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Abstract. This paper presents the application of a modu-
lar approach for real-time streamflow forecasting that uses
different system-theoretic rainfall-runoff models according
to the situation characterising the forecast instant. For each
forecast instant, a specific model is applied, parameterised on
the basis of the data of the similar hydrological and meteo-
rological conditions observed in the past. In particular, the
hydro-meteorological conditions are here classified with a
clustering technique based on Self-Organising Maps (SOM)
and, in correspondence of each specific case, different feed-
forward artificial neural networks issue the streamflow fore-
casts one to six hours ahead, for a mid-sized case study wa-
tershed. The SOM method allows a consistent identifica-
tion of the different parts of the hydrograph, representing
current and near-future hydrological conditions, on the ba-
sis of the most relevant information available in the fore-
cast instant, that is, the last values of streamflow and areal-
averaged rainfall. The results show that an adequate distinc-
tion of the hydro-meteorological conditions characterising
the basin, hence including additional knowledge on the forth-
coming dominant hydrological processes, may considerably
improve the rainfall-runoff modelling performance.

1 Introduction

Metric (or system-theoretic) and hybrid metric-conceptual
(see Wheater et al., 1993) models have always represented a
natural candidate for online forecasting of the rainfall-runoff
transformation (WMO, 1992; Young, 2002), since the real-
time framework gives more importance to the simplicity and
robustness of the model implementation rather than to an ac-
curate description of the various internal sub-processes.
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System-theoretic models aredata-driven models, since
they are based primarily on observations, and seek to char-
acterise the system response from extensive records of past
input and output variables. They are, therefore, particularly
sensitive to the set of data used for their calibration, which
must be suitable for inferring an adequate input-output rela-
tionship. On the other hand, also the use of physically-based
approaches cannot, yet, overcome the need to calibrate at
least a part of the model parameters, so that the significance
of calibration data is crucial in any kind of rainfall-runoff
transformation model.

The significance of the data belonging to a particular pe-
riod, and therefore the reliability of a model parameterised
on that data set, are strictly linked to the hydrological pro-
cesses taking place in the period. Such processes are in fact
strongly variable in time: the physical phenomena governing
the streamflow generation at the beginning of a storm are cer-
tainly extremely different from those dominating the falling
limb of the same flood hydrograph, and even further from
those responsible for the low flows.

This constatation is at the basis of the formulation of
event-based models, that are explicitly aimed at modelling
only the processes that are dominant during flood events. But
the same consideration guides the calibration procedure of
continuously-simulating models where the hydrologist has to
choose which part of the observed hydrograph is most impor-
tant to fit, either implicitly, through the visual agreement in
manual calibration, or explicitly, through the choice of the
objective function(s). Changing the objective functions it is
in fact possible to emphasise different kind of errors, giv-
ing them more weight in the calibration phase, for example
with functions distinguishing high and low flows (Coulibaly
et al., 2001; de Vos and Rientjes, 2007), or with peak, time-
to-peak or volume errors in case of flood events. In order
to adequately reproduce more aspects of the observed hy-
drograph, multi-objective calibration algorithms have been
successfully developed in the recent years (e.g., Gupta et al.,
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1998; Madsen, 2000; Vrugt et al., 2003; Tang et al., 2006;
de Vos and Rientjes, 2007), with the aim of helping the hy-
drologists to choose an optimum (even if always subjective)
trade-off.

A different line will be followed in this study, consisting
in the implementation of multiple models, that is, a modular
approach diversifying the rainfall-runoff models on the ba-
sis of the specific hydro-meteorological situation presenting
itself in each forecast instant.

The hydrological and meteorological conditions character-
ising the instant in which the forecast is issued determine
in fact which hydrological processes will be dominant in
the following period. The future evolution of the stream-
flow values is therefore simulated with a different model
for each forecast instant, chosen in function of the hydro-
meteorological situation and parameterised on the basis of
the evolution of the similar situations observed in the past.
This approach is particularly suitable for system-theoretic,
data-driven models: in this work, multi-layer Artificial Neu-
ral Networks (ANN) will be used, where there is no explicit
a priori representation of the known physical processes and
the models are set up exclusively on the basis of the available
data.

The identification of the different hydro-meteorological
conditions corresponding to each forecast instant will be
done with a classification technique based on the use of Self-
Organising Maps (SOMs, Kohonen, 1982, 2001). The SOMs
were originally used principally for signal recognition, orga-
nization of large collections of data and information process-
ing, but they are now acknowledged as a powerful clustering
technique (Mangiameli et al., 1996; Astel et al., 2007) and
have been recently used also in a variety of water resources
studies (see Kalteh et al., 2008, for an exhaustive review).
The main advantages of the SOM clustering algorithm are
that it is non-linear and it has an ability to preserve the topo-
logical structure of the data (ASCE Task Committee, 2000a),
thus allowing also an evaluation of the affinity between the
clusters, as explained in the following.

In the present work, a modular approach is applied on a
mid-sized watershed, the Sieve River, for issuing multi-step
ahead streamflow forecasts referring to long continuous pe-
riods (thus including a variety of flow conditions) of calibra-
tion and validation data. A SOM is first used for clustering
the vectors characterising each forecast instant: such vectors
are formed not only by the antecedent streamflow, but also
by past precipitation values, given the importance of meteo-
rological forcing in the evolution of future flows. Secondly,
rainfall-runoff models based on multi-layer Artificial Neu-
ral Networks are parameterised accordingly to each specific
hydro-meteorological condition, for issuing multi-step ahead
forecasts.

2 The Sieve River case study

The case study herein considered is referred to the Sieve
River basin, a first tributary of the Arno River, located on the
Apennines Mountains in Tuscany, North-Central Italy. The
Sieve River basin is elongated in shape and the drainage area
is around 830 km2 at the outlet section of Fornacina, where
the time of concentration is approximately 10 h. The water-
shed is morphologically characterised by moderate to strong
relief in the upper and lower sections and by a gently rolling
plain in the central part. Except in the valleys, dedicated
to agriculture, the terrain is forested and mountainous. The
fact that Mediterranean water is warmer than Atlantic water
throughout the year and the presence of island barriers in the
Mediterranean serve as preconditions for strong cyclogenesis
causing most rainfall over the Sieve River between late Fall
and early Spring, November being the wettest month. The
summer months, especially July, are the driest, owing to the
dominance of the Azores high-pressure cell.

At the closure section, hourly discharge observations
[m3/s] were collected between 1 January 1992 and 31 De-
cember 1996. For the same observation period, hourly rain-
fall depths [mm] at 12 raingauges are available, thus allow-
ing the computation of the average areal precipitation over
the watershed with an inverse squared distance weighting of
the raingauges observations. The calibration procedures de-
scribed in the following are based on the continuous data
belonging to the first three hydrological years of the obser-
vation period, from 1 September 1992 to 31 August 1995.
The last 16 months, from 1 September 1995 to 31 December
1996, are used for validation purposes. The main statistics of
the streamflow values for the calibration and validation pe-
riods are shown in Table 1. The mean and the percentiles
are similar, but the variability of the calibration streamflow
data is more pronounced than that of the validation data: in
particular at the beginning of the calibration period, in au-
tumn 1992, occurred the major events (high but nor excep-
tional: two peaks with a return period of about 5 years) of the
observation period. This is not a drawback for split-sample
calibration experiments, but quite the opposite: in fact, the
calibration period must have enough information contents,
including a wide range of hydrological conditions and in par-
ticular it is useful that it includes the highest output values,
due to the difficulties ANNs may experience in extrapolation
(see, e.g., De Vos and Rientjes, 2008).

For each time instant, six forecasts will be issued, corre-
sponding to a lead-time varying from one to six hours.
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Table 1. Statistics of the streamflow observation data sets.

Number Mean Coeff. of 75% percentile 95% percentile
of data (m3/s) variation (m3/s) (m3/s)

Calibration period 26 280 14.84 2.69 13.78 47.38
Validation period 11 688 12.11 2.26 13.73 45.72

Forecasting performance measures

The performances of the streamflow forecasting models will
be evaluated by the Nash-Sutcliffe efficiency,

EL=1−

∑
t=1,N

[Qobs(t+L) −Qsim (t+L)]2∑
t=1,N

[Qobs(t+L) −µobs]2
, L=1÷6, (1)

and through an error measure in the same units of the sim-
ulated variable (as suggested also by Legates and McCabe,
1999), namely the mean absolute error,

MAEL =

∑
t=1,N

|Qobs(t + L) − Qsim (t + L)|

N
(2)

where t is the forecast instant,Qobs and Qsim are the ob-
served and simulated streamflow, respectively,µobs is the
mean value ofQobs, N is the total number of forecast in-
stants andL is the lead-time, varying from one to six hours
in the present study.

The efficiency coefficient varies in the range ]–∞, 1],
where 1 indicates a perfect agreement and negative values
mean that the forecast is worse than assuming future occur-
rences equal to the mean valueµobs. The meaningful value
of zero provides a convenient reference point to compare the
model with the predictive abilities of the observed mean, but
the efficiency coefficient, like all the squared measures, tends
to inflate the highest errors, that generally correspond to the
highest flows. The MAE, on the contrary, gives the same
weight to all errors and it is more significant for compar-
ing the forecasting performances over average and low flow
regimes.

As an additional benchmark, the forecasting models will
be compared also with a naı̈ve persistent model, where future
streamflow is supposed to be equal to the last observed value
over all the lead-times:

Qpers(t + L) = Qobs(t), ∀L. (3)

3 Artificial neural networks for streamflow forecasting

The appeal of the use of Artificial Neural Networks (ANNs)
as hydrological models lies mainly in their capability to flex-
ibly and rapidly reproduce the highly non-linear nature of the

relationship between input and output variables, and it is cer-
tainly worthy considering ANN models as powerful tools for
real-time short-term runoff forecasts.

An extensive review of the potentiality of ANNs in hy-
drological modeling was given, for example, by the ASCE
Task Committee (2000b) and by Maier and Dandy (2000). In
the majority of the applications of river flow prediction, the
networks are fed by both past flows and past precipitation
observations: extremely encouraging results have been ob-
tained in literature on both real and synthetic rainfall-runoff
data (among the many others, in the recent years: Cameron
et al., 2002; Solomatine and Dulal, 2003; Jain et al., 2004;
Khan and Coulibaly, 2006; Shamseldin et al., 2007; Srivas-
tav et al., 2007). Despite the importance of calibration in-
formation in a data-driven technique, little attention has been
paid, so far, to the influence that the calibration period has on
the forecasting performances of ANN rainfall-runoff model-
ing. Even if it is acknowledged that the choice of the training
set has a fundamental weight (see, for instance, Minns and
Hall, 1996; Campolo et al., 1999), only a few studies have
presented, so far, an analysis of the impact of the use of dif-
ferent training data sets on ANN performances in validation
(e.g., Dawson and Wilby, 1998; Anctil et al., 2004; Toth and
Brath, 2007). In the proposed approach, different calibration
data sets are identified, to be used specifically for modelling
the future evolution of similar data.

ANNs distribute computations to processing units called
neurons, grouped in layers and densely interconnected. In the
supervisedfeed-forward multilayer networks, three different
layer types can be distinguished: an input layer, connecting
the input information to the network (and not carrying out
any computation), one or more hidden layers, acting as inter-
mediate computational layers, and an output layer, producing
the final output.

In correspondence of a computational nodeJ , each one
of theNj entering values (Ii) is multiplied by a connection
weight (wij ). Such products are then all summed with a
neuron-specific parameter, called bias (bj ), used to scale the
sum of products into a useful range. The computational node
finally applies an activation function (f ) to the above sum
producing the node output (OJ ):

OJ = f (

Nj∑
i=1

wij Ii + bj ). (4)
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The ANNs applied in the present work have only one hidden
layer: tan-sigmoidal activation functions were chosen for the
hidden layer and linear transfer functions for the output layer.

Weights and biases are determined by means of the quasi-
Newton Levenberg-Marquardt BackPropagation optimisa-
tion procedure (Hagan and Menhaj, 1994), minimising a
learning function expressing the closeness between observa-
tions and ANN outputs, in the present case the mean squared
error. To mitigate overfitting and to improve generalization,
a Bayesian regularization of the learning function (Foresee
and Hagan, 1997; Anctil et al., 2004) was applied.

For each lead-time, a distinct mono-output network will
be implemented: the output of each network,Qsim(t+L), is
the streamflow forecast issued, in the forecast instantt , for
each lead-timeL.

The input data consist of the most relevant information that
is generally available in a real-time flow forecasting system,
namely, past rainfall and streamflow observations.

The optimal number of input nodes (corresponding to past
streamflow and mean areal precipitation values) and of hid-
den nodes to be included in the network is strongly case-
dependent. The number of input nodes may be obtained ei-
ther with a model-free approach, using statistical measures
of dependence (such as correlation or mutual information)
to determine the strength of the relationship between candi-
date model inputs and the model output, prior to model spec-
ification and calibration (e.g., Solomatine and Dulal, 2003;
Bowden et al., 2005; Fernando et al., 2009), or with a model
based approach, that analyses the performance of models that
are calibrated with different inputs, for choosing the most ap-
propriate input vector.

In the present work, a model-based approach was used
for identifying the dimension of both the input and the hid-
den layers: the investigation of the performances of several
combinations of input and hidden layers dimensions was per-
formed (through a trial-and-error procedure based on a “for-
ward selection method”, consisting in beginning by selecting
a small number of neurons and then increasing it) in past
researches on the same study watershed (partly reported in
Toth and Brath, 2007) and will not be described here for sake
of brevity. The architecture providing the best trade-off be-
tween parsimony and forecasting performances was the one
feeding to the input layer four streamflow and three precip-
itation values preceding the forecast instantt , Qobs(t−3),
Qobs(t−2), Qobs(t−1), Qobs(t), P(t−2), P(t−1), P(t),
with three nodes in the hidden layer and one output node
Qsim (t+L). It was examined the possibility to implement a
different architecture for each network, that is for each lead-
timeL, but the validation results showed, for eachL, an anal-
ogous behaviour when varying the dimension of the layers.

4 Multi-network modeling

Extremely different methods for combining the river flow
forecasts issued by a set of different rainfall-runoff mod-
els have been recently proposed in the literature, for exam-
ple by Shamseldin et al. (1997, 2002, 2007), Abrahart and
See (2002), Georgakakos et al. (2004), Solomatine and Siek
(2006). This work, in particular, presents an implementation
of multiple, alternative models, that is, a modular approach
that uses different, specialised rainfall-runoff models, chosen
on the basis of the specific hydro-meteorological situation
presenting itself in each forecast instant.

Modular neural networks (ormulti-networkmodels) for
streamflow forecasting have been successfully applied in the
hydrological literature in the most recent years: interesting
applications, considering different input variables and differ-
ent methods for identifying the model appropriate to each
case, have been presented with the objective of forecasting
future streamflow at extremely variable time-scales (from
hourly to monthly). Furundzic (1998) was the first to pro-
pose a multi-network approach with decomposition of the
modelling domain in a study on the relevancy of input vari-
ables. Zhang and Govindaraju (2000) introduced a modu-
lar architecture where different modules within the network
were trained to learn subsets of the input space in an ex-
pert fashion: a gating network was used to mediate the re-
sponses of all the experts and the model was applied for
forecasting monthly runoff values. A hybrid structure of Ar-
tificial Neural Networks, SORB, was proposed by Morad-
khani et al. (2004): the architecture employed consisted of
a Self-Organising Map (SOM) as an unsupervised training
scheme for data clustering, which correspondingly provided
the parameters required for the Gaussian functions in a Ra-
dial Basis Function (RBF) neural network. Such scheme
was inspired by the Self Organizing Linear Output mapping
(SOLO) proposed by Hsu et al. (2002): SOLO classifies the
input information using a SOM and then maps the inputs
into the outputs using multivariate linear regression. Para-
suraman and Elshorbagy (2007) clustered the data set in two
groups with a K-means algorithm before applying two dif-
ferent networks for forecasting monthly runoff values, ob-
taining a better reproduction of the dynamics of high flows.
Gopakumar et al. (2007) used Self-Organising Maps (SOMs)
for identifying a seasonal pattern classifying the monthly
rainfall and runoff values: subsequently an ANN was de-
veloped for daily flow forecasting using only the data of
the identified rainy season. A pioneer work that proposed
clustering algorithms for grouping high-resolution stream-
flow data (at hourly time scale), thus explicitly decompos-
ing the hydrograph in separate parts, for ANN multi-network
modelling, is that by Abrahart and See (2000): they imple-
mented two separate ANN models, specifically developed
for two rising limbs clusters. In their work, as also in the
one by Wang et al. (2006), the classification was based on
past river flow only. However, information on the recent
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precipitation depths is extremely valuable for the identifi-
cation of the streamflow evolution: in the period immedi-
ately following the forecast, a rising limb, for example, will
keep increasing or will reach the peak and begin to decrease
depending if the rainfall is continuing or if it has already
stopped. Jain and Srinivasulu (2006) used both rainfall and
flow values for decomposing the flow hydrograph and then
forecasting one-step ahead daily streamflow with a multi-
network approach: the decomposition was performed with
methods based on physical concepts and with a small SOM
network, which classified the flows in low, medium and high
ranges. Corzo and Solomatine (2007) applied a modular ar-
chitecture based on the distinction of baseflow and excess
flow obtained with i) a K-means clustering algorithm, ii) a
semi-empirical constant slope method or iii) filtering algo-
rithms of the hydrographs (where i) and ii) are again based
on past flows only).

The principal difference with the above cited works is that
the objective of this study is to forecast the future hourly
streamflow not only one-step ahead but for increasing lead-
times: to do so it is crucial to identify the conditions of each
forecast instant not only in terms of past streamflow data but
also of past rainfall data, given the importance of meteoro-
logical forcing in the evolution of future, farther flows. It
is therefore applied a classification algorithm that is based
on both past streamflow and rainfall values, rather than an
algorithm that performs a separation of the hydrograph in
different rising and falling limbs, based on past streamflow
data alone. The present work will thoroughly explore the po-
tential of SOMs for identifying the different meteorological
and hydrological conditions of each forecasting instant, and
therefore the future dominant hydrological processes, for im-
proving streamflow forecasts over lead-times from one to six
hours.

5 Classification of hydro-meteorological conditions

There are no predefined classes of the conditions character-
ising the watershed in each forecast instant: a clustering al-
gorithm is here used as anunsupervisedclassifier, where the
task is to learn a classification from the data. Such parti-
tioning will be based on the most relevant available infor-
mation, that is, past rainfall and flow observations, assuming
that such variables are able to characterise both the current
situation and its near-future evolution. It is important to un-
derline that the combination of rainfall and streamflow obser-
vations prior to the forecast contains valuable information on
the state of saturation of the basin and hence on its capability
to respond to recent and current rainfall perturbation. The
vector chosen for representing each forecast instant is there-
fore the same that will be provided in input to the multilayer
feedforward ANNs modelling the future streamflow values.

The classification is based on the use of a SOM (Self Or-
ganised Map), which organises the data according to their
similarity.

5.1 Self Organising Maps

Self Organising Maps (SOMs), or Kohonen networks (Ko-
honen, 1982, 2001), are artificial neural networks of the un-
supervised type: as opposite to supervised networks (like the
multilayer networks introduced in Sect. 3 for rainfall-runoff
modelling) there is no known user-defined target that the out-
put vector should reproduce: the desired solutions are not
given and the network learns to cluster the input data by rec-
ognizing different patterns. Unsupervised networks may be
viewed as classifiers, where the classes are the clusters that
are discovered in the calibration data and new data, such as
those of the validation set, may be successively assigned to
the same classes.

A SOM is formed by only two layers of nodes: the in-
put layer contains a node for each of then variables charac-
terising the unit to classify and the output layer is an array,
generally two-dimensional for the convenience of visual un-
derstanding, whose nodes are connected, by weighted con-
nections, to the input layer. Each input vector “activates”
only one output node (thewinningnode, that will represent
its class), using the Kohonen competitive learning rule.

Initially the weights are randomly assigned. When then-
dimensional input vector (x) is sent through the network,
each neuron of the network computes a distance measure:
a Euclidean distance was here chosen, as in the majority of
SOM applications, between the weight (W ) and the input:

∥∥x − W
∥∥ =

√√√√ n∑
i=1

(xi − Wi)2. (5)

The neuron responding maximally to the given input vector,
that is the weight vector having the minimum distance from
the input vector, is chosen to be the winning neuron. The
winning neuron and its neighbouring neurons are allowed to
learn by changing the weights at each training iterationt , in
a manner to further reduce the distance between the weights
and the input vector:

W(t + 1) = W(t) + α(t)hlm(x − W(t)), (6)

whereα is the learning rate,∈[0 1], l andm are the positions
of the winning and its neighbouring output nodes andhlm

is the neighbourhood shape, that reduces the adjustment for
increasing distance:

hlm = exp

(
−

∥∥ l − m‖
2

2σ(t)2

)
, (7)

where||l−m|| is the lateral distance betweenl andm on the
output grid andσ is the width of the topological neighbour-
hood.
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The weights of the SOM nodes are adjusted, through the
learning process, on the vectors of the calibration set. In
the learning process all the calibration input vectors are pro-
cessed through the SOM incrementally, one after the other,
re-iteratively: for each sample input vectorx, the weights of
the winner node and of the nodes in its neighbourhood are
changed closer tox.

Lateral interaction between neighbouring output nodes en-
sures that learning is a topology-preserving process in which
the network adapts to respond in different locations of the
output layer for inputs that differ, while similar input pat-
terns activate units that are close together. In this way, a
SOM produces a topologically ordered output that displays
the similarity between the samples presented to it (Foody,
1999).

At the end of the learning phase, the SOM is used (with-
out changing the weights any more) to classify the calibration
vectors: the trained network identifies which output node to
activate in correspondence of each input vector and all the
input vectors that activate the same node belong to the same
class. In exactly the same way, the tuned SOM may be used
to associate any new vector, such as those of the validation
set, to one of the units of the SOM output layer, thus attribut-
ing the new data to the clusters identified before.

5.2 SOM-clustering of the hydro-meteorological
conditions

The use of a SOM in the proposed research activity en-
tails the association of each of the input variables defin-
ing the current hydro-meteorological condition,Qobs(t−3),
Qobs(t−2), Qobs(t−1), Qobs(t), P(t−2), P(t−1), P(t), to
an input node. In the classification phase, such values are
standardised to have mean equal to zero and variance equal
to one, in order to give them the same importance in the dis-
tance measure.

There is not a predefined number of possible conditions
and it was chosen to have an output layer formed by three
rows by three columns, for a total of nine nodes, each one
corresponding to a class, believing that such number is suffi-
cient for representing a variety of hydro-meteorological con-
ditions without preventing their following interpretation. The
output layer topology is hexagonal, rather than rectangular,
so that diagonal neighbours have the same distance as hor-
izontal and vertical neighbours, as suggested by Kohonen
himself (Kohonen, 2001) and by several works on SOM clus-
tering (e.g., Van der Voort et al., 1996; Hsu and Halgamuge,
2003; Shirazi and Menhaj, 2005). The trained network will
indicate, for any input vector, the class of the matching fore-
cast instant, along with the affinity with other classes.

The SOM was initially applied to the calibration set, that
is, to the first three hydrological years of the observation pe-
riod, from 1 September 1992 to 31 August 1995. The vectors
characterising each one of the instants of such period, for a
total of 26 280 records, were iteratively given in input to the

SOM: at the end of the tuning phase, these vectors were clas-
sified in nine homogeneous groups, formed by all the vectors
resulting assigned to the same node on the output layer.

The hexagonal output layer is shown in Fig. 1, using mark-
ers that have similar colour and/or shape for the neighbouring
nodes. The figure displays also a part of the observed hy-
drograph where, at each timet , representing each instant in
which a forecast (or better, six forecasts for the varying lead-
times) will be issued, the flow value is indicated by a marker
having the colour and shape of the class to which the forecast
instant is assigned. It is therefore possible to visualise which
parts of the hydrograph are associated to the different classes.
It should be noted that the hydro-meteorological condition,
that is the class, of each forecast instant is the same, inde-
pendent of the lead-time that will be successively considered
for the forecast.

It may be observed in Fig. 1 that classes 1 and 2 (whose
nodes are adjacent on the output layer) correspond to the ris-
ing limbs (beginning of the rising for class 1, values closer to
the peak for class 2), whereas nodes 3 and 6 (contiguous as
well, even if diagonally, on the hexagonal map) correspond
to the maximum flow values, respectively around the peak
and at the beginning of the falling limb. Nodes 7 and 8, even
if it is less evident in the hydrograph zoom reported in the
figure, are associated to recession low flows. The hydro-
meteorological conditions corresponding to the remaining
nodes (4, 5 and 9) are instead intermediate between the pre-
viously described classes and less easily identifiable.

The nature of the various classes pictured in Fig. 1 is
recognisable also by analysing their size and the mean values
of the different variables in each class, reported in Table 2.

The table highlights that classes 1 and 2 are characterised
by the highest precipitation values, as expectable along rising
limbs, while the highest streamflow values are associated to
nodes 3 and 6. Minimum streamflow values and precipitation
practically null are associated to nodes 7 and 8 and it may
also be noted that such conditions are largely dominant in
terms of class occupancy.

Overall, the SOM seems to be able to clearly recognize
the different conditions, distinguishing the parts of the hy-
drograph not only in terms of the flow value observed in the
forecast instant and in the previous ones, but taking into ac-
count also the recent meteorological forcing: such distinction
may be advantageous for discerning the near-future trend of
the hydrograph evolution.

The first column of Table 2 highlights, nonetheless, that
some of the classes, in particular those characterised by the
highest precipitation and streamflow values, may be not nu-
merous enough to allow a proper calibration of the rainfall-
runoff models. In the modular approach, in fact, a different
model is parameterised on the only data belonging to each
one of these classes: the informative content of small-sized
calibration sets may result insufficient for a satisfactory char-
acterisation of the input-output relationship in the calibration
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Fig. 1. Markers associated to the SOM output layer nodes (upper right-hand corner) and part of the observed hydrograph: the streamflow
value relative to each forecast instant is indicated with the marker of the corresponding class. The elements belonging to classes 1, 2, 3, 6,
and 7 are put in evidence by the dotted boxes of the matching colours.

Table 2. Size of the nine classes obtained with the SOM and mean values, for each class, of the variables forming the input vectors of the
calibration set.

Mean value

Class Class Qt Qt−1 Qt−2 Qt−3 Pt Pt−1 Pt−2
size (m3/s) (m3/s) (m3/s) (m3/s) (mm/h) (mm/h) (mm/h)

1 1141 9.11 8.50 8.14 7.92 1.84 1.81 1.62
2 329 46.40 41.36 38.52 37.02 1.19 1.54 1.64
3 602 215.13 216.42 215.78 213.80 0.73 0.80 0.89
4 1295 5.87 5.79 5.74 5.69 0.28 0.23 0.29
5 1403 30.68 30.77 30.90 31.10 0.13 0.11 0.12
6 940 54.86 55.97 57.04 58.07 0.07 0.06 0.07
7 12 166 2.13 2.14 2.15 2.15 0.00 0.00 0.00
8 5462 9.09 9.12 9.16 9.20 0.01 0.00 0.01
9 2942 19.38 19.47 19.58 19.72 0.02 0.01 0.02

phase (as will be confirmed by the forecasting results on val-
idation data described in Sect. 6).

To overcome this problem, the opportunity to form wider
classes of observations (but always homogeneous from a hy-
drological point of view) was tested, so to ensure a greater
size of the data sets used in the calibration procedure.

Partitioning of the hydro-meteorological
conditions in wider classes

The SOM classification offers a straightforward solution for
the identification of similar classes, which may be joined to
form broader, homogeneous groups of data. In fact, as said
in Sect. 5.1, input vectors belonging to similar classes ac-

tivate nodes that are adjoining on the output layer: in this
way, nodes that are nearby may be considered representative
of akin classes. Once identified, on the output map, an as-
sociation of similar, adjacent nodes, it is therefore identified
a new, wider class, formed by all the elements that activate
each one of the neighbour nodes. One such possible associ-
ation may be based on the fusion of the following classes: 1
and 2 (rising limbs), 3 and 6 (flows close to the peak and be-
ginning of falling limb), 7 and 8 (null precipitation and low
flows) and the union of the remaining classes, corresponding
to intermediate situations.
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Table 3. Class size and mean values of the variables forming the input vectors of the calibration set for the two 4-class partitionings.

Mean value

Class Class Qt Qt−1 Qt−2 Qt−3 Pt Pt−1 Pt−2
size (m3/s) (m3/s) (m3/s) (m3/s) (mm/h) (mm/h) (mm/h)

1st 4-class partitioning (reasoned association of the original nine classes)

A (7+8) 17 628 4.29 4.30 4.32 4.33 0.00 0.00 0.00
B (4+5+9) 5640 19.09 19.14 19.22 19.33 0.11 0.09 0.11
C (1+2) 1470 17.46 15.85 14.94 14.43 1.69 1.75 1.62
D (3+6) 1542 117.43 118.61 119.01 118.87 0.33 0.35 0.39

2nd 4-class partitioning (4-node SOM)

I 17 120 3.8 3.8 3.8 3.8 0.01 0.01 0.01
II 4850 20.2 20.3 20.5 20.6 0.02 0.02 0.02
III 1463 8.5 8.3 8.2 8.1 0.54 0.46 0.49
IV 2847 75.5 75.3 75.1 74.8 0.93 0.98 0.95

The four classes resulting from this reasoned association
of the original classes may be compared with those that are
obtainable setting up a new SOM, with only four nodes in the
output layer, thus getting a second partitioning of the data in
four classes.

The properties of these two 4-class partitionings of the cal-
ibration data are reported in Table 3.

The classes identified automatically by the 4-node SOM
and those obtained by the reasoned associations (here named
with letters) of the nodes of the original 9-node SOM do
not coincide: in particular, the 4-node SOM does not seem
able to clearly identify the cluster of the rising limbs, charac-
terised by the highest rainfall (classes 1 and 2 of the 9-node
SOM, joined in one class, named class C, in the reasoned as-
sociated classes) and to distinguish it from the data that are
around the peak and at the beginning of falling limbs (classes
3 and 6 of the 9-node SOM, joined in class D). The approach
for obtaining wider classes that is based on the topological
properties of the original SOM appears therefore more suit-
able for the preservation of the hydrological distinctiveness
of the classes.

6 Rainfall-runoff modelling

Preliminary to the design of the modular approaches, in order
to have a term of comparison for the multi-network results,
one traditional, global rainfall-runoff ANN model is imple-
mented, trained on all the data belonging to the calibration
period. As a matter of fact, as described in Sect. 3, six dif-
ferent mono-output feed-forward networks, with seven nodes
in the input layer and three hidden nodes, were implemented
for forecasting the future streamflow from one to six hours
ahead,Qsim(t+L).

Having identified, in Sect. 5, the nature of the differ-
ent hydro-meteorological conditions and the corresponding
classes of forecast instants, it is then possible to build the
modular rainfall-runoff systems.

The first modular approach is built on the basis of the 9-
class partitioning: nine different rainfall-runoff ANN models
are implemented, each one formed by six mono-output net-
works for the varying lead-times. Every model is parame-
terised through a training procedure that uses exclusively the
input-output vectors, of the calibration period, belonging to
the same class. In this way, a different model is built for each
class, to be used for each particular hydro-meteorological
condition.

In the validation phase, streamflow forecasts are issued in
correspondence of every hour belonging to the last 16 months
of the observation period, whose data was not used in any
way in the tuning of the SOM, nor in the parameterisation
of the rainfall-runoff models. In the modular approach, the
tuned SOM already used to classify the calibration data is
first used to associate every forecast instant of the valida-
tion period to one of the identified nine classes. The rainfall-
runoff module representing that class is then chosen for issu-
ing the streamflow forecasts.

The goodness-of-fit measures of the validation forecasts
that are presented in Fig. 2 indicate, as expected, a remark-
able improvement for both the global model (red bars) and
the 9-class modular one (green bars) in comparison with the
simple persistent model (blue bars). It is, on the other hand,
evident that the use of the 9-module model allows an im-
provement of the MAE index, but it entails a deterioration of
the efficiency coefficients, if compared to the global model.

It may be hypothesised that this deterioration is related to
the low occupancy of some of the nine classes of the original
partitioning: in fact, as said in Sect. 5.2, the parameterisa-
tion of the rainfall-runoff models may be inadequate because
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Fig. 2. Performance measures of streamflow forecasts for the vali-
dation data set.

of the insufficient informative content of the calibration data.
This inadequacy is likely to affect the classes different from
7 and 8, which, in addition to be the most numerous, are also
those associated to the lowest streamflow values: it follows
that less reliable performances may be expected in the pre-
diction of the higher flows. Since the efficiency coefficient
amplifies the highest errors, which generally coincide with
the highest flows, this would justify the deterioration of such
coefficient for the 9-class modular model.

Two additional modular approaches were then imple-
mented, based on the 4-class partitionings that were iden-
tified in Sect. 5.2, whose classes are more numerous.

The second modular system is based on the four classes
obtained from the association (on the basis of their simi-
larity) of the original nine classes. Four different rainfall-
runoff network models are calibrated using all and only the
data belonging to each one of the four classes of hydro-
meteorological conditions. Figure 3 shows the 1 to 6 h ahead
forecasts issued by this approach in correspondence of dif-
ferent forecast instants (blue diamonds) for three validation
events: the behaviour, even if somewhere fluctuating (as ex-
pectable since the forecasts are issued by independent mod-
els), is not too unrealistic.
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Fig. 3. Observed hydrographs (Qobs) for three validation events
and, in correspondence of different forecast instants, the forecasts
(for lead-times LT=1÷6 h) issued by the modular approach based
on the reasoned association of the original 9 classes.

In analogous way, the third, and last, forecasting modular
approach was implemented on the basis of the classes auto-
matically identified by the 4-node SOM.

The goodness-of-fit indexes of the forecasts obtained with
these second and third modular approaches over the valida-
tion data are shown by the yellow and cyan bars in Fig. 2.
As far as the comparison with the global model is concerned,
the MAE obtained with both the 4-module approaches are
always substantially lower. The efficiency coefficients are
higher for the forecasts issued over the longest time-horizons,
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but are analogous, or even slightly worse, for the shortest
lead-times. This is probably due to the fact that for short
lead-times, due to the response time of the watershed, there
is less influence of the most recent rainfall values: such val-
ues will instead control the evolution of the phenomena over
longer time horizons, especially for the highest flow values.
Therefore, for short lead-times, also the global model may
allow satisfactory efficiencies, whereas, for longer time hori-
zons, differentiating the hydro-meteorological conditions be-
comes crucial.

The forecasts issued by the 4-class modular approach
whose classes are formed by the reasoned associations of
the nine original classes are always better, especially as far
as the MAE index is concerned, than those based on the 4-
node SOM. This is to be ascribed to the fact that, as said
in Sect. 5.2, the groups obtained from the similarity of the
original classes seem able to better preserve the distinctive
features of the hydro-meteorological conditions.

Overall, the modular approach based on the four, wider
classes obtained on the basis of the affinity among the char-
acterising hydro-meteorological conditions appears the best
performing one, especially for the longest lead-times.

7 Conclusions

The SOM method has proved to be an instrument suit-
able for an objective, automatic classification of the hydro-
meteorological conditions of the watershed: its use allowed
in fact a satisfactory identification of the different parts of the
hydrograph representing current and near-future hydrologi-
cal conditions, on the basis of the most relevant information
available in the forecast instant, that is recent streamflow and
rainfall observations.

As far as the real-time rainfall-runoff modelling is con-
cerned, the performances of the first modular approach,
based on nine classes of hydro-meteorological situations,
appear penalised by the low occupancy of some of the
classes. The reduced informative content of not sufficiently
numerous classes may in fact prevent an adequate char-
acterisation of the input-output relationship in the calibra-
tion phase. Broader classes were therefore formed, through
an association of the clusters representing similar hydro-
meteorological conditions, exploiting the property of the
SOM, unique among the other clustering techniques, to pro-
vide indications on the similarity between the classes. The
new modular system, differentiating the rainfall-runoff mod-
els according to classes that are wider but still preserve
the hydrological distinctiveness of the hydro-meteorological
conditions, allowed a remarkable improvement of the per-
formances in validation, in comparison to both the 9-class
modular approach and to the global one. Such finding high-
lights the important influence, on the streamflow forecasts,
of the number and properties of the classes that are identified
by the SOM: additional research on this aspect will be the
topic of future work.

Overall, the results show that an adequate distinction of the
hydro-meteorological conditions that characterise the basin
at the forecast instant, thus including additional knowledge
on the forthcoming hydrological processes, may consider-
ably improve the rainfall-runoff modelling performance.
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