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Abstract. We recently developed a computational model of tumour growth. It is a cell-
based model that can simulate the growth of multicellular tumour spheroids up to more than
one million cells. The simulation program is very demanding and simulation time severely
limits the integration of additional biological details, and indeed, at the moment, a typical
simulation run requires tens of days to be completed. A new version of the code that exploits
Graphics Processing Units (GPUs) to boost performance is being developed. In this paper we
describe the design and implementation of a nearest-neighbour search (NNS) algorithm suitable
to run on GPU. The algorithm will be integrated in the original code to manage the geometrical
calculation in the simulation of the spheroid. Initially the stand alone NNS algorithm was tested
for spheroids of different size: better efficency was obtained for bigger spheroids. Eventually
the code was integrated in the whole simulation code and preliminary runs gave a speed up of
about 5 for spheroids of relatively small size (15000 cells).

1. Introduction

Many computational problems in science and technology require the use of high performance
computing solutions, since the huge amount of data and the complexity of the problem cannot
be managed with single machines. Researchers then turn to highly parallel super-computer
clusters, available in High Performance Computing (HPC) centres to solve their computational
problems. A few years ago a new solution came from the video-game industry with the
construction of small highly parallel processors, the Graphics Processing Unit (GPU). These
are graphic accelerators designed to render scenes — that is to generate images — and relieve the
computational load of a CPU, as a consequence more accurate images can be achieved in shorter
time. The use of GPUs for scientific computing was not immediately possible, because these
devices were designed to solve only those simple and repetitive tasks that are characteristic of
the rendering process. Nevertheless, thanks to pioneering efforts and to the increasing interest
of the scientific community, vendors were encouraged to propose new GPU architectures and
programming models, to utilise these devices for more general problems. In 2007 the advent
of the Nvidia CUDA architecture brought a considerable change in this scenario, with a new
generation of graphic cards that could be easily programmed with extensions to standard C++
or FORTRAN code [1]. Nowadays, the community of CUDA programmers is steadily growing,
just as the interest in the design of parallel algorithm suited to the GPU architecture [2, 3].
Not every algorithm can benefit from the computational power of the GPUs, because even those

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



5th Young Researcher Meeting, Trieste 2014 IOP Publishing
Journal of Physics: Conference Series 566 (2014) 012019 doi:10.1088/1742-6596/566/1/012019

algorithms that can be parallelised are not always portable on the GPU architecture. GPUs
were originally designed for the so-called data-intense parallel problem, such as the rendering
processes, where the same flux of instructions is executed on many cores on a huge amount of
data. For this reason, even today, graphic cards are more suitable to run those algorithms that
can be data-parallelised or that can be subdivided in small sub-problem based on group of data
— and this happens to be the case of most computational problems in physical simulations.
The design of a proper parallel algorithm for GPU requires a basic knowledge of the device’s
architecture. The main difference between GPUs and CPUs is that the processing units in a GPU
are simpler and smaller when compared to a traditional CPU, and this allows the integration
of thousands of computing units in a GPU card, hence its computational power. In a recent
GPU architecture called Kepler, the CUDA cores are grouped in multiprocessors (SMX) which
have 192 cores (Tesla K20) and a single card can have more than one SMX (there are 13 SMXs
in the Tesla K20). The GPU card has its own private memory with a high bandwidth. The
memory is organised in a hierarchical structure: typically there is a high capacity and high
latency access memory, called global memory, it is accessible by all the cores. Other different
levels of memory are also present, they are characterised by lower latency time but also by lower
capacity compared to the global memory and some of those are gradually more private to a single
core (for details see [1]). The memory management task is partially left to the programmer who
can obtain a better performance with a proper memory use.

A GPU program is organised in threads, each thread executes the same set of instructions — called
a kernel — although on different data. Threads are grouped in blocks, and blocks are organized
in a grid that can be 1-, 2- or 3-dimensional. The choice of the number of threads and the
dimension of the grid and of the blocks — up to a hardware-dependent maximum — is left to the
programmer. All this contributes to make the design and implementation of parallel algorithms
for GPUs both interesting and useful, although not trivial. At present, parallel algorithms
running on GPU are becoming quite widespread, both in research and in industry. In this paper
we explain how we use the GPU to speed up the biophysical simulation of a numerical model of
tumour growth.

2. Biophysical model of tumour growth

We have developed a biophysical model that simulates the growth of small avascular solid
tumours. Originally, it was conceived to describe the evolution of a multicellular tumour
spheroids (MCTS). A MCTS is an in vitro cell culture where cells are grown in such a way
to prevent their adhesion to the walls of the culture well, and they cluster in a roughly spherical
shape. Our model starts with the mathematical description of the individual cell cycle. Each
cell is approximated as a soft sphere that receives nutrients from the environment, it can grow
and proliferate and it interacts, both biochemically and mechanically, with the surrounding cells.
The model includes a set of reaction-diffusion equations that describe the dynamics of a selected
set of molecules. Threshold mechanisms are used to mark the transitions between the phases
of the cell cycle, and a phenomenological model describes the cell-cell forces, which exhibit a
repulsive or attractive behaviour according to the distance between the cells’ centers. For a
more complete description of the model see [4]. In a standard run we start with a single cell in a
uniform environment, and as the run proceeds, cells grow and proliferate and eventually the cell
aggregate can include as many as 1.5 million cells. The results of simulation runs show that an
in-silico MCTS has properties comparable with those of real MCTS, such as its external shape
and the distribution of dead cell in the aggregate (presence of a necrotic core) [5].

The program that implements the model is coded in C++, the disordered structure is
managed with the CGAL library [6], its computational complexity depends roughly linearly on
the number of cells. However, the number of cells grows fast, the initial growth is exponential
in time, and it turns out that the CPU time for each simulation step steadily increases as
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the simulated spheroid grows, and that a full simulation run takes tens of days. During the
simulation, the spheroids do not evolve following a predetermined lattice structure but the cells
are free to occupy every position on the 3D space. As a result, the computational complexity
of each step depends in good part on the geometrical calculation performed with CGAL. As
a consequence, the simulation is more realistic but requires the continuous evaluation of some
geometrical parameters which are needed to solve the model’s equations. In particular the
list of neighbouring cells - of each cell in the spheroid - needs to be evaluated whenever the
position of the cell’s center changes beyond a given threshold; the movements are due to cell-cell
forces and to cell division, when the spheroid is large these movements are so frequent that the
neighborhood changes at each time step.

To improve performance we modify the code by moving the geometrical calculation onto a GPU.
This was done by developing and implementing a proper parallel algorithm for searching the
nearest neighbour cells, starting with a set of cells that changes dynamically.

3. Design and Implementation of a GPU-based adjacent-cell search algorithm

The nearest-neighbour search is a well known problem in the field of computational geometry.
It can be solved using two different approaches: the brute force approach — i.e., by comparing
the distance between each single cell and all the other cells, and finally selecting those with the
smallest distances — or by performing a space partitioning operation to facilitate the search —
i.e., by limiting the search operation on a given subspace.

Parallel formulations well-suited to GPUs of both algorithms have already been developed
[7, 8, 9] and most of the experience has been garnered in the field of image processing.

In our case we started with the algorithm described in [9] , which considers a space partitioning
operation using a cubic grid and we modified it in order to find the “adjacent cells”, i.e., those
cells that are in close contact with a query cell, and therefore contribute to the diffusion processes.
The contact between two cells exists only if the distance between their center is smaller than the
sum of their radii multiplied by a suitable extension factor; this last parameter is introduced to
take into account the softness of cells. The extended radius — i.e., the radius multiplied by the
extension factor — is also used to evaluate the contact surface.

3.1. Adjacent cell search algorithm scheme

The search of the adjacent cells in the whole spheroid can be easily parallelised on GPUs when
threads are tasked to find the neighbourhood of individual cells. These operations are indeed
independent of each other, therefore they can be executed in parallel. As already mentioned,
the search operation is optimised by the space partitioning operation: first the bounding box
of the spheroid is identified and then it is subdivided in equally sized small boxes (see fig.1).
Next, each cell can be given a hash value, that is a number identifying the small box where it
resides. This hash value can be used by the thread to identifyin subspace where performing the
search operation, in particular each thread verifies the adjacency condition for the subset of cells
included in the boxes having the same or adjacent hash values as the examined cell, that is it
scans 27 small boxes (or less in case of cells belonging to the boundary boxes). A more complete
description of the algorithm is given in [10].

3.2. Test run

The algorithm stand alone was implemented using the extention CUDA 5.0 for C+4 and the
Thrust library [11] - the parallel version of the Standard Template Library. The program was
run on a GPU Nvidia Quadro 4000, provided with 256 cuda core of about 0.95 GHz, (32 cuda
core/SM). The execution is performed opening a number of threads, equal or higher than the
number of cells composing the spheroid, i.e. a thread for each biological cell. The threads
were grouped in block of 64 (a block multiple of 32 thread can assure better performance) and
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Figure 1. Main steps of the nearest-neighbour search (NNS) algorithm.

the blocks were arranged on a squared 2D grid in order to manage approximately 10° cells or
threads; the grid’s dimension changes according to the size of the problem, as an example for
a spheroid of 40000 cells we used a 25x25 grid of threads blocks. The algorithm was tested for
spheroids with different size, from hundreds to one million of cells. As expected the efficency of
the algorithm increases with the size of spheroid. The execution time (in ms, calculated by the
CUDA runtime API cudaEventElapsedTime () [12]) for the kernel responsible for the adjacent
cell search (the last two steps in fig.1) is shown in fig.2. The search operation requires only 403
ms to determine the list of neighbors for a spheroid higher than one million of cells.
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Figure 2. Execution time (ms) of the kernel
responsible for the adjacent cell search as a
function of the total number of cells (it does
not include the space partitioning operation
and the hash value assignment operation)
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Figure 3. Speed up as a function of spheroid
size for the geometrical calculation in the
main program

8.3. Accelerating the tumour growth runs on a GPU using the NNS algorithm
A standalone version of the algorithm for the adjacent cell search was integrated in the simulation
program. The main program is essentially a time loop which starts after initialisation and it
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performs in sequence the following operations: 1. calculation of biochemistry and biomechanics
of the cluster; 2 check for discrete cellular events; and, finally, 3. recalculation of the geometrical
parameters, including the proximity relationships, if a mitosis event occurs, or if the cluster
changed shape beyond a certain threshold. The new CPU-GPU version of the code was
implemented by partially assigning to GPU the third step of the main loop. This is done
by transferring on GPU all the geometrical data for the cells aggregate (positions of cell centres
and radii), and running the nearest-neighbour search (NNS) algorithm to find the list of the
adjacent cells. Moreover, a new condition was introduced to determine also the list of boundary
cells 1. These cells represent the interface with the environment and their correct evaluation is
important for a correct growth of the spheroids. After the calculation, the GPU transfers to
the CPU two vectors: AdCells[N*30] and BC[N] — where N is the total number of cells and 30
is the maximum number of neighbours for each cells — they store respectively the index of the
adjacent cells and the list of boundary cells. These device-host (GPU-CPU) and host-device
transfer operations are usually the most expensive ones, and have to be executed sparingly to
get the best performance.

To evaluate the performance of this new version of the code we introduce a speed-up value,
that is the ratio of the execution time on CPU and on CPU+GPU of the functions responsible
for the geometry calculation. A preliminary result is given in fig.3: the speed-up increases with
the simulated time step or similarly with the size of the spheroids, and this is due to the higher
efficiency of the nearest neighbour search algorithm for larger spheroids. In these preliminary
runs simulations stop at a relatively small size (about 15000 cells), where the maximum speed-up
obtained is about 5. We are now developing a new version of the algorithm for the boundary
cells identification: this is required to perform a full simulation.

4. Conclusions

The preliminary runs of the new code show an increasing speed-up value as a function of the
spheroid size. A better performance is expected when more recent GPUs, such as TeslaK20 will
be used. The forthcoming introduction of some common optimisation procedures — such as a
better use of the memory hierarchy — is also expected to increase the speed-up.We also expect
a large gain by moving on GPU the other critical step, i.e., the reaction-diffusion part of the
model. A faster code is fundamental for the introduction of new biological detail in our model,
with the final goal to get a more realistic biological environment that may be used to reveal
some hidden properties of the tumour growth process.

References
[1] http://docs.nvidia.com/cuda/cuda-c-programming-guide/
] Couturier R 2014 Designing Scientific Applications on GPUs (CRC Press)
| Navarro C A, Hitschfeld N and Mateu L 2014 Communications in Computational Physics 15
] Milotti E, Del Fabbro A and Chignola R 2009 Computer Physics Communications 180 2166-2174
[5] Milotti E and Chignola R 2010PLoS One 5
| http://www.cgal.org
] Garcia V, Debreuve E and Barlaud M 2008 Computer Vision and Pattern Recognition Workshops, 2008.
CVPRW’08. IEEE Computer Society Conference on (IEEE) pp 1-6
[8] Pan J and Manocha D 2011 Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (ACM) pp 211-220
[9] Pedro L, Teixeira J M, Farias T, Reis B, Teichrieb V and Kelner J 2012 International Journal of Parallel
Programming 40 313-330
[10] Stella S, Chignola R, Dogo F and Milotti E 2014 High Performance Computing and Simulation (HPCS),
2014 International Conference on 621 — 626
[11] https://code.google.com/p/thrust/
[12] http://docs.nvidia.com/cuda/cuda-runtime-api

L The condition for a cell to be considered on the boudary is to lie on the outermost small box layer





