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Abstract: We survey state-of-the-art approaches to study trajectories in their entirety, adopting a 
holistic perspective, and discuss their strengths and weaknesses. We begin by considering sequence 
analysis (SA), one of the most established holistic approaches. We discuss the inherent problems 
arising in SA, particularly in the study of the relationship between trajectories and covariates. We 
describe some recent developments combining SA and Event History Analysis, and illustrate how 
weakening the holistic perspective—focusing on sub-trajectories—might result in a more flexible 
analysis of life courses. We then move to some model-based approaches (included in the broad 
classes of multistate and of mixture latent Markov models) that further weaken the holistic 
perspective, assuming that the difficult task of predicting and explaining trajectories can be simplified 
by focusing on the collection of observed transitions.  
Our goal is twofold. On one hand, we aim to provide social scientists with indications for informed 
methodological choices and to emphasize issues that require consideration for proper application of 
the described approaches. On the other hand, by identifying relevant and open methodological 
challenges, we highlight and encourage promising directions for future research. 

Keywords: Sequence Analysis, Trajectories, Cluster Analysis, Mixed Latent Markov Models, Multistate 
Models 

 

                                                 
1 Abbreviations used in this paper: AIC, Akaike information criterion; BIC, Bayesian information criterion; CTA, 

competing trajectory analysis; EHA, event history analysis; HMM, hidden Markov model; LCA, latent class 
analysis; MHMM, mixture hidden Markov model; MSM, multistate model; OMA, optimal matching analysis; SA, 
sequence analysis; SAMM, sequence analysis multistate model.  
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1. Introduction 
 
In many frameworks, for instance, in Event History Analysis (EHA), the analysis of life courses and of 
their dynamics is based on the study of focal events or transitions. Instead, the adoption of a holistic 
approach implies regarding life courses as meaningful units (e.g., “careers” or trajectories). Such a 
perspective aims to account for complex time‐related interdependencies underlined in life course 
research (e.g., the “life course cube”, Bernardi et al., 2018, in this special issue). The goal is to 
undertake a joint study of events, their duration, and the transitions experienced by individuals over 
a prolonged period. 

Following the idea of multidimensionality of the life course (Bernardi et al., 2018), this approach 
allows one to consider that “single events should not be isolated from each other,” but rather need 
“to be understood in their continuity” (Aisenbrey & Fasang, 2010, p. 421). Many important 
transitions in the life course, such as the transition to adulthood (Shanahan, 2000) or the professional 
integration of unemployed (e.g., Studer et al., 2015), cannot be described by a single instantaneous 
event, and  should be conceptualized as part of a process that takes time and that can be relevant by 
itself. Similar considerations hold for “turning points,” defined as “alterations or deflection in a long-
term pathway or trajectory that was initiated at an earlier point in time” (Sampson and Laub, 2005, 
p.16). A holistic perspective aims to identify such processes, turning points, and transitions within 
trajectories by taking an overall approach, and to achieve a deeper understanding of the 
phenomenon. The goal of this work is to review state-of-the-art approaches for the study of 
trajectories, and to help social scientists make informed methodological choices. Therefore, we 
discuss the strengths and weaknesses of each approach, identify some relevant and unresolved 
methodological challenges, and highlight promising, and much needed, directions for further 
research. 

Table 1 offers a summary of the methods considered in this paper, together with an illustration 
of their most relevant and distinguishing features. 

 
 

<please insert Table 1 around here > 
 
Following Breiman (2001), the first distinction concerns the “culture” underlying the different 

approaches. Sequence Analysis (SA) refers to the data mining or algorithmic culture, which aims to 
efficiently recover the most relevant patterns in data without any assumption on the data-generating 
process or any predefined judgment about the relevant features of the life course. Therefore, SA is 
an exploratory data-driven approach, based on the idea that transitions and changes within 
sequences might have medium-term effects on future evolution, and analogously, that it is not 
possible to simplify how past experience impacts the trajectory’s subsequent unfolding. This allows 
the unveiling of different types of temporal interdependencies (Bernardi et al., 2018), such as 
“anticipative” or “path dependence” mechanisms (e.g., steps facilitating or hindering the experience 
of specific events), or a mix of the two. This clearly comes at a cost, because considering the 
trajectories as a whole and without any simplifying assumption on their unfolding mechanism, poses 
some problems with respect to the possibility of handling trajectories only partially observed and/or 
of studying the impact of time-varying covariates on life courses. 

On the other hand, Event History analysis (EHA), multistate and mixed latent Markov models are 
rooted in statistical culture, based on the assumption of a data generating mechanism with specific 
characteristics (Aisenbrey and Fasang, 2010). This allows using statistical inference to draw 
conclusions about the structure of the data or the relationships between covariates and trajectories. 
Nonetheless, the simplifying assumptions at the basis of such models are not necessarily well suited 
for the data at hand, and may lead to unreliable results when violated.  
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Between these two alternative views, other approaches have been recently introduced in the 
literature on life courses which —combining SA and EHA—exploit and somehow reconcile the two 
cultures. 

Other than for their scientific tradition, the considered methods differ in their primary object of 
interest and in their goals. Some approaches, specifically SA and Latent Class Analysis (LCA), focus on 
whole trajectories, and aim to uncover groups of similar sequences, and possibly, explain their 
relations with baseline covariates (observed prior to the moment when the trajectory starts). Instead, 
multistate models and hidden Markov Models (HMM) focus on instantaneous transitions within the 
life course, and on factors that might explain the probability of experiencing them. Again, some 
methods hold an intermediate position between the two opposite perspectives. Mixture Hidden 
Markov Models (MHMM) allow identifying groups of similar trajectories and studying transitions 
simultaneously. Models combining SA and EHA focus on transitions to sub-trajectories; thus, they 
adopt a medium-term perspective on changes within life courses. 

We review these approaches, their strengths and weaknesses, and discuss the aspects that 
require consideration for their proper application. Section 2 reviews the SA framework and some 
recent proposals combining EHA and SA. In Section 3, we discuss model-based approaches used in 
the literature to analyze life courses. We conclude with a discussion and some remarks in Section 4.  
 

2. Sequence Analysis 
 
Since its introduction in the social sciences by Abbott (1995), SA has been increasingly used in life-
course research to study processes that are coded as sequences, that is, as the ordered collection of 
the states experienced over a period, typically observed at regular intervals. This coding is close to 
the concept of trajectory used in the life-course paradigm, defined as the sequence of roles and 
social statuses (Elder et al., 2003; Bernardi et al., 2018). Rooted in the data-mining culture, SA 
provides a holistic perspective on trajectories by considering them as the main statistical units. The 
main goal of SA is to describe trajectories and identify their most salient and distinctive features.  

Several powerful visualization techniques, such as the chronogram, the index plot (Scherer, 2001) 
and its extensions (see e.g., Piccarreta & Lior, 2010; Piccarreta, 2012; Fasang & Liao, 2014), the 
decorated parallel coordinate plot (Burgin & Ritschard, 2014), are available for effective exploration 
of trajectories.  

Typically, SA proceeds by grouping similar trajectories, obtaining a typology identifying typical 
temporal patterns in sequences. Indeed, individual trajectories usually have some small and 
negligible differences (e.g., slightly different duration of the visited states, or small spells in different 
states). The construction of a typology of sequences is designed to ignore such differences, and to 
unveil homogeneous groups of trajectories that are distinct from one another. Sometimes, the 
resulting data-driven types match theoretically expected ideal-types (in a Weberian sense, see Abbott 
and Hrycak, 1990) of processes or trajectories in data. 

Technically, SA proceeds by calculating dissimilarities among life courses, based on criteria that 
properly account for the most relevant observed differences in timing (“when”), sequencing (“in 
what order”), and duration (“how long”) of those states experienced by individuals throughout a 
period (see e.g., Studer & Ritschard, 2016). Cluster analysis is then used to obtain a typology based 
on these dissimilarities.  

The original SA framework has been enriched and extended in several directions.  
In their seminal works, Abbott and coauthors (Abbott, 1983; Abbott & Forrest, 1986; Abbott & 

Hrycak, 1990) first addressed the problem of measuring dissimilarity between sequences by 
extending to social science Optimal Matching (OM), an edit distance—originally developed in the 
field of information theory and computer science (Levenshtein, 1965)—based on the effort needed 
to transform one sequence into another. Since then, many different dissimilarity measures have been 
considered and introduced in the literature, assigning different importance to the trajectory features 
(timing, sequencing and duration) when assessing dissimilarities between two life courses (see Studer 
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& Ritschard, 2016, for a theoretical and empirical review and comparison of alternative proposals). 
The unavoidable dependence of SA results on the dissimilarity measure should not be considered 
disadvantageous; rather, it guides the researcher in defining the career aspects worthy of being 
distinguished, in line with a specific research question. Therefore, this choice should be fully 
motivated from the theoretical viewpoint (see Studer & Ritschard, 2016, for some guidelines on this 
choice). In addition, the performance of the chosen criterion for the data at hand should be 
evaluated to ensure it actually highlights the expected career characteristics.  

The development of “joint” or “multichannel” SA (see Gauthier et al., 2010; Pollock, 2007; and 
Piccarreta, 2017, for a review) allows considering several life domains simultaneously when a set of 
trajectories is available for each individual (e.g., describing the evolution of work activities, 
partnership, and parenthood over time). Technically, joint SA includes any approach leading to the 
definition of a dissimilarity measure based on the information arising from all the domains taken into 
account. As in the single domain case, such dissimilarities can be exploited to obtain—via cluster 
analysis—a joint typology of the set of sequences, describing the most typical combinations of 
patterns observed across the domains. 

Focus on the whole trajectory does not exclude the interest or need for inference, or for 
procedures to verify whether individuals with specific characteristics experience significantly 
different careers. Making inferences about sequences is not easy, as their relationship with 
covariates is typically complex and manifold. Within the standard SA framework, the focus has been 
mainly on the possible association between a set of covariates and the whole trajectory. This is 
usually achieved by estimating a multinomial regression where the typology is the dependent 
variable (see e.g., McVicar and Anyadike-Danes, 2002).  

The standard SA framework provides researchers with a rich collection of tools to analyze 
trajectories. Nonetheless, in the following, we illustrate some specific aspects, often overlooked in 
applied research, which should be carefully considered to obtain reliable results.  

2.1. The Standard SA Framework: Assessment of Quality and Reliability of 
Results  

The application of SA requires the preliminary coding of the trajectories (or processes) as sequences 
and the choice of a dissimilarity criterion. Typically, cluster analysis is applied to obtain a typology 
identifying the most typical patterns in data. Multinomial regression is then used to relate the 
obtained types to factors that supposedly influence the probability of experiencing different types of 
trajectories. While very common, this path of analysis can raise some issues that, if neglected, might 
undermine the quality and reliability of the obtained results. In this section, we review such 
criticisms, while providing general guidelines to tackle them. 
 

2.1.1. Robustness of Cluster-Analysis Results  

The typology obtained with cluster analysis is often used to identify the most relevant temporal 
patterns in data. Typically, data-driven types are individuated by summarizing the features of 
sequences within the same cluster. This can be done by associating to each cluster its medoid, that is, 
the trajectory most similar to all the others in the cluster. When interpreting a typology, deviating 
sequences are usually ignored, given that descriptions of the social world require a certain degree of 
simplification and that the deviations of trajectories from the types can be considered as the 
reflections of different realizations of the same underlying process (Abbott, 1995; Studer, 2013). 
Nonetheless, this is only reasonable and trustworthy when a reliable partition has been obtained.  

Indeed, cluster analysis always produces a grouping of sequences, even when there is not a 
“natural” or “relevant” partition (see, among others, Abbott & Tsay, 2000, and Levine, 2000). 
Furthermore, different clustering algorithms might lead to different partitions, potentially with strong 
differences when there are no well-separated groups of cases within the data. Therefore, assessing 
clustering quality is crucial: it can guide and support the identification of the most suitable typology, 
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and therefore, the strength of the conclusions drawn on its basis. Too often, such evaluation is 
disregarded in SA studies; however, it should be a part of standard and routine procedures. 

Cluster evaluation can be conducted at different levels. To assess the global quality of a partition 
(see Studer, 2013, for a review), we avoid criteria based on assumptions (such as multivariate 
normality), which would not be encountered when analyzing sequences and their associated 
dissimilarities. Among the available criteria, the well-known R2 measures the amount of 
heterogeneity within the whole sample, which is accounted for by the clusters. The average 
silhouette width summarizes the individual silhouette coefficients, based on the comparisons 
between the closeness of a sequence to its own cluster and its closeness to others (Kaufman & 
Rousseeuw, 1990). The stability of a partition (Hennig, 2007, 2008), refers to its resistance to small 
data perturbations or to the clustering algorithm used. 

However, a good global quality partition does not necessarily imply high levels of internal 
cohesion for all clusters. In fact, some clusters might be very well defined, while others could include 
outliers, that is, sequences showing very distinguishing features and deviating consistently from the 
others. Therefore, it is also necessary to evaluate the quality of each cluster, for example, by using 
the aforementioned average silhouette width or stability measure, which can be calculated 
separately for each cluster.  

In addition, a typology might perfectly summarize some sequences and not others. For instance, 
some sequences could be on the borderline, lying between two different clusters.  

Low levels of internal homogeneity, and in some cases, weak degrees of cluster membership, are 
not a crucial concern when clusters are used to describe the most relevant patterns, and when 
borderline or outlying cases do not influence the typology description. To verify that this is the case, 
one could define “robust” medoids by focusing on the most central sequences in the clusters, and 
excluding critical sequences. Critical sequences can be identified based on their average dissimilarity 
to other sequences in their cluster, or on their deviation from the medoid, or on their individual 
silhouette coefficient (Kaufman & Rousseeuw, 1990; Studer, 2013). Some algorithms, such as 
partitioning around the medoids or fuzzy clustering (Everitt et al., 2011; Kaufman & Rousseeuw, 
1990), directly provide such information. The partitioning around medoids algorithm assigns 
sequences to clusters based on dissimilarity to the clusters’ medoids. Fuzzy clustering calculates for 
each sequence the degree to which it belongs to each cluster (see Studer, 2018, for a discussion on 
the use of fuzzy clustering in SA). 

When several domains are studied using joint SA, the quality of a partition—obtained based on 
joint dissimilarities—should be evaluated both at a joint level and in relation to each specific domain. 
Indeed, if the trajectories in different domains are not all interrelated (see Piccarreta, 2017, and 
Piccarreta & Elzinga, 2013, for a discussion on association criteria), the obtained clusters typically will 
satisfactorily describe the characteristics of only some domains. In fact, cluster analysis will be driven 
by the more interconnected domains, whose trajectories evolve coherently, and/or by the less 
turbulent domains, whose trajectories are (relatively) more similar, and therefore, more easily 
grouped. In these situations, the possibly relevant multiple-domains features would be only partially 
identified by the joint typologies. Therefore, on one hand, a preliminary assessment of the level of 
association among domains corroborates the suitability of a joint SA. On the other hand, the 
evaluation of cluster quality also verifies whether a joint typology can be identified and/or which 
domains are sufficiently connected for a joint analysis.  

While the described procedures are preconditions for reliable and reasonable interpretations of 
an SA typology, their implementation cannot guarantee that the extracted types will properly match 
those eventually existing in the data. First, the (chosen) clustering algorithms might fail to correctly 
recover the “true” patterns underlying data (see Warren et al., 2015, for discussion). Furthermore, 
while statistical quality should certainly play a key role in the evaluation of a typology, a statistically 
satisfactory grouping of cases can be sociologically meaningless or insignificant, because data-driven 
types might not match with the expected ideal types, or because they aggregate or disaggregate 
sociologically meaningful types in unexpected or questionable ways. Consider, for example, a study 
on the school-to-work transition, and assume that standard (statistical) criteria lead to the selection 
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of a partition mainly based on the sequence of visited states; thus placing in the same cluster people 
who attended college and entered the labor market after a period of unemployment. Such a partition 
might be inadequate from a sociological perspective, because it would not distinguish between 
individuals entering the labor market soon after finishing studies and individuals who instead 
experienced long periods of unemployment. To prevent (at least partially) such situations, one should 
carefully evaluate which trajectories’ traits should be regarded as similar from the (adopted) 
sociological perspective. A coherent choice of the dissimilarity criterion, which clearly influences the 
results of cluster analysis, would increase the likelihood of obtaining typologies reflecting the 
(supposedly) relevant types.  

To the best of our knowledge, the literature does not yet offer clear indications for assessing the 
sociological validity of a typology, despite the evident relevance of this aspect. We think that defining 
suitable procedures and guidelines in this direction is one of the most important challenges faced by 
cluster analysis in general and by SA in particular.  

 

2.1.2. Relationships between Trajectories and Covariates 

In many situations, it is of interest to study the relationships between covariates and entire 
trajectories. Specifically, attention can be focused on the evaluation of the significance and strength 
of the relationship or on the substantive interpretation of the covariates’ impact on trajectories. In 
both cases, to avoid anticipatory analysis (see Hoem & Kreyenfeld, 2006), attention must be limited 
to baseline covariates (i.e., measured before the beginning of the trajectory). 

To measure the strength of the association, Piccarreta and Billari (2007) extend ANOVA concepts 
and R2 to dissimilarities and to SA to evaluate the ability of a categorical variable to account for total-
sample heterogeneity. Studer et al. (2011) suggest assessing the statistical significance using 
permutation tests to estimate p-values; they further discuss an extension of MANOVA that permits 
considering the joint impact of several covariates. These ANOVA-like approaches allow one to 
identify significant relationships between covariates and sequences, and/or to individuate the most 
relevant covariates (see, e.g., Bonetti et al., 2013). Nonetheless, they do not provide qualitative 
indications on the shape of the relationships, nor do they allow drawing any substantive 
interpretation. For instance, one might conclude that men and women experience “significantly” 
different trajectories, without any insights about how they differ. It is a common practice to deduce 
possible differences by comparing the characteristics of sequences in different groups (e.g., using 
plots). This is viable only in the ANOVA setting (i.e., one covariate), because in MANOVA, one should 
consider the differences in the groups induced by one variable conditioned to all the others, and very 
soon, this becomes infeasible (and impossible when continuous covariates are included). Finally, as 
they are based on qualitative evaluations, these considerations might be highly subjective, and fail at 
identifying the diverging patterns. Further developments are clearly necessary to define criteria 
allowing for the appropriate identification of possible structural differences between groups of 
sequences, within either ANOVA or MANOVA frameworks. 

To gain more insights into the sequences-covariates relationship, many studies adopt a two-stage 
approach. First, they apply cluster analysis to identify the main patterns in the data. Second, they use 
multinomial regression to relate the probability (or “risk”) of experiencing different trajectory types 
to a set of background variables (see, e.g., McVicar & Anyadike-Danes, 2002). The results of this 
procedure are much easier to interpret than those obtained using the the ANOVA-like approach. In 
the best case, the covariates’ levels can be related to the specific patterns characterizing the different 
clusters.  

Data reduction resulted from cluster analysis demands considerable caution. Indeed, the same 
response value is assigned to all sequences in the same cluster, completely neglecting the possible 
within-cluster dispersion. This is not problematic if such dispersion is small and random; however, 
when it is systematically related to one or more covariates, it could either suggest a false association 
or mask an existing one (see Studer, 2013, for a discussion). For instance, in a study on the 
relationship between gender and professional career, sequences within the same cluster might be 
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characterized by similar state sequencing, but by consistent differences in state duration (i.e., 
structural residual variation). Results can be safely interpreted if gender differences mostly relate to 
sequencing, because clusters summarize this information. However, one might overlook any 
relationship related to duration, as the clusters do not account for this residual variation.  

When within-cluster dispersion is high, cluster membership cannot be univocally interpreted, and 
its use as a dependent variable can raise interpretation issues. This procedure could even be 
misleading or meaningless if sequences within the same cluster are misinterpreted as being similar in 
all respects. Therefore, it is crucially important to preliminarily verify that residual variation does not 
preclude this approach’s reliability. 

Besides undertaking evaluations of cluster robustness and quality, one should also carefully 
identify the characteristics common to the sequences within the same cluster. In this way, cluster 
membership is well defined and there is no risk of over-interpretation. For instance, in the previous 
example on gender and professional career, one could stress that the multinomial regression relates 
the sequencing of states to covariates, irrespective of the time spent in each state, because the 
obtained clusters differ according to their sequencing but not according to their durations in each 
state. 

In addition, it is advisable to identify outliers, namely, sequences badly represented by their 
cluster (this can be done using the criteria illustrated in the previous section). Generally, the lack of a 
clearly defined type and/or deviations from the type that cannot be considered as unavoidable 
fluctuations or as intrinsic and expectable differences among structurally similar careers suggest that 
the partition should be refined in order to obtain a reasonable level of within-cluster homogeneity. If 
this can be achieved only by considering a relatively large number of clusters, estimation issues might 
arise. In fact, a too large number of levels for the response variable or a too-low frequency for some 
of its levels can lead to poor estimation or to low confidence in the parameters estimated with 
multinomial regressions. 

Even when properly applied (in the sense specified above) SA suffers some limitations, 
preventing its wider adoption by life course researchers. First, the handling of censored and missing 
data remains an open issue. Second, the focus on the entire career prevents the possibility of 
studying the relationship between sequences and time-varying covariates. Such limitations are 
discussed in the next subsection.  

 
 

2.2. The Standard SA Framework and its Limitations 

2.2.1. Censoring and Missing Data  

One relevant problem within the standard SA framework relates to the treatment of missing 
data. Indeed, SA focuses on the entire trajectory experienced by individuals over a specific period. 
Nonetheless, some sequences can present missing states at some points. In addition, some 
trajectories can be right-censored, being observed only for a sub-period (for example, when 
considering the family formation patterns between 18 and 40 years of age, all the individuals being 
younger than 40 at the last survey will present partially observed trajectories).  

In the presence of missing data, many dissimilarity criteria would treat a missing state as a 
specific additional state, hence regarding the presence of missing states as an indicator of similarity 
between trajectories. Therefore, it is advisable not to include partially observed trajectories in the 
analysis, even if it were reasonable and convenient, at least when the data are missing completely at 
random (i.e., loosely speaking, when cases with missing values are just a random subset of the data).  

Halpin (2016a, 2016b) introduced two interesting proposals to deal with this issue. Halpin 
(2016a) discusses the use of a “multiple imputation” procedure in conjunction with SA. Halpin 
(2016b) proposes to treat missing states as “self-different”; missing states are therefore maximally 
different from any other state, including the missing ones themselves. In this way, the absence of 
data is no longer a factor of similarity between sequences. Both proposals are reasonable and 
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promising; nonetheless, there is not yet an in-depth analysis or evaluation of their effects on data or 
results. In particular, the ability of each method to recover a “meaningful” and unbiased typology in 

the presence of various kinds of missingness (MCAR, MAR, MNAR2) has not been discussed. In 
addition, it would be important to evaluate whether the use of multiple imputation artificially adds 
structural information. 

The problem is even more serious and difficult to handle in the case of censored trajectories. In 
such situations, the apparently viable strategies of considering sequences of unequal length or using 
a missing state to code the unobserved part of the trajectories might lead to unsatisfactory results. 
Indeed, the length of the sequence would typically result as an element of similarity between 
trajectories. Additionally, normalizing the dissimilarities—as suggested by Levy et al. (2006)—is not a 
suitable solution, since normalization accounts only for the varying number of features of the 
sequences and not for differences in their lengths (see Elzinga & Studer, 2016, for discussion).  

The presence of missing states or censored sequences would typically lead to the formation of a 
typology depending on the observation time or on the amount of missing data; frequently, this does 
not align with the goals of the analysis. Hence, this problem remains one of SA’s major limitations 
(Aisenbrey & Fasang, 2010) and one of the most important and urgent areas for future research. 
Indeed, due to the lack of a clear strategy to address the problem, many studies limit their attention 
to sequences entirely observed for the considered period, thus, disregarding individuals presenting 
missing states. If missingness relates to individuals’ characteristics, this necessarily leads to the 
systematic exclusion of specific strata of the population. In particular, the most recent cohorts, that 
are typically only partially observed, are often excluded from the analysis, despite their great 
research interest. 

 

2.2.2. Time-Varying Covariates  

Focusing on the trajectory as a unique conceptual unit prevents the possibility of analyzing the effect 
of time-varying covariates on its unfolding. However, this perspective is crucial when exploring the 
many interdependencies advocated by the “life course perspective” (e.g., Bernardi et al., 2018), that 
might require studying the relation between different life domains (e.g., professional and family 
formation patterns), or between linked lives (e.g., careers of parents and children). Furthermore, it is 
often of interest to analyze the multilevel interdependencies in the life course, for example, by 
evaluating how macro-social indicators (e.g., unemployment rates) relate to the evolution of 
individual trajectories.  

The unique possibility of studying such interdependencies within the standard SA framework is to 
build a sequence-type representation of the time-varying covariates, and to apply joint SA, obtaining 
a joint typology describing the most typical combinations of temporal patterns observed across the 
considered domains. Unfortunately, this approach is far from being satisfactory. Indeed, as already 
mentioned (see Section 2.1.1), cluster analysis would also produce a joint partition for independent 
life domains; therefore, the joint typology in itself cannot be regarded as proof of a relationship (see 
Studer, 2015, for a discussion). A careful preliminary evaluation of the association among domains 
(Piccarreta, 2017) is necessary to avoid over-interpretation of the results. In addition, the coding of 
the time-varying covariates might lead to a reduction in their information content (e.g., for numerical 
continuous variables, an interval recoding will be necessary), and the results might depend on the 
chosen coding. Furthermore, in joint SA the trajectories are treated symmetrically, so that 
conclusions can be drawn only on mutual association and not on the possible dependence of the 
response trajectory on the others. Lastly, but perhaps more importantly, joint SA would highlight the 
relationship between the entire trajectories observed across the considered domains, and would not 
allow exploring how changes in one domain impact the subsequent evolution of the other/s. 

                                                 
2 MCAR: missing completely at random (missingness is completely random) MAR: Missing at random 
(missingness is completely random within subgroups of other observed variables), MNAR: Missing not at 
random (missingness depends on the missing values themselves). 
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In the next section, we review some recent proposals that by combining SA and EHA, permit 
studying the effect of time-varying covariates, if not on the entire trajectories, at least on sub-
trajectories.  
 

2.3. Combinations of Event History and Sequence Analysis 

Approaches combining SA and EHA are based on the idea that weakening the holistic perspective 
allows studying the medium-term unfolding of trajectories. The “Competing Trajectory Analysis” 
(CTA) and the “Sequence Analysis Multistate Model Procedure” (SAMM) focus on the relation 
between sub-trajectories of predefined length and time-varying covariates. Instead, “Sequence 
History Analysis” (SHA) aims to study the relation between the trajectory experienced up to each 
observation period and a subsequent event.  

 

2.3.1. Competing Trajectory Analysis (CTA) 

In CTA, Studer et al. (2018b) consider the sub-sequences following the first transition out of an initial 
state, which in their application is the first event of the transition to adulthood. An example of the 
extraction of such sub-sequences is given in panel (a) in Figure 1. 

“Typical sub-sequences” are first identified using SA and cluster analysis. The time spent in the 
initial state is not taken into account, which allows obtaining a detailed typology of the subsequent 
process, as less information needs to be summarized via cluster analysis. In a second step, the chance 
to experience one of the identified typical sub-sequences is estimated using a competing risks model. 
This allows jointly studying the timing of the focal transition and the subsequent (partial) process 
“type.” Time-varying covariates measured at the beginning of the sub-sequence can be accounted 
for. CTA is useful when all the sequences begin with the same state (e.g., living with parents) and 
when the duration of the first state is a key aspect of the trajectories.  

2.3.2. Sequence Analysis Multistate Model Procedure (SAMM) 

The SAMM procedure was introduced by Studer et al. (2018) to study the effect of German 
reunification on employment trajectories among women in East and West Germany. As depicted in 
panel (b) of Figure 1, focus is on the sub-sequences of fixed length following any observed transition, 
so that multiple sub-sequences are possibly extracted from each sequence. Again, SA and cluster 
analysis are used to identify “typical sub-sequences of medium-term changes.” The effect of time-
varying covariates on the chance to start each type of sub-sequence and the time spent in each state 
are then estimated using a multistate model (see Section 3.1 for details). This approach might involve 
the estimation of several regressions, whose number depends on the number of states in the 
sequences. However, the authors discuss several strategies for reducing the number of regressions 
and for simplifying the interpretation of the results.  
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Figure. 1. Extraction of sub-sequences from two sequences of different lengths using (a) CTA and (b) SAMM 
Note that in (a) only one sub-sequence is extracted following the first exit from the initial state, whereas in (b) 
more sub-sequences are extracted, following each transition. 

  
One of the main advantages of CTA and SAMM is that they can also be applied to censored 

sequences; this allows including younger individuals in the analysis, and studying their behavior 
within a limited observation period. This is particularly advantageous in many applications, 
particularly when studying the transition to adulthood. Furthermore, focus on sub-trajectories allows 
one to account for a medium-term conception of changes that can describe the individuals’ possible 
anticipations for or awareness of the future. This perspective can be related to the idea of “shadow 
of the future” (Bernardi et al., 2018).  

 

2.3.3. Sequence History Analysis (SHA) 

CTA and SAMM only partially account for the past trajectory. Actually, in SAMM, clusters of sub-
trajectories are obtained conditional on the state prior to a transition; therefore, the probability of 
transitioning to a given sub-trajectory is related to the state experienced prior to the transition. 
Furthermore, indicators summarizing previous experiences can be included among the explanatory 
variables. However, the sub-trajectory experienced prior to the transition is not fully considered. 

Such an aspect is accounted for in SHA, proposed by Rossignon et al. (2018). The authors study 
the probability of experiencing a specific (non-recurrent) event (i.e., leaving the parental home), 
using a discrete-time EHA model that includes, among the others, a time-varying categorical 
covariate describing the history experienced up to each time point. Specifically, cluster analysis is 
applied to partition the trajectories experienced up to each time point into types, and for each 
individual, the sequence of the visited clusters is registered. Therefore, individuals can change cluster 
membership over time, even if the same partition is used for all time points. This is a promising 
approach for studying the “shadow of the past” (Bernardi et al., 2018) on an upcoming event, which 
can also be extended to include past trajectories related to several life domains among the 
covariates. However, further work is necessary to extend it to complex situations (e.g., when 
explanatory trajectories cannot be easily clustered and/or when the clusters cannot be assumed to 
be constant over time), and to account for recurrent and/or concurrent events. 

The methods presented in this section share the advantage of allowing the study of the influence 
of time-varying covariates at least on sub-sequences. They are clearly well suited in all those cases 
when future or past sub-sequences are in fact more relevant or more interesting than the entire 
trajectory. The study of shorter sequences of changes often results in better clustering quality in the 
SA phase of the procedures. This is surely a positive side effect of this perspective, even if all the 
considerations made in the previous section for clusters used as inputs in subsequent analyses 
remain valid. While each procedure is promising in itself, we think that their combination is also 
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worthy of exploration. Indeed, the analysis of the interplay between past trajectories and future sub-
sequences will likely shed light on how shadows of the past and of the future intertwine.  
 

3. Model-based Analysis of Life Course Trajectories 
 
Alongside the methods grounded in the algorithmic culture, several model-based approaches have 
been used to study life courses described as sequences. Contrary to SA, these approaches assume the 
existence of a stochastic process underlying the trajectories’ unfolding, and aim to analyze and 
describe its features. Common to this procedure is the assumption that the complex task of the 
holistic study of sequences can be efficiently simplified by “decomposing” the whole trajectories into 
collections of relevant features, such as transitions from one state to another and/or durations of the 
visited states. In addition, some simplifying hypotheses are generally made concerning the 
mechanism relating the past experienced states to the future ones.  

Here we focus on two classes of models that permit to study sequence data in a life course 
perspective, namely, multistate models (MSMs) and latent Markov models. Both approaches allow 
describing the types of events occurring over time and the relationship between covariates, either 
baseline or time varying, on the sequence of experienced events and transitions.  

Specifically, the class of MSMs includes many popular models (e.g. the competing risk model) 
that describe the process regulating how individuals move among a finite number of states. Instead, 
latent Markov models (see Vermunt et al., 2008 for a comprehensive review) postulate the existence 
of a latent and unobservable process, described by a Markov-chain with a finite number of states, 
which “emanates” and induces the observed states. Interestingly, these models can be regarded as 
an extension of MSMs, where a multistate model governs the transitions across latent rather than 
across observed states.  

In the next subsections, we describe the most relevant features of multistate and latent Markov 
models, highlighting their usefulness for studying trajectories. Finally, in subsection 3.3, we review 
possible limitations, some in common and some specific to each approach, and discuss some aspects 
that should be taken into account for their proper application. 
 

3.1. Multistate Models 
 
Multistate models (see Meira-Machado et al., 2009, for an effective presentation) comprise a broad 
family of methods used to study sequences of categorical states by focusing on the time spent in 
each state and on the transitions out of a given state (Andersen & Keiding, 2002; Putter et al., 2007; 
Therneau & Grambsch, 2000). Such states can be transient and possibly recurrent, or absorbing, 
when transitions to other states are not possible. Figure 2 reports a typical MSM, the illness-death 
model without remission, where boxes, circles, and arrows represent respectively transient states 
(health or illness), absorbing states (death) and possible transitions. The number of possible states 
and their types impact the possible transitions, and consequently, the complexity of the model. For 
example, Figure 3 illustrates an MSM for the transition to adulthood, where states are recurrent and 
several transitions are possible.  
 

 

Figure 2. The illness-death model. Boxes indicate transient states, the circle the absorbing state, and arrows 
possible transitions 

ACCEPTED M
ANUSCRIP

T



 

Figure 3. An MSM to study the unfolding of family trajectories during the transition to adulthood. The model is 
simplified by ignoring rare transitions, such as going back to the parental home after parenthood.  

 
Different assumptions can be made about the dependence of transitions on time. The Markov 

assumption states that the transition probabilities only depend on the history of the process through 
the current state. In some cases, it can be more realistic to rely on the semi-Markov assumption, 
which relates the transition probabilities not only to the current state but also on its duration since 
the last entry. Despite some references in the literature concerning alternative non-Markov models 
(see e.g., Meira-Machado et al., 2009), the Markov or the semi-Markov properties are most 
commonly adopted in applied research. 

For MSMs in continuous time, the data-generating stochastic process is fully characterized by the 
instantaneous hazards of transitioning to different states (given the current state and the past 
history). Covariates are often included in the model through the transition intensities to explain 
differences among individuals. A popular choice is the proportional hazards model, having a 
multiplicative structure with a baseline transition intensity assumed common for all individuals. It can 
be shown that under proper assumptions, maximizing the likelihood of the entire multistate process 
is equivalent to maximizing the probability of each transition separately, provided the model’s 
coefficients are transition-specific (Putter et al., 2007). Therefore, in this case, the transitions 
instantaneous hazards can be estimated using standard EHA methods for competing risks. For 
instance, the model in Figure 2 could be estimated by considering three transition intensities and 
transitions to illness or to death can be regarded as competing risks while being healthy.  

Even if transitions occur continuously, in some applications the available data are interval-
censored (because individuals are observed at equally spaced time points, for example monthly or 
yearly). In this situation, a possible approach is to use discrete-time MSMs, describing individuals’ 
movements between states in discrete time. In these models, attention is focused on the transition 
probabilities, and the covariates are typically related to such probabilities through generalized 
multinomial regression (Agresti, 2002). Discrete-time MSMs are particularly interesting when dealing 
with sequences, which are typically built registering the state experienced at regular equally spaced 
time points. An interesting discrete-time MSM, explicitly built to model life courses, is the State 
Change Model (SCM) introduced by Bonetti et al. (2013). The SCM takes into account only transitions 
to different states. The probability of observing a specific sequence is expressed as the combination 
of discrete time to event distributions and transition probabilities. Specifically, the duration of the 𝑘-
th visited state, and therefore, the (discrete) time to the next generic transition, is assumed to follow 
a geometric distribution with a parameter possibly depending both on the covariates available when 
the 𝑘-th state was entered and on the last state visited before entering the 𝑘-th one. The probability 
of transitioning from one state to another is modeled using multinomial logistic regressions, which 
are allowed to include covariates and the duration of the state visited prior to transition. 

Importantly, MSMs allow easily dealing with right-censored data, provided the censoring 
mechanism is independent from the process. In this case, information on censored individuals can be 
“completed” based on that on cases without censoring (see Meira-Machado et al., 2009, and their 
references for in-depth discussion). 

Despite their undeniable appeal, the application of MSMs to the study of life courses presents 
some limitations. The complexity of the model is one of the key issues of MSM, because 
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interpretation can become cumbersome very soon. In its simplest form, the MSM implies modeling 
one set of coefficients for each transition. This is perfectly manageable for a simple model, such as 
the illness-death model, which involves only three transitions. However, considering all the possible 
transitions between a set of 𝑠 states results in 𝑠(𝑠 − 1) transitions and in as many sets of 
coefficients. To simplify the MSM, the set of possible transitions is often reduced by ignoring some 
(rare) transitions, or by considering a reduced set of states. In these cases, the impact of this 
simplification should be thoroughly justified and discussed. Other aspects to carefully take into 
account will be discussed in Section 3.2, after describing the latent Markov models.  

 

3.2. Mixed Latent Markov Models for Sequences 
 
In this section, we illustrate latent class models and various specifications of hidden Markov models, 
which are based on the assumption that a latent structure exists underlying the observed sequences. 
Such latent structure should identify the most relevant features of the trajectories, by filtering out 
negligible individual differences, which are attributed to “sampling variation” (i.e., due to the 
probabilistic relation between latent and observed states). From the substantive perspective, the 
distinction between latent and observed states has an appealing interpretation with reference to life 
course data. Indeed, life courses can be regarded as the outcomes of life planning, and the latency 
can reflect plans and/or decisions taken at different stages of life, resulting in the experience of 
specific observed states (Billari & Piccarreta, 2005).  

To describe the most relevant characteristics of such approaches, we refer to the convenient 
overarching framework offered by the so-called mixed latent Markov model (Vermunt et al., 2008). 
Such a model can include both a time-constant latent class, ω, accounting for the possible partition 
of cases into (latent) groups, and a sequence of time-varying discrete latent states, 𝛔 = (σ1, … , σ𝑇), 
describing the stochastic process generating the observed states. It is assumed that ω is independent 
of each latent state, and that 𝛔 is described by a Markov chain, so that σ𝑡 only depends on σ𝑡−1 
(first-order Markov assumption).  

The model is fully characterized by four types of probabilities: the probability of belonging to a 
certain latent group, the probability of having a particular initial latent state, the probability of 
transitioning to a specific latent state at each time‐point, and the emission probability of observing 
each actual state, which depends only on the concomitant latent state. The case when more domains 
are considered can be easily accommodated assuming that the states experienced in different 
domains are all independent conditioned to the latent states. In other words, each latent state 
emanates the concomitant states observed across all the domains simultaneously. 

As underlined by Vermunt et al. (2008), such articulation allows accounting for three relevant 
aspects in longitudinal data analysis: autocorrelation, through the relationship between the time-
varying latent states; misspecification or measurement errors through the imperfect relationship 
between latent and observed states; and unobserved heterogeneity, through the possible partition of 
the trajectories induced by the latent class.  

This generic model offers a unified framework to address some of the issues described in the 
previous sections. Covariates (possibly time varying) can be included in the model and, at least 
theoretically, they can influence each of the probabilities mentioned before (typically using 
multinomial regression models). Thus, it is possible to relate clusters (latent class) to covariates; 
however, additional and more articulated relations can be explored too. Consider for example a 
study on work careers. One could be interested in evaluating whether women present a higher 
probability of belonging to specific groups, for example, a group characterized by long permanence in 
the inactive status. Alternatively, one might evaluate whether women experience the transition from 
a latent state describing participation in the labor market to one describing exclusion from it more 
frequently. Finally, it is possible to assess whether conditioned to participation in the labor market 
(latent state), women exhibit a higher propensity to work part-time (observed state). Ideally, the 
relation between sex and work trajectories could be investigated accounting for all these aspects. 
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However, allowing the same variable to influence different probabilities could hinder a proper 
interpretation and evaluation of its effect. Therefore, it is common practice to relate each covariate 
only to one type of probability (see Han et al., 2016).  

In addition, the model can handle missing values in the trajectories (if covariates are not missing). 
Cases with partially observed trajectories can contribute to the likelihood when they provide 
information at a given occasion. This is viable only when data are missing completely at random. 
Nonetheless, in the case when it is possible to identify the missing data mechanism (that is the 
underlying cause of missing data) the model can be extended to incorporate it (see Vermunt et al., 
2008). 

Most of the models used in the life-course literature to study sequence data can be regarded as 
special cases of a mixed latent Markov model.  

Latent class analysis (see e.g. Barban and Billari, 2012) assumes that cases are partitioned into 
latent classes, with class membership possibly depending on baseline covariates. A class-specific 
distribution describes the simultaneous occurrence of states across domains, and each trajectory is 
regarded as the realization of a sequence of independent draws conditional on its class distribution. 
Thus, within each class, the realization of a state in one domain is independent of all the previously 
experienced states. This strong assumption implies disregarding possible associations among 
subsequent events, which is one of the main weaknesses of this approach3.  

Hidden Markov models (HMMs) that are increasingly employed in life-course research (see, e.g., 
Bolano et al., 2016; Han et al., 2016) constitute an interesting improvement. Figure 4 provides a 
graphical representation of a standard HMM, and illustrates the relationships between covariates, 
latent states, and actual states in the simplified case when only one domain is taken into account. It is 
worth noting that for the model to be identifiable, it is commonly assumed that the transition 
probabilities are time‐homogeneous (i.e., constant over time). 

Observe that HMMs do not include latent classes, and therefore assume that the unobserved 
heterogeneity can be ignored (Vermunt et al., 2008). Alternatively, Helske et al. (2016) propose to 
model sequences using the so-called Mixture HMM. Such model assumes that cases are partitioned 
into groups, and that the sequences within each class are the emanation of class-specific HMMs. In 
Helske et al. (2016) covariates are allowed to affect only the latent class membership. Therefore, 
time-varying covariates cannot be included in the model. This surely constitutes a major limitation of 
the model. In addition, in many applications, one may assume that covariates play different roles, 
influencing different features of the trajectories (class membership, or latent states, or observed 
states). Unfortunately, to the best of our knowledge, no statistical software is yet available that 
allows estimating a “full” HMM conditioned to each class. 
 

 

 
 

Figure 4. Graphical representation of an HMM. σ𝑡 and 𝑠𝑡 denote the latent and the observed states 
respectively, 𝑝(σ𝑡|σ𝑡−1) denotes the probability of transitioning from one latent state to another at time 𝑡 (i.e., 
the Markov chain), and 𝑝(𝑠𝑡|σ𝑡) denotes the probability of observing an actual state at time 𝑡 given the 
concomitant latent state (emission probability). All the probabilities can depend on the covariates. 

 

                                                 
3 Han et al. (2016) discuss a formal heuristic to relate the stochastically defined latent classes to the distance-
based clusters found with SA. 
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While seeming very promising for sequence‐data analysis, latent Markov models present some 
drawbacks. Indeed, the introduction of additional layers of complexity (i.e., latent variables) leads to 
a large number of model parameters, making the interpretation of the results and of the effect of the 
covariates difficult. For the same reason, the parameters’ estimation might be cumbersome when 
the data are too sparse. Moreover, the estimates might depend on the initialization of the EM-
algorithm used for estimation. Such algorithm might fail to find a global optimum when the likelihood 
has multiple local maxima. This can be partially solved by running the algorithm with different initial 
parameters settings, and by selecting a final model based on goodness of fit criteria (such as the AIC 
or the BIC). In addition, some authors (see, e.g., Helske et al., 2016) propose the preliminary use of 
SA to individuate reasonable algorithm starting points. 

Under a substantive perspective, the estimation of the number of latent states and/or classes can 
be a relevant issue too. Typically, models with different levels of complexity are contrasted, and the 
final model specification is chosen based on goodness of fit criteria. In many situations, this leads to 
select complex models, characterized by a too large number of latent states, for instance. This poses 
serious problems from the interpretative perspective when one assumes, for example, that the latent 
states describe the “stages in which the subjects will take demographic decisions” (Han et al., 2016, 
p. 159). 

Other issues, also common to multistate models, are discussed in the next subsection. 
 

3.3. Discussion on Model-Based Approaches: What Limitations? 
 
It is important to consider that model-based approaches rely on simplifying assumptions that do 

not necessarily hold, and which may lead to unreliable results when violated.  
The (first-order) Markov assumption implies that the “shadow of the past” is efficiently 

summarized by the last visited state (or by the last entered state in SCM). Nonetheless, in many 
applications, the “memory” of the process might be longer, and the combination of experienced 
states, their ordering, and/or their duration might be relevant. As suggested by Meira-Machado et 
al., 2009, for MSM, a way to assess whether such assumption is tenable is to include among 
covariates variables depending on the past history, such as the last state entered before the current 
one, or the duration of the current state, and to test their significance. Some proposals deal with 
higher-order multistate Markov models (see e.g., Berchtold and Raftery, 2002); however, at least to 
our knowledge, they are not commonly adopted in social sciences, mostly because of the difficulties 
arising from the high number of parameters and the consequent estimation and interpretation 
problems. Similar considerations hold for latent Markov models, with the additional problem of a 
very large number of parameters implied by this solution. While these aspects prevent the wider 
adoption of higher-order Markov models in life-course research, we are convinced that 
developments are worthy, both from the theoretical and from the computational point of view. 

In addition, the assumption of time-homogeneity can be unrealistic in social sciences, where 
transitions are typically highly time-dependent. Allowing time-varying covariates (e.g., the age at 
transition) to influence transitions can at least partially mitigate the impact of such assumption 
(when violated). Nonetheless, this would imply assuming a linear or quadratic impact of time on 
transitions, which might not be an adequate specification in some cases. 

These aspects are particularly relevant in the assessment of the quality of models, and in the 
selection of their features (e.g., selection of covariates, and choice of the number of latent states or 
of the latent classes), which are often based on criteria (e.g., AIC or BIC), which intrinsically relate to 
assumptions concerning the data-generating process. It is worthwhile to remind that the model is 
assumed to hold, and that its parameters are estimated at maximizing the coherency between the 
model and the data. While this is not a serious issue when the assumptions—even if not necessarily 
met—allow a proper description of the data structure, it is important to understand whether the 
simplified (and more readable and interpretable) structure arising from a model satisfactorily 
describes the data. Titman & Sharples (2008, 2009) offer an interesting review of some goodness of 
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fit measures that are adequate both for Markov and for hidden Markov models. Without entering 
into details that are beyond the scope of this paper, the available proposals aim at evaluating the 
models’ performance with respect to the transitions. While this is surely a relevant preliminary 
investigation when these models are applied to sequence data, the ability of a model to adequately 
explain/reproduce trajectories unfolding should also be considered.  

Indeed, this relates to a fundamental aspect that is often overlooked. Models focused on 
transitions might prevent keeping a holistic perspective on the life course. In a sense, such models 
are well suited for sequences characterized by “natural ordering” or “natural histories” in the words 
of Abbott (1992). For example, when family formation patterns are considered, individuals tend to 
move from being single, to being in a union and to have children, transitions to previous states are 
relatively rare, and more importantly, the transitions across different states provide a quite 
exhaustive description of the life course. Nonetheless, this does not hold in all situations. For 
example, when analyzing processes including recurrent states and transitions, such as work careers, 
back and forth movements are more frequent and there is not necessarily a predetermined order in 
transitions. A woman could enter the labor market with a part-time job, or experience a long period 
of unemployment before getting a job, but she could also alternate between full and part-time jobs 
or unemployment after the birth of her children. In this case, the adequacy of a model should be 
assessed also with respect to its ability to reproduce the sequencing of states observed in data. This 
is even more essential when more trajectories are studied jointly, because in such cases it is also 
crucial to evaluate whether the model allows for a satisfactory explanation of all the domains or only 
of a subset of them.  

The complexity of the presented model-based approaches can rapidly increase when a high 
number of states or transitions are considered, and/or when latent class or latent states are added to 
the model. However, one should bear in mind that—as for any statistical procedure—this additional 
complexity does not guarantee results that are more meaningful from a sociological viewpoint. 
Indeed, in some situations, an overly articulated analysis might further complicate the unveiling of 
patterns in data, and might prevent a meaningful interpretation of the results. These considerations 
relate to the more general problem of comparing alternative models with respect to their ability of 
recovering trajectories. This can be difficult because alternative models are typically non-nested, and 
possibly rely on different assumptions. 

Piccarreta et al. (2017) discuss a possible approach in this direction. They suggest evaluating the 
goodness of fit of alternative models by simulating, for each observed case, a set of sequences, 
possibly conditional on covariate values, and measuring the similarity between observed and model-
based generated sequences. As in SA, this procedure depends on the criterion chosen to measure the 
dissimilarity between sequences. On the one hand, such dependence can be considered a limitation; 
however, sensitivity analyses can be run to evaluate if (and to what extent) the obtained results 
depend on the chosen dissimilarity measure. On the other hand, the choice of a dissimilarity criterion 
allows one to emphasize those features relevant to sequence comparisons, according to the 
researcher. Such dissimilarity-based evaluations can be considered as a way to reconcile the main 
ideas underlying the standard SA-dissimilarity-based descriptive framework with the increased 
attention of the scientific community towards (holistic) model-based approaches. 

 

4. Conclusions 
 
The goal of this study was to account for the advantages and limitations of different approaches 

in studying life courses from a holistic perspective. We distinguished among methods based on SA 
and its extensions, and model-based procedures, which are increasingly used in the SA community. 
While the strength of SA is its ability to provide a holistic descriptive view of trajectories, it does 
suffer from some limitations, mostly related to its use in inferential analysis. Procedures developed 
within the original SA framework rely, at least to a certain extent, on decisions that need to be taken 
by the researcher. The most relevant issues include the choice of a dissimilarity criterion, of a 
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clustering algorithm, of the number of clusters, and of the actual way in which results are used (e.g., 
as input for a multinomial regression, or to draw conclusions about relationships among more 
domains). This can raise concerns when these decisions are not thoroughly discussed and justified, 
when instead they need to be well grounded, both theoretically and for the data at hand.  

From this perspective, model-based approaches might seem less “subjective,” as model 
specifications are often chosen based on statistical indicators. However, it is important to fully 
discuss and justify the choice of a specific model, particularly with reference to the adequacy or 
suitability of the underlying assumptions and to the possible estimation problems that might arise 
when fitting complex models. It is true that models based on specific assumptions—even if not 
necessarily met—can lead to good results for a given dataset; nonetheless, this should not be taken 
for granted. Similarly, one should consider that a model that is theoretically well suited for a specific 
problem might nonetheless perform very poorly. This suggests the necessity of carefully revising 
results and their implications, particularly with respect to the original goal of the analysis. For 
example, when a model for transitions is employed with the ultimate aim of explaining the unfolding 
of entire trajectories, it is crucial to assess its performance with respect to the original object of 
interest.  

Even if the methods presented in this work can all be employed to study trajectories in their 
entirety, they focus on different aspects. MSMs and HMM describe the generative process by 
focusing on transitions and (possibly) on time spent in each states. In some cases, due to the 
complexity of the model or of the data, this decomposition might result in losing sight of the whole 
trajectory. Instead, SA and LCA point to the entire trajectories, but do not provide insights on the 
data generating process. Combinations of SA and EHA hold an intermediate position, focusing on sub-
sequences, and therefore, weakening the holistic perspective of SA. Whatever the chosen approach, 
the methodological focus should fit the substantive research question; this is a crucial aspect in 
making an informed methodological choice. In turn, choosing a specific approach might itself require 
further specification or articulation of the goal of the analysis.  

The differences in the analytical focuses of the different methods could be exploited in a 
“sequence of analyses” combining the techniques revised in this paper. A preliminary application of 
SA would provide insights into the most relevant patterns in the data, and possibly unveil different 
mechanisms governing the unfolding of the sequences. For instance, a data-driven type of sequence 
might suggest that being a graduate always precedes reaching a managerial position. Clearly, to 
generalize this observation (e.g., concluding that graduation is a mandatory step), it is necessary to 
test it. Under this perspective, model-based approaches offer the opportunity to verify and test 
considerations based on the evidence provided by SA. The SA results could also provide indications 
useful for models’ specification (e.g., which transitions can be neglected, or how the states can be 
simplified, or to what extent transitions reflects unfolding of trajectories), thus, allowing to properly 
define the model and avoid over-specification. In addition, SA could prove useful in the identification 
of covariates whose effects on trajectories are worth consideration.  

Ultimately, the choice of a specific model or approach is driven by the researcher’s opinions 
regarding the adequacy of the assumptions for the data at hand, the goals of the analysis, or the 
possible ease of estimation. Nonetheless, it is important to consider that alternative approaches 
(e.g., MSMs instead of HMM) could be considered, provided they satisfactorily fit the data. From this 
perspective, the development of criteria to compare competing models is of key importance and an 
area that requires further investigation. 
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Table 1(*). Summarized characteristics of the approaches described in the work 

 
Standard SA 

Combination of SA and EHA 
SCM 

Mixed Latent Markov Model(**) 

 CTA SAMM SHA LCA HMM MHMM 

Scientific culture Algorithmic modeling 
Combination of Algorithmic and Stochastic data modeling 

culture 
Stochastic data 

modeling 
Stochastic data modeling 

Theoretical concept Trajectory 
Start of the 
processes 

Transition to  
sub-sequences 

Previous trajectory 
and event 

Transitions/ 
Durations 

Trajectory 
Transitions 

(latent 
states) 

Trajectory and 
Transitions 

(latent states) 

Goal: identify 
Groups of equivalent 

trajectories 

Probability of 
equivalent start 

of the 
processes 

Probability of 
transition to 
equivalent  

sub-sequences 

Association 
between previous 

trajectory and 
upcoming event 

Probability of 
transitions, 
duration of 

states 

Groups of 
equivalent 
trajectories 

Probability 
of 

transitions 

Groups of 
equivalent 

latent 
trajectories 

Assumptions on the 
sequences 
generating process 

None None Semi-Markov None Semi-Markov 
Independence 

(conditional to the 
latent class) 

First-order Markov 
Time-homogeneous transition 

rates 

Multiple domains Yes, Joint SA No No Yes 

Inference on 
whole trajectory 
(baseline 
covariates) 

ANOVA-like approaches 
(testing differences) 

Multinomial regression 
(cluster membership) 

No No Yes No Yes 

Inference on 
trajectory’s 
unfolding (time-
varying covariates) 

Description of mutual 
association using joint 

SA 

Yes, on the start 
of the process 

Yes (association 
over a medium-

term period) 
Yes Yes No Yes Yes 

Censored 
Trajectories 

No Yes Yes Yes 

Missing data No No 
Yes (only in 
trajectories) 

Yes (only in trajectories) 

 (*) Aisenberg and Fasang (2010, p. 424) propose a similar table to compare EHA and SA. Our table extends the original one both with respect to the models taken into 
account and with respect to the distinctive aspects considered in the comparison.  
(**) The characteristics of the considered models refer to the specific formulations considered in the paper. 
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