Theorem 3.3 Let A = 〈A;∧,∨,→,∼, 0, 1〉 be a twist-structure over H+,H−.
Then, upon defining x ⇒ y := (x → y)∧(∼ y → ∼x) and x∗y := x∧y∧∼(x ⇒ ∼ y),

the algebra 〈A;∧,∨, ∗,⇒, 0, 1〉 is a quasi-Nelson residuated lattice.

In turn, from the preceding theorem and Proposition 2.5 we obtain:

Corollary 3.4 Let A = 〈A;∧,∨,→,∼, 0, 1〉 be a twist-structure over H+,H−.
Then 〈A;∧,∨,→,∼, 0, 1〉 is a quasi-Nelson algebra.

4 Quasi-Nelson algebras

In this section we introduce the second abstract presentation for our class of alge-

bras, and show equivalence with the two above-introduced one.

Definition 4.1 A quasi-Nelson algebra is an algebra A = 〈A,∧,∨,→,∼, 0, 1〉 of

type 〈2, 2, 2, 1, 0, 0〉 satisfying the following properties:

(SN1) The reduct 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice (with order ≤).

(SN2) The relation � on A defined for all a, b ∈ A by a � b iff a → b = 1 is a

quasiorder on A.
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(SN3) The relation ≡ := � ∩ (�)−1 is a congruence on the reduct 〈A;∧,∨,→, 0, 1〉
and the quotient algebra A+ = 〈A;∧,∨,→, 0, 1〉/≡ is a Heyting algebra.

(SN4) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼∼(a ∧ ∼ b).

(SN5) For all a, b ∈ A, it holds that a ≤ b iff a � b and ∼ b � ∼ a.

(SN6) For all a, b ∈ A,

(SN6.1) ∼∼(∼ a → ∼ b) ≡ ∼ a → ∼ b

(SN6.2) ∼(a ∨ b) ≡ ∼ a ∧ ∼ b

(SN6.3) ∼∼ a ∧ ∼∼ b ≡ ∼∼(a ∧ b)

(SN6.4) ∼ a ≡ ∼∼∼ a

(SN6.5) a � ∼∼ a

(SN6.6) a ∧ ∼ a � 0.

The above definition is obviously a generalization of Rasiowa’s presentation of

Nelson algebras [15, Ch. V, p. 68] as well as of Odintsov’s definition of N4-lattices [13,

Definition 5.1]. The careful reader may have guessed that certain items must actu-

ally hold in a stronger version (we shall obtain a proof of this as a consequence of the

announced Theorem 4.4): for example, the 〈A;∧,∨,∼, 0, 1〉-reduct any quasi-Nelson

algebra A is a lower quasi-De Morgan algebra, which immediately entails that items

(SN6.2), (SN6.3), (SN6.4) could be reformulated as equalities, and (SN6.5) as an

inequality (on the other hand, (SN4), (SN6.1) and (SN6.6) would in general fail as

equalities). We have avoided doing so here because it would make our subsequent

proofs (in particular Proposition 2.5) much more involved.

Let A = 〈A,∧,∨,→,∼, 0, 1;≤〉 be a quasi-Nelson algebra. Then (SN3) guar-

antees that we have a a Heyting algebra quotient A+ = 〈A+;∧+,∨+,→+, 0+, 1+〉.
In order to have all the ingredients for the twist-structure construction, we shall

need a second Heyting algebra (to be called A−) as well as maps connecting both.

Let [b] denote the equivalence class of each b ∈ A modulo ≡, and consider the set

A− := {[∼ a] : a ∈ A} ⊆ A+. We can endow A− with Heyting algebra operations

as follows. For all a, b ∈ A, let

[∼ a] ∧− [∼ b] := [∼(a ∨ b)] (= [∼ a ∧ ∼ b] = [∼ a] ∧+ [∼ b], by Definition 4.1

(SN6.2))

[∼ a] ∨− [∼ b] := [∼(a ∧ b)]

[∼ a] →− [∼ b] := [∼∼(∼ a → ∼ b)] (= [∼ a → ∼ b] = [∼ a] →+ [∼ b]), by

Definition 4.1 (SN6.1))

0− := [∼ 1] (= [0] = 0+)

1− := [∼ 0] (= [1] = 1+).

The set A− is clearly the universe of a 〈∧+,→+, 0+, 1+〉-subalgebra of A+.

In other words, the algebra 〈A−,∧−,→−, 0−, 1−〉 is a bounded implicative meet-

semilattice 9 . Notice that ∨−, though not coinciding with the restriction of ∨+ to

A−, is nevertheless a join for ∧− in A−; hence A− forms a Heyting algebra in its

9 This is one of the terms used in the literature to designate the class of 〈∧,→, 0, 1〉-subreducts of Heyting
algebras.
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own right, though not a Heyting subalgebra of A+. To check this, observe that ∨−
inherits idempotency, associativity and commutativity from ∧. It remains to ver-

ify the absorption law, which we can do as follows: [∼ a] ∨− ([∼ a] ∧− [∼ b]) =

[∼ a] ∨− [∼(a ∨ b)] = [∼(a ∧ (a ∨ b))] = [∼ a] and [∼ a] ∧− ([∼ a] ∨− [∼ b]) =

[∼ a] ∧− [∼(a ∧ b)] = [∼(a ∨ (a ∧ b))] = [∼ a].

We proceed to define maps p : A− → A+ and n : A+ → A− as follows. Let p

be the identity map on A−, and let n[a] := [∼∼ a] for all a ∈ A. Obviously p

preserves the bounds, meets and the implication. On the other hand, p does not

necessarily preserve joins, because in general we have p([∼ a]∨−[∼ b]) = p[∼(a∧b)] =
[∼(a ∧ b)] �= [∼ a ∨ ∼ b] = [∼ a] ∨+ [∼ b] = p[∼ a] ∨+ p[∼ b].

The map n preserves the bounds, meets and joins. Indeed, using Definition 4.1

(SN6.3) and (SN6.2), we have n([a] ∧+ [b]) = n[a ∧ b] = [∼∼(a ∧ b)] = [∼∼ a ∧
∼∼ b] = [∼(∼ a ∨ ∼ b)] = [∼∼ a] ∧− [∼∼ b] = n[a] ∧− n[b] and n([a] ∨+ [b]) =

n[a ∨ b] = [∼∼(a ∨ b)] = [∼(∼ a ∧ ∼ b)] = [∼∼ a] ∨− [∼∼ b] = n[a] ∨− n[b]. On

the other hand, n does not necessarily preserve the implication, because in general

n([a] →+ [b]) = n[a → b] = [∼∼(a → b)] �= [∼∼ a → ∼∼ b] = [∼∼(∼∼ a →
∼∼ b)] = [∼∼ a] →− [∼∼ b] = n[a] →− n[b].

Let us check that n · p = IdA− and IdA+ ≤+ p · n, As to the former, by

Definition 4.1 (SN6.4), we have (n · p)[∼ a] = n[∼ a] = [∼∼∼ a] = [∼ a]. As to the

latter, observe that (p · n)[a] = p[∼∼ a] = [∼∼ a] and we have that [a] ≤+ [∼∼ a]

iff [a] →+ [∼∼ a] = 1+ iff a � ∼∼ a, which is guaranteed by Definition 4.1 (SN6.5).

Thus we have two Heyting algebras A+,A− and maps n, p between them which

satisfy the conditions of Definition 3.1. This allows us to build twist-structures over

A+,A−.

Proposition 4.2 Every quasi-Nelson algebra A is isomorphic to a twist-structure

over A+,A− by the map ι(a) := 〈[a], [∼ a]〉.

Proof. Injectivity of the map ι is guaranteed by Definition 4.1 (SN5). Let us check

that ι is a homomorphism, i.e. that each algebraic operation is preserved (we omit

the case corresponding to the bounds, which is straightforward). We have:

ι(∼ a) = 〈[∼ a], [∼∼ a]〉
= 〈p[∼ a], n[a]〉 by definition of p and n

= ∼〈[a], [∼ a]〉
= ∼ ι(a).

ι(a ∧ b) = 〈[a ∧ b], [∼(a ∧ b)]〉
= 〈[a] ∧+ [b], [∼ a] ∨− [∼ b]〉 by definition of ∨−
= 〈[a], [∼ a]〉 ∧ 〈[b], [∼ b]〉
= ι(a) ∧ ι(b).
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ι(a ∨ b) = 〈[a ∨ b], [∼(a ∨ b)]〉
= 〈[a] ∨+ [b], [∼ a] ∧− [∼ b]〉 by definition of ∧−
= 〈[a], [∼ a]〉 ∨ 〈[b], [∼ b]〉
= ι(a) ∨ ι(b).

ι(a → b) = 〈[a → b], [∼(a → b)]〉
= 〈[a → b], [∼∼(a ∧ ∼ b)]〉 by Definition 4.1 (SN4)

= 〈[a → b], [∼∼ a ∧ ∼∼∼ b]〉 by Definition 4.1 (SN6.3)

= 〈[a → b], [∼∼ a] ∧− [∼ b]〉 by Definition 4.1 (SN6.2)

= 〈([a] →+ [b]), n[a] ∧− [∼ b]〉 by definition of n

= 〈[a], [∼ a]〉 → 〈[b], [∼ b]〉
= ι(a) → ι(b).

Obviously we have that π1(A) = A+ and π2(A) = A−. Finally, observe that, by

Definition 4.1 (SN6.6), for every 〈[a], [∼ a]〉 ∈ A+ × A−, we have [a] ∧+ p[∼ a] =

[a] ∧+ [∼ a] = [a ∧ ∼ a] = [0] = 0+. Similarly, using also Definition 4.1 (SN6.2), we

have [∼ a] ∧− n[a] = [∼ a] ∧− [∼∼ a] = [∼(a ∨ ∼ a)] = [∼ a ∧ ∼∼ a] = [0] = 0−.
Therefore the last requirement of Definition 3.1 is also met. �

Joining Proposition 4.2 above with Theorem 3.3, we immediately obtain the

following.

Corollary 4.3 Let A = 〈A,∧,∨,→,∼, 0, 1〉 be a quasi-Nelson algebra. Then, upon

defining x ⇒ y := (x → y) ∧ (∼ y → ∼x) and x ∗ y := x ∧ y ∧ ∼(x ⇒ ∼ y), the

algebra 〈A;∧,∨, ∗,⇒, 0, 1〉 is a quasi-Nelson residuated lattice.

We are thus in a position to state the main result of our paper.

Theorem 4.4 The following classes of algebras are term equivalent:

(i) Quasi-Nelson residuated lattices, i.e. commutative integral bounded residuated

lattices satisfying the (Nelson) identity (Definition 2.3).

(ii) Twist-structures over pairs of Heyting algebras (Definition 3.1).

(iii) Quasi-Nelson algebras (Definition 4.1).

5 Future work

As mentioned in the abstract, we hope and believe that the main impact of the

present paper will lie in the possibility of opening new ways to, in the first place,

obtain deeper insights into the distinguishing feature of Nelson’s logic – into the

meaning of the Nelson axiom/identity – and its algebraic counterpart; in the second

place, to investigate certain properties that are of independent algebraic interest in

a more general setting than has been done up to now.

For instance, the reader (as well as the authors) of [19] might have been under

the impression that a number of key properties of Nelson residuated lattices –
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distributivity, 3-potency, (0,1)-congruence orderability, as well as admitting a twist-

structure representation – were implied by/equivalent to the Nelson identity only

in the presence of the double negation law. We now know that this is not the case,

and that the essential features of (the algebraic counterpart of) Nelson’s logic are

retained in the non-involutive setting.

These considerations lead to several questions that may be worth exploring in

the course of future research. For example, we may ask in which contexts the Nelson

identity does not imply distributivity, 3-potency, (0,1)-congruence orderability – the

most obvious classes to start looking at being, of course, non-commutative and/or

non-integral residuated lattices; accordingly, we may ask whether it is possible and

worthwhile to introduce and investigate classes such as “non-distributive (non-3-

potent, etc.) Nelson residuated lattices”. Also, in the cases where an equivalence

does not seem to be preserved (e.g., supposing that in a non-involutive setting the

identity x ≈ x2 ∨ (x ∧ ∼x) of Proposition 2.4 does not imply the Nelson identity),

one would like to obtain some insight into the structural differences between the

various resulting classes of algebras.

Finally, another development that will clearly be needed in order to comple-

ment the results presented here is to explicitly bring logic into the picture: namely,

define a deductive system corresponding to quasi-Nelson algebras, and verify its

algebraizability with respect to the intended semantics.
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