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ABSTRACT
The Basilicata region summarizes many basic features of the
biogeographic complexity characterizing Mediterranean countries.
The intricate geomorphology and the long history of human
management generated the current landscapes, which include
both high-value ecosystems and areas prone to desertification.
Preserving goods and services provided by such composite land
cover mosaics poses many problems due to the interference/
overlap of diverse natural and anthropic factors which make the
correct selection of relevant parameters and the interpretation of
observational data rather difficult. Here, we study interconnections
between local climate and vegetation activity by correlating
parameters characterizing the interannual statistics of the NDVI
(Normalized Difference Vegetation Index), derived from satellite
data, with a recently devised multivariate statistical index of
meteoclimatic variability. We used a 15-year sequence of remote
images concerning a set of plots located around meteorological
ground stations of the central-eastern part of the region to pick
up spatial structures in the vegetation–climate relationships. Our
analyses were able to correlate spatial heterogeneity to variations in
water exchanges between vegetation and atmosphere. This study
represents a first step to improve the description of relevant proc-
esses to protect natural habitats and quality agriculture, therefore
combating land degradation and climate change detrimental effects.
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1. Introduction

One of the major concerns of Smart Communities is to balance the protection of the
environment with the economic and social growth (Loperte and Cosmi 2015). Green
economy partially responds to this basic requirement through the integral and sus-
tainable exploitation of bioresources by using scientific knowledge and technological
innovations as the substrate to ensure the effectiveness of the green approach.
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The role played by Smart Communities is crucial to design management guidelines
and to verify the successful integration of economic, environmental and social goals
in the long term. In order to achieve such an integration, decision makers need fac-
tual information on relevant processes affecting natural resources, correctly seen
within the heterogeneity of different biogeographic contexts.

The rich natural heritage and the large availability of bioresources and biodiversity
make the Basilicata region a good place to implement green strategies in a general
scenario of climate change. Not only more sustainable economic strategies could be a
good opportunity for the low-income rural areas that are present in the region, but a
smart approach could also be the key tool to solve or, at least, to minimize some
heavy problems threatening this region. Climate change, variations in land use and
anthropogenic pressure have caused land degradation and desertification phenomena
rather significant in the Mediterranean countries. Several studies indicate that some
areas of the Basilicata region are particularly prone to land degradation (Piccarreta
et al. 2006; Basso et al. 2010; Imbrenda et al. 2013; 2014; Statuto et al. 2017) stressing
on the importance of forest expansion and management to improve community
resilience (Kelly et al. 2015).

Elements of such complex landscapes are often organized in small patches
characterized by different levels of naturality. When studying aspects of biodiversity at
the agroecosystem level, attention should be paid to both habitat diversity within one
agroecosystem and agroecosystem diversity at regional and even larger scales. Many
conservation actions to address local problems have to be therefore integrated in
large-scale plans accounting for natural/anthropic ecosystem networks more than sin-
gle local ecosystems. This demand of integrated management straightforwardly leads
back to the need of a holistic approach to the monitoring useful to inform decision. In
particular, long-term sustainable plans for the exploitation of natural resources need to
integrate the risk linked to potential disturbing factors in the right climatic and phys-
ical context. Therefore, monitoring the link between vegetation activity and climate is
one of the main preconditions to implement successful sustainability strategies.

In this work, we combined satellite vegetation data, widely used for monitoring
vegetation health (Bajocco et al. 2012; Tasumi et al. 2014; Eckert et al. 2015; Ramos
et al. 2015; Greco et al. 2018) with a recently developed multivariate statistical index
(Di Leo et al. 2015; Giorgio et al. 2017) to study how local-scale vegetation activity is
linked to climate spatial heterogeneity. Our analysis focused on the eastern part of
the region which is largely used for agricultural activities and also includes areas vul-
nerable to land degradation and desertification (Lanfredi et al. 2015). Here, preserving
ecosystem goods and services for enhancing the local economy requires a better
understanding of local vegetation–climate processes to reinforce resilience and
combat the negative interference between climate change (warming, drought and so
on) and anthropic stress (water overexploitation, intensive farming and so on).

2. Vegetation cover and climate: the rationale behind the work

Interactions between climate and vegetation are intrinsically bidirectional (Arora
2002). Climate controls the spatial distribution of the major vegetation types on a glo-
bal scale. In turn, the presence of vegetation cover and its type alter physical
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characteristics of the land surface like albedo, roughness, evapotranspiration
(biogeophysical mechanisms) and atmospheric gas composition, for example CO2 and
CH4 (biogeochemical effects). The existence of a strict link between land cover annual
cycles (phenology) and seasonality of meteorological variables is well known.
Especially temperature plays a basic role in the seasonal timing of ecosystem
phenologies (Simoniello et al. 2012), which feedback on the global climate mainly
through the water and carbon cycles.

One of the many challenges for sustainability is understanding how vegetation
may respond to changes in climate (e.g. due to increase in greenhouse gas con-
centrations) and, conversely, how changes in vegetation cover (e.g. due to human
management) may affect evapotranspiration, soil moisture and, consequently, the
CO2 content in a future climate.

In the long term, considering the annual phenology as the basic temporal unit, we
can look at how meteorological irregularities cumulate/vary in time investigating
the contextual variability in vegetation productivity on interannual scales. Due to the
complexity of the mechanisms involved, estimating the correlation of vegetation
parameters with single climate variables could not be the best strategy as variations in
climate produce correlated changes in multiple physical variables. As an example,
analyses using ecosystem models suggest that biological systems are more sensitive to
changes in energy and water balance (Schimel et al. 1997) than to temperature or
precipitation in themselves (Bachelet et al. 2001).

An analysis of the coherence between climate variability and vegetation productivity
could therefore benefit from an integrated approach to the problem by handling
climate as a multivariate system rather than as a mere collection of independent
parameters and looking at the correlation between vegetation activity and indexes
representative of this multivariate structure rather than to correlation with single
variables. Statistical dependence, if any, could indicate indirectly what are the likely
mechanisms that drive the main vegetation–climate relationships in the long term.

2.1. Study area

Basilicata (Southern Italy) is a region with strong orographic contrasts (Figure 1). The
46.8% of its territory is mountain, 45.2% is hilly and only 8% is flat. Land cover in this
region largely reflects orography. In general, natural forested areas are present at high
elevation, whereas man managed covers mostly characterize level areas (Figure 2). The
central-eastern part of the region, which is one of the warmest European areas
(Lanfredi et al. 2015), includes bare clay hills largely affected by erosion (Summa et al.
2007; Liberti et al. 2009) and the Metaponto alluvial plain where salinization phenom-
ena are frequent (Satriani et al. 2012; Imbrenda et al. 2018). In spite of its vulnerabil-
ity, the Metaponto plain represents the main agricultural area of the region, with
intensive farming.

In the hilly central areas, the daily temperature range is very high both in summer
(18–22 �C) and in winter (10–15 �C), and drought is severe. Along the coast, the
climate is typically Mediterranean, with cool wet winters and hot dry summers. The
marked bi-seasonality and the large daily temperature range expose land to erosion
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Figure 2. CORINE Land Cover (CLC2012) map of the Basilicata region (projected to UTM zone 33N
at reference datum WGS84) downloaded from the Italian National Institute for Environmental
Protection and Research (ISPRA) (Source: http://www.sinanet.isprambiente.it/it/sia-ispra/download-
mais/). The strong fragmentation of the study area clearly appears from the map.

Figure 1. Digital elevation model (DEM) of the Basilicata region provided by the Basin Authority
(projected to UTM zone 33N at reference datum WGS84). The locations of the meteorological
stations are reported on the DEM. Source: (http://rsdi.regione.basilicata.it/Catalogo/srv/ita/search?
hl=ita#|r_basili:28FFB196-1EAA-49B4-769D-78C030B75042)
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and are predisposing factors for vegetation stress (Simoniello et al. 2015). A dry
sub-humid climate characterizes the eastern part of the region where most of the
vulnerable areas are located.

3. Data

3.1. Meteorological data

Meteorological data used in this study were collected from 2000 to 2014 by the
Regional Agency for Development and Innovation in Agriculture (Italian acronym –
ALSIA) in 20 sampling sites of the Basilicata region (Table 1).

The investigated area disposes of a sufficient density of meteorological stations,
which are more rare in impervious mountain areas.

All the ALSIA monitoring sites are equipped with instruments for continuous and
automatic measurement of agro-meteorological parameters. The examined variables
are as follows: minimum air daily temperature (Tmin in �C), maximum air daily
temperature (Tmax in �C), minimum daily relative humidity (RHmin in %), maximum
daily relative humidity (RHmax in %) and daily precipitations (P in mm). In Table 2,
for each monitoring station and for each year, available data are shown. We took
into account only annual series in which the percentage of data missing is lower
than 5% and in which there are more than three consecutive days of missing. The
remaining data missing were filled using the mean value of nearest neighbours.

3.2. Satellite data

The assessment of vegetation conditions during the examined period (2000–2014)
was made using the NDVI (Normalized Difference Vegetation Index) time series
derived from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor

Table 1. Geographic features of the sampling stations.

Name Code
Distance to water
bodies or river (m)

Distance to urban or
industrial areas (m) Aspect

Elevation
(m)

Aliano AL 266 5146 North-east 178
Bernalda BR 79 3882 South-west 57
Craco CR 292 1041 South 72
Ferrandina FE 62 389 East 351
Grottole GR 103 1092 South-east 486
Guardia Perticara GP 181 5348 North-east 551
Matera Nord MT 345 729 East 223
Metaponto ME 89 1391 South-east 9
Montalbano MJ 52 3141 North-west 151
Montescaglioso MS 357 7335 West 32
Nova Siri NS 123 3551 South-west 144
Pisticci PI 93 1922 East 189
Pisticci Scalo PS 31 1956 North-east 49
Policoro Pantano PP 1278 1276 Flat 4
Policoro Troyli PT 56 2862 South-west 115
San Giorgio Lucano SG 82 3239 South-east 456
Senise SE 62 2156 North-west 279
Stigliano ST 52 8247 North-east 281
Tursi TU 137 1447 South-east 58
Villa D’Agri VA 180 1575 West 598
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on board NASA’s TERRA satellite. This index is available as product MOD13Q1 –
vegetation indices – Collection 5, which is a composite of 16 days with 250 m of
spatial resolution (available from the NASA Land Processes Distributed Active
Archive Center, see https://earthexplorer.usgs.gov/). Annual time series were
constructed from the initial database by considering the maximum annual values,
according to the usual MVC (maximum value composite) procedure, which is
adopted by the remote sensing community to obtain an estimation of the annual
vegetation productivity.

3.3. Ancillary data

To identify possible vegetation covers in the vicinity of each meteorological station,
we used:

� Aerial photographs (1:10,000, with a resolution less than 1 m) for the years 2000,
2008 and 2013 of Basilicata, all freely accessible as WMS layers in GIS environment
from the Regional Geoportal of Basilicata Region (http://rsdi.regione.basilicata.it/);

� High-resolution Google Earth images.

4. Methods

4.1. Multivariate index NPCI

We analyzed H bi-dimensional annual matrices (with h= 1,… , H and H¼ 247, see
Table 2). We considered N descriptors (N¼ 7): Tm (�C) average air daily temperature,
Tmin (�C) minimum air daily temperature, Tmax (�C) maximum air daily temperature,

Table 2. Available database of meteorological data. Number of analyzed matrices.

Station 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N. of
years

per station

AL X X X X X X X X X 9
BR X X X X X X X X X X X 11
CR X X X X X X X X X X X X X X 14
FE X X X X X X X X X X X X X X 14
GR X X X X X X X X X X X X X 13
GP X X X X X X X X X X X 11
MT X X X X X X X X X X X X X X 14
ME X X X X X X X X X X 10
MJ X X X X X X X X X X X 11
MS X X X X X X X X X X X X X X 14
NS X X X X X X X X X X X X X X X 15
PI X X X X X X X X X X X X X 13
PS X X X X X X X X X X X X X X 14
PP X X X X X X X X X X X X X X 14
PT X X X X X X X X X X X X 12
SG X X X X X X X X X X X 11
SE X X X X X X X X X 9
ST X X X X X X X X X X X X X 13
TU X X X X X X X X X X X X X X 14
VA X X X X X X X X X X X 11
No. of considered

stations
per year

5 9 10 7 10 9 11 10 10 9 9 8 10 10 9
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RHm (%) average daily relative humidity, RHmin (%) minimum daily relative humidity,
RHmax (%) maximum daily relative humidity and P (mm) daily precipitations.

For each matrix $\cal {M} $h¼ [365 sampling days�N descriptors], principal
components analysis (PCA) was applied in order to highlight the correlation structure
implicitly contained in the data set. For each PCA run, the NPCI (Normal Principal
Component Index) values were calculated (Di Leo et al. 2015; Giorgio et al. 2017).
NPCI estimates a standardized weight for each descriptor in the correlation structure.
It allows to assess quantitatively the role of each descriptor in the different years and,
at the same time, the role of the different descriptors in each year.

Moreover, for each station and for each descriptor, we calculated the range of
NPCI in the investigated period. High values of NPCI indicate high variations in
weight of the variable in the correlation structure, and low values of NPCI indicate
the presence of a stable correlation structure over the time.

For highlighting differences among the sampling stations, we applied an
unsupervised clustering algorithm to the ranges of NPCI and calculated for each
station group the centroid values.

4.2. NDVI and NDVI_range

We adopted NDVI as an adequate proxy for vegetation productivity profitably used
in various biogeographic regions and at different spatial scales (D’Emilio et al. 2018;
Liu et al. 2018; Sulla-Menashe et al. 2018). NDVI is computed as follows:

NDVI ¼ qNIR�qREDð Þ
qNIR þ qREDð Þ

where qNIR and qRED are the reflectances at the near-infrared and red wavelengths
of the adopted sensor (in this case, the index is directly available as product
MOD13Q1, see Section 3.2).

We initially considered different parameters characterizing the NDVI temporal
statistics in each site (mean, maximum, minimum, variability range). Our analyses
led to select the range of the MVC-NDVI as the final, most explicative parameter
summarizing vegetation productivity variation per each pixel p:

NDVIrangep ¼ max MVC NDVIð Þ�min MVC NDVIð Þ½ �2000�2014

Finally, the mean value NDVIrange ¼ meanðNDVIrangepÞ around the meteorological
stations was calculated for different plot sizes (250, 500, 1000 and 2000 m) to perform
correlations with meteorological data.

5. Results

5.1. Analysis of NPCI

We analyzed 247 yearly matrices (for each year, at least 12 matrices were available
and for each sampling station at least 9 years of data were available).
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For each matrix, NPCI values with the corresponding range on the investigated
period were calculated. In Figure 3, the plot of mean values of NPCI of meteoro-
logical parameters for each sampling station is shown.

As shown in a previous paper (Giorgio et al. 2017), a low mean value of NPCI
suggests that the descriptor has a constant weight in the examined period, whereas a
high mean value of NPCI suggests that the descriptor has high variations in the
correlation structure. If estimated over the whole study area, the NPCI of the
precipitations has the lowest mean value (NPCIP¼ 0.021 ± 0.004); the minimum
temperature and the maximum relative humidity present lower mean values of
NPCI (NPCITmin¼ 0.067 ± 0.024 and NPCIRHmax¼ 0.049 ± 0.021) with respect to the
maximum temperature and minimum relative humidity (NPCITmax¼ 0.253 ± 0.017
and NPCIRHmin¼ 0.212 ± 0.012).

For highlighting differences between the sampling stations, we applied an unsuper-
vised clustering algorithm (D’Emilio et al. 2013) to the ranges of NPCI (r-NPCI)
estimated over the 15-year period. Centroid values were calculated for each group
of stations.

In Figure 4, we show the dendrogram of r-NPCI. This figure highlights the
presence of two clusters, cluster A and cluster B. Inside each of these clusters, other
two sub-clusters are present. The first sub-cluster A1 of the cluster A is composed by
the sampling stations of Pisticci Scalo (PS), Craco (CR), Matera (MT), Montalbano
Jonico (MJ) and Bernalda (BR). The second sub-cluster A2 is composed by the
sampling stations of Tursi (TU), Stigliano (ST), San Giorgio Lucano (SG) and
Policoro Pantano (PP). The first sub-cluster B1 of the cluster B is composed by the
sampling stations of Metaponto (ME), Montescaglioso (MS), Nova Siri (NS),
Ferrandina (FE), Grottole (GR) and Senise (SE). The second sub-cluster B2 is
composed by the sampling stations of Villa d’Agri (VA), Aliano (AL), Policoro Troyli
(PT), Pisticci (PI) and Guardia Perticara (GP).

As shown in Table 3, the clustering procedure puts in evidence groups with
different behaviours both for r-NPCITmin and r-NPCITmax, and r-NPCIRHmin and
r-NPCIRHmax. In particular, r-NPCITmin is very variable in the sampling stations that

Figure 3. Mean values of NPCI calculated for each sampling station and for each meteorological
variable in the period (2000–2014): NPCITmin, NPCITmax, NPCIRHmin, NPCIRHmax and NPCIP.
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are included in the A2 and B2 groups and r-NPCITmax is variable for the A2 sampling
stations. Summarizing the results of the cluster analysis:

� the A1 group is characterized by statistical significant variations in r-NPCIRHmin,
r-NPCIRHmax and r-NPCITmin;

� the A2 group is characterized by high variations in all four variables;
� the B1 group is characterized by low variations in all four variables;
� the B2 group is characterized by statistical significant variations in r-NPCIRHmin,

r-NPCIRHmax and r-NPCITmin which are opposite with respect to the A1 group.

The two macro-groups A and B can be labelled according to the weight of r-
NPCIRHmin and r-NPCIRHmax in the correlation structure of the meteorological
variables.

5.2. Analysis of NDVI

In Table 4, we reported the values of the NDVI_range selected to synthesize the
temporal statistics of the NDVI calculated in the sampling stations.

With the help of aerial photographs and high-resolution Google Earth images, we
firstly evaluated the possibility of land use/land cover changes. We did not observe
dramatic phenomena requiring additional investigations. Most of the changes
concerned little agricultural transformations probably linked to changes in EU’s
Common Agricultural Policy (CAP). Anyway, in agricultural sites, the interannual
variability due to crop changes (e.g. crop rotation) is rather frequent and should

Figure 4. Dendrogram of NPCI range (r-NPCI).

176 R. COLUZZI ET AL.



introduce variability in the local microclimate as well (see Section 2). It is interesting
to note that, on the average, the values of NDVI_range slightly decrease with the size
of the area, thereby highlighting that significant changes are truly local. When we
consider larger areas, randomness in the direction of the changes (increase/decrease)
per pixel leads to a smoother temporal variability. No evident correspondence with
the meteorological clustering seems to appear.

5.3. Spatial correlation analysis between NPCI range and NDVI

The correlation analysis between NDVI_range and NPCI, performed for all the
meteorological variables, shows that NDVI is statistically dependent on the NPCI
estimated for humidity variables (Table 5). Correlation significance at the 1000 m

Table 4. NDVI range estimated over the 15-year period per different plot sizes around the
meteorological stations.
Stations 250 m 500 m 1000 m 2000 m

Aliano 0.12 0.10 0.11 0.11
Bernalda 0.12 0.10 0.13 0.14
Craco 0.12 0.10 0.08 0.08
Ferrandina 0.13 0.10 0.10 0.13
Grottole 0.14 0.15 0.10 0.12
Guardia Perticara 0.39 0.36 0.27 0.22
Matera Nord 0.29 0.27 0.21 0.16
Metaponto 0.11 0.07 0.10 0.10
Montalbano 0.21 0.20 0.16 0.12
Montescaglioso 0.12 0.11 0.11 0.11
Nova Siri 0.30 0.24 0.17 0.15
Pisticci 0.09 0.09 0.08 0.07
Pisticci Scalo 0.24 0.22 0.16 0.16
Policoro Pantano 0.30 0.28 0.23 0.20
Policoro Troyli 0.19 0.17 0.15 0.11
San Giorgio Lucano 0.27 0.23 0.17 0.15
Senise 0.08 0.08 0.09 0.10
Stigliano 0.24 0.25 0.21 0.16
Tursi 0.12 0.11 0.13 0.11
Villa D’Agri 0.18 0.14 0.14 0.12

Table 3. Centroids of the clusters.
r-NPCI r-NPCITmin r-NPCITmax r-NPCIRHmin r-NPCIRHmax
A1 0.080� 0.081 0.227� 0.174�
A2 0.198� 0.139� 0.202� 0.172�
B1 0.087� 0.048� 0.079� 0.127�
B2 0.137� 0.069 0.076� 0.108�
Mean values 0.120 0.080 0.140 0.143

Values for r-NPCI rainfalls are not reported because irrelevant.�Statistical significant difference between centroid values and the corresponding mean values.
We have tested these differences by means of a paired t-test (level of confidence p< 5%).

Table 5. Correlation between NDVI_range and NPCI for the relative humidity.
Parameter NPCIRHmin NPCIRHmax
NDVI_range (250 m) 0.55 0.48
NDVI_range (500 m) 0.51 0.54
NDVI_range (1000 m) 0.45 0.47
NDVI_range (2000 m) – –

Only values with significance >0.5 are reported.
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threshold starts to decrease dramatically and at 2000 m the two variables appear to
be completely decorrelated.

6. Discussion and conclusions

We performed a statistical analysis of meteorological data from ground stations and sat-
ellite data concerning vegetation activity to investigate the presence of spatial coherence
in their interannual variability. The analysis of a multivariate index of meteoclimatic
variability allowed to pick up two macro-groups (A and B) in the set of the analyzed
sites which differ for the weight of relative humidity in the correlation structure of the
meteorological parameters. The analysis of the correlation with vegetation seems to
confirm the basic role of relative humidity to account for spatial diversity. As humidity
is related to evapotranspiration, the main source of mutual statistical dependence seems
to be the water exchange between the lowest atmosphere layer and vegetated surfaces,
which therefore mostly explains spatial coherence in the long-term variability of climate
and vegetation across the analyzed agroecosystems. This interpretation is also supported
by the decrease of such a correlation with the size of the plots analyzed, as evapotrans-
piration has a truly local character. These estimates should be sensitive to effects of
land cover and/or climate change which alter the current scenario and therefore are
able to provide a quantitative parameter to evaluate them. As a consequence, looking at
the multivariate statistics of climate jointly with local vegetation parameters may be a
promising strategy to improve the description of relevant processes affecting vegetation
cover heterogeneity within their proper biogeographic context. This holistic character-
ization could be useful to support Smart Communities in the development of plans to
protect natural habitats and quality agriculture, therefore combating land degradation
and climate change detrimental effects.
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