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The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the
inverse solution of the associated heat conduction problem (IHCP). The inverse technique demands the knowledge of the initial
temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all) are arranged
inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty,
together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy
of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical
properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect.
Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature
distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of
the identified thermophysical property values is highly improved.

1. Introduction

Established techniques based on parameter estimation theory
provide an effective tool for the identification of thermophys-
ical properties ofmaterials and/or other unknown systemand
measurement parameters by means of transient experiments
[1, 2].

As the estimation process is usually based on some inverse
solution (analytical or numerical) of a physical model, the
unavoidable presence of errors in themeasured datamayhave
a detrimental effect in the final estimates because of the ill-
posed nature of inverse heat conduction problems [3]. For
this reason, besides a great precision in the measurement
technique, the key to achieve a precise and reliable estimation
of thermophysical properties from transient experiments is
the adherence of the implemented physical and numeri-
cal models to the actual phenomenon under investigation.
However, as a general rule, most measurement and process
mismatches can be compensated, if detected, by including,
in the inverse solution, further additional models [4]. For
example, the knowledge of the exact location where thermal

sensors are placed inside the specimen can be identified
with great accuracy [4–7]. Errors (time lag) in temperature
measurements by contact probes in a transient regime can
be adequately compensated [8]. The uncertainty of sensor
calibration can be included in the inverse conduction prob-
lem [9] to improve both the estimated thermophysical prop-
erties and the calibration curve. According to this general
approach, the biases are compensated by identifying, in the
same experiment, both the thermophysical properties and
the unknown parameters (e.g., lags, positioning errors, and
calibration coefficients) appearing in the additional models.

In this work, the focus is on errors in the initial tempera-
ture distribution [10–16]. It is often possible to arrange in the
interior of the specimen under test only a limited number
of sensors (or no sensors at all in particular experiments
[17, 18]). It follows that the initial temperature distribution,
needed not only at the measuring points but also at each
node of the spatial discretization grid of the numericalmodel,
could be affected by significant uncertainty. Despite the
smoothing effect of thermal conduction, errors of this type
will propagate in the reconstruction algorithm, thus affecting
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in someway the estimated values of the thermophysical prop-
erties.

At first, this study develops a quantitative analysis to
determine, under a given reference set of working and
boundary conditions, the influence of a biased initial tem-
perature distribution on the estimated values of the material
thermophysical properties.

To follow, a method is proposed to reduce the errors
induced by this kind of bias.The proposedmethod consists in
including the initial temperature distribution (i.e., its values
on the numerical space grid or a proper parametric function)
among the other quantities to be estimated. In this way, the
effect of the initial error is minimized and the accuracy of the
reconstructed properties results is to be greatly enhanced.

2. Case Study

A material sample with 1D planar geometry is subjected
to a thermal transient in which known (measured) time
dependent values of temperature or heat flux are imposed
on the opposite faces. By measuring the thermal response at
some locations inside the specimen (temperature, heat flux,
or both), some thermophysical properties of the material
(which one exactly depends on the particular set-up) can be
reconstructed by the solution of the corresponding inverse
heat conduction problem (IHCP). The general case of simul-
taneous identification of the thermal conductivity and the
specific heat has been deeply studied from an experimental
point of view and from a theoretical point of view [19–22].

In what follows, for the sake of simplicity and to focus
the attention on the effect of errors in the initial temperature
distribution, the problem assumes temperature independent
thermophysical properties and the identification process is
devoted only to one constant thermophysical parameter, the
thermal diffusivity. In this simple case, the measure of the
temperature-time response at the two sides of the specimen
and at one (as in this study, according to Figure 1) or more
locations in its interior will suffice.

The governing equation will be

𝑎

𝜕
2
𝑇

𝜕𝑧
2 =

𝜕𝑇

𝜕𝑡

, (1)

with its associated initial and boundary conditions:

𝑡 = 0; 0 ≤ 𝑧 ≤ 𝐿; 𝑇 (𝑧, 0) = 𝑇0 + 𝛿 (𝑧) ;

𝑡 > 0; 𝑧 = 0; 𝑇 (0, 𝑡) = 𝑢1 (𝑡) ;

𝑡 > 0; 𝑧 = 𝐿; 𝑇 (𝐿, 𝑡) = 𝑢2 (𝑡) .

(2)

We assume that the inverse problem is to be solved on the
hypothesis of a wrong uniform temperature distribution, say
𝑇(𝑧) = 𝑇

0
, while the actual distribution is 𝑇(𝑧) = 𝑇

0
+ 𝛿(𝑧).

As a consequence of this error 𝛿(𝑧), the identification process,
based on the physical model described by (1) and (2), will
produce errors in the estimated parameters whosemagnitude
will depend on various factors: “shape” and amplitude of the
initial error, type and time scale of the transient experiment,
actual diffusivity value of the sample, number and location
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Figure 1: Scheme of the test section. One temperature sensor is
located in the middle of the specimen. Temperature histories 𝑢

1
(𝑡)

and 𝑢
2
(𝑡) are forced at the boundaries by means of an external

control.

of the sensors, variance of the random noise affecting the
measured data, and other process and measurement biases.
Owing to the great number of variables influencing the
phenomenon and in order to better explain how the use of a
wrong initial temperature distribution affects the estimation
process, we will limit ourselves to the study of a particular
reference condition in which we assume perfect models and
a single internal sensor. It is underlined that the algorithm
applies to every type of initial temperature distribution and
not only to a uniform one.

A preliminary action is usually done by using the initial
measured temperatures and interpolating between the mea-
surements, for instance, by a linear or quadratic method. In
this way, use is made of the available data to construct a first
attempt initial temperature distribution. Nonetheless, due to
limited number of sensors and also considering that their true
position is rarely known, the estimated temperature profile
can be affected by errors of the order of tenths of degree.

3. Effect of the Initial Bias on
the Temperature-Time History

At first, the smoothing behavior of an initial temperature
error on the time dependent temperature distribution is
considered. Owing to the model linearity, such effect can
be calculated using the superposition principle, since the
thermal response inside the specimen results is made up
of two parts, the first being the undisturbed response and
the second being the response of the model to the error
alone. So the determination of the RMS (root mean squared)
error induced on the residuals reduces to the calculation of a
single response to the initial arbitrary space dependent error
during its “relaxation.”The solution of the diffusion equation
(1) along with the following initial and constant boundary
conditions (3) will properly work:

𝑡 = 0; 0 ≤ 𝑧 ≤ 𝐿; 𝑇 (𝑧, 0) = 𝑇0 + 𝛿0 (𝑧) ;

𝑡 > 0; 𝑧 = 0; 𝑇 (0, 𝑡) = 𝑇0;

𝑡 > 0; 𝑧 = 𝐿; 𝑇 (𝐿, 𝑡) = 𝑇0.

(3)
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Figure 2: Parabolic shaped error superposed onto the initial tem-
perature distribution.

We select 𝛿0(𝑧) to be a parabolic shaped error as from
Figure 2. Results obtained by using different profiles were
very similar to those reported. The error vanishes on the
boundaries; that is, 𝛿0(0) = 𝛿0(𝐿) = 0, owing to the error-
free sensor model. In general, 𝑇

0
is a coordinate dependent

function but we limit ourselves to consider it as uniform
distribution.

The general solution of problem (1), (3) can be expressed
in terms of an infinite sum of functions all resulting from the
product of an exponential and a sinus in formula:

𝑇 (𝑧, 𝑡) − 𝑇0 =

∞

∑
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𝐴
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2
𝛼

𝐿
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) (4)

with
∞

∑

𝑖=1
𝐴
𝑖
sin(𝑖𝜋

𝑥

𝐿

) = 𝑇 (𝑧, 0) − 𝑇0 = 𝛿0 (𝑧) . (5)

By inspection of (4), we note the presence of a space
dependent (auto)function multiplied by a time dependent
coefficient representing a vanishing amplitude.

In other words, the space-time response of the system
is made of an infinite sum of vanishing terms whose time
constants are related to the wave length of the particular
component. The shorter the wave length the shorter the time
constant, that is, the time spent by a harmonic to reduce its
amplitude to a given fraction of the initial one.

The fundamental of 𝛿0(𝑧), that is, its 1st harmonic,
vanishes in longer times and represents the major con-
tribution to the global temperature error, that is, to the
difference between an undisturbed temperature field and
a disturbed temperature field. Since the thermal diffusivity
reconstruction process gets information during the whole
evolution of the experiment, it appears reasonable that also
the distortions on the estimated value of it are in some way
related to this kind of slowly vanishing error. However, there
is another factor that influences the rate of information that
any inverse algorithm draws from an experiment during
an identification process, that is, the sensitivity coefficients
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Figure 3: Mean squared error of the temperature residuals due to
a parabolic shaped error in the initial temperature distribution. 𝜃:
nondimensional temperature.

which relate variation in the temperature distribution to var-
iation of the sought parameters and that are usually function
of time, space, and the experiment. We address this aspect in
a following paragraph.

Figure 3 shows the nondimensional temperature error as
a function of the Fourier number, resulting from the numer-
ical simulation of the model. The nondimensional tempera-
ture 𝜃 is defined as

𝜃 =

𝑇 − 𝑇0
𝑇max − 𝑇0

, 𝑇max = 𝑢1 (𝑡exp) (6)

and the Fourier number is defined as

Fo =

𝑎𝑡exp

𝐿
2 , (7)

where 𝑡exp is the duration of the experiment.
The other curves represent the RMS value of 𝜃, that is, 𝑒

𝜃

defined as

𝑒
𝜃

= √
1
𝑁

∑ 𝜃
2
. (8)

In this context, 𝑁 is the total number of simulated measure-
ments given in general by the number of internal sensors
multiplied by the number of acquisitions in time.

When the Fourier number is greater than around 0.3,
the mean squared error tends to assume, on a bilogarithmic
diagram, a slope equal to −0.5. In these conditions we have

𝑒
𝜃|Fo→∞ ∝ √

1
𝑁

∝ Fo−1/2. (9)

This agrees with the fact that, after some time, the effects
of any initial temperature error are smoothed by the heat
conduction phenomenon and reduce to unnoticeable values,
but we have to underline that the identification process
is based on information coming from the entire transient
experiment. Indeed, for a huge class of tests, the Fourier
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number as defined in (7) is in the range from 0.1 to 1.0 and, as
a consequence, the global standard deviation of the residuals
at the end of the identification process is only marginally
reduced and its value will be comparable to that of the mean
quadratic error of the initial temperature bias. Results very
similar to those reported in Figure 3 are obtained with the
initial distribution error shaped as in Figure 4.

4. Effect of the Initial Bias on
the Reconstructed Thermal
Diffusivity Value

To acquire information of general value about the influence
of the initial temperature error on the identified results,
few hundreds of simulated transient experiments have been
performed by varying the value 𝛿max of the initial error
(Figure 2), the total experiment duration 𝑡exp, the slope 𝑐 of
the temperature control in 𝑧 = 0 (see (4)), the thickness of
the specimen, and the value of the thermal diffusivity to be
identified.

On the two opposite sides of the specimen, the following
time dependent temperatures are imposed as boundary
conditions:

𝑢1 (𝑡) = 𝑇0 + 𝑏 ⋅ 𝑡;

𝑢2 (𝑡) = 𝑇0.
(10)

That is, a linear increase (constant variation rate 𝑏, K s−1) is
assumed at 𝑧 = 0, while at 𝑧 = 𝐿 the temperature is kept at
a constant value equal to the initial one, 𝑇

0
. This particular

dependence on time is adopted only due to its simplicity.
The results put in evidence that the error in the identified

thermal diffusivity values is directly proportional both to the
amplitude 𝛿max and to the inverse of the product between 𝑡exp
and 𝑏. This behavior is summarized in Figure 5, where the
nondimensional percentage error defined as

𝐸% = 𝑒% 𝑏 ⋅ 𝐿
2

𝑎 ⋅ 𝛿max

or 𝐸% = 𝑒%
𝑏 ⋅ 𝑡exp

𝛿max ⋅ Fo

(11)

is reported as a function of the Fourier number. In (11), the
percentage error, 𝑒%, is defined as

𝑒% =

󵄨
󵄨
󵄨
󵄨
𝑎estimated − 𝑎

󵄨
󵄨
󵄨
󵄨

𝑎

⋅ 100. (12)

When the Fourier number is greater than, say, 2.0 the slope
of the curve in the bilogarithmic diagram approaches the
asymptotic value −1. This fact is related to the time behavior
of the sensitivity coefficients of the thermal diffusivity in the
three points of measure. Such coefficients, in fact, in the
initial part of the transient show an increasing trend, while,
for Fo > 2.0, they tend to a nonzero constant asymptotic
value due to the particular forcing temperatures employed
in the simulations (linear increase). In other words, during
the initial phase of the transient, the experiment provides a
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Figure 4: Uniform shaped error superimposed on the initial
temperature distribution: 𝛿(𝑧) = 𝛿max.
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Figure 5: Error in the estimated thermal diffusivity due to a
mismatched initial temperature distribution.

greater flux of information. Then, the temperature response
inside the sample tends to assume a practically constant
increasing rate and the information coming from the thermal
history of the specimen when Fo > 2.0 gives us a constant
contribution to the identification process. So it appears
reasonable to find a normalized error trend that, with other
conditions being equal, is proportional to the inverse of the
total time length of the transient test:

𝐸%
|Fo→∞ ∝

1
Fo

. (13)

To give an idea of the error arising in actual transient test,
Table 1 reports the results obtained in case of three different
materials. The results are obtained by using Figure 5. In these
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Table 1: Practical error calculation. Examples for three different materials and experiments. Thermophysical and experimental data needed
to compute expected error in reconstructed thermal diffusivity using the diagram of Figure 5.

Example #1
Light insulation material

Example #2
Pyrex

Example #3
AISI 316 steel

Physical properties
Thermal conductivity 𝑘, Wm−1 K−1 0.05 1.15 14.0
Specific heat 𝑐

𝑝
, J kg−1 K−1 900 775 470

Density 𝜌, kgm−3 150 2220 8240
Sample thickness 𝐿, m 0.04 0.01 0.01
Temperature control 𝑏, K s−1 0.01 1.0 1.0
Experiment duration 𝑡exp, s 3600 20 20
Initial error magnitude 𝛿max, K 0.3 0.1 0.1

Calculated data (to be used in
association with the diagram of
Figure 5)

𝑎 =

𝑘

𝑐
𝑝

⋅ 𝜌
m2 s−1 3.7 ⋅ 10

−7
6.7 ⋅ 10

−7
3.6 ⋅ 10

−6

Fo =

𝑎 ⋅ 𝑡exp

𝐿
2 0.83 0.134 0.72

𝜃
∗

=

𝛿max
𝑏 ⋅ 𝑡exp

0.0084 0.005 0.005

Predicted error (from Figure 5 diagram)
𝐸% 70 2000 90
𝑒% = 𝐸% ⋅ 𝜃

∗
⋅ Fo 0.6% 1.4% 0.4%

explanatory cases, the error on the reconstructed thermal
diffusivity is always smaller than 1.5%. Worst results might
be expected in case of nonlinear system identification (tem-
perature dependent properties) and simultaneous estimation
of various functions (e.g., thermal conductivity and specific
heat rather than thermal diffusivity) or, as it happens in actual
experiments, if the measures are affected by random errors.
So the curves reported in Figure 5 only represent a lower
bound of the error in the estimated thermal diffusivity due
to an initial temperature bias.

5. Compensation of the Initial
Temperature Bias

As said, most model mismatches between actual experiments
and their numerical implementation can be compensated
by including in the inverse algorithm a proper parametric
model. According to this general rule, we add the initial
temperature distribution, suitably parameterized, among the
other quantities to be estimated.

To solve the inverse problem and reconstruct the
unknown parameters, various methods are at our disposal
from classic gradient methods to artificial neural networks
[23] to genetic algorithms [24].

In the present application, the well-known iterative Gauss
method has been implemented for the minimization of the
OLS (ordinary least square) functional 𝑆 associated with the
temperature residuals. Consider

𝑆 (
⃗

𝛽) = ∑

𝑖,𝑘

(𝑇
𝑘

𝑖
(

⃗
𝛽) − 𝑇

𝑘

𝑚𝑖
)

2
, (14)

where ⃗
𝛽 is the unknown parameter vector, 𝑇

𝑚
refers to

measured temperatures, 𝑇 refers to temperatures calculated
with the numerical model ((1) and (2)), and the index 𝑖 refers
to the sensor number (only one sensor located in the middle
of the specimen in the presented case), while 𝑘 is a discretized
time index. A detailed description of the application of this
inverse technique to thermophysical property reconstruction
is reported in various textbooks (e.g., in [1]) and it is not
repeated here.

The initial temperature distribution error is parameter-
ized with reference, for instance, to a polynomial represen-
tation (another suitable family of functions can be profitably
used if preferred) as

Δ (𝑧) = ∑

𝑖

𝜔
𝑖
⋅ 𝑧
𝑖

(15)

and the 𝜔
𝑖
coefficients are added as further unknowns to the

parameter vector ⃗
𝛽 to be identified along with the associated

sensitivity equations. So it will be

⃗
𝛽
󸀠

= [

⃗
𝛽

𝜔⃗

] . (16)

Due to the simplicity of the considered case (one internal
sensor), we adopt a parabolic temperature profile constrained
on the boundaries; that is, a single parameter was added.

The case of a parabolic error assumption is made for sim-
plicity. Better algorithms can be based on more parameters
describing the initial distribution (also in the case of one
single sensor) in such a way that will make it better to deal
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Table 2: Property reconstruction with and without correction due to contemporary initial temperature field estimation. 𝜎
𝑇
is the standard

deviation of the temperature residuals.

Estimated parameter Exact
values

Biased estimates (init. cond. error:
Δ𝑇max = 0.5K)

𝑒%
Percentage error

𝑒%
Integral averaged

error

Corrected
estimates

𝑘
󸀠

0 ⋅ 107, m2
⋅s−1 3.8461 3.8969 1.32 1.41 3.8461

𝑘
󸀠

1 ⋅ 109, m2
⋅s−1K−1 1.4245 1.4489 1.71 — 1.4245

𝐶
󸀠

1 ⋅ 103 1.9230 2.1849 13.6 1.57 1.9234
𝜎
𝑇
, K — 0.097 — — 0.016

with arbitrary temperature shapes. In this kind of dynamic
experiments, there is low risk of over parameterization since
the temperature measurements are typically thousands.

The method has been applied to the general case of
nonlinear identification of both thermal conductivity and
specific heat, considering their dependence on temperature.

In the sequel, for the sake of simplicity and in analogy
with the exposition of the first part of the study, the sensitivity
equation will be developed with reference to the unknown
parameters only with reference to the linear case, with the
thermal diffusivity as the lone (temperature independent)
parameter to be identified. The sensitivity equations are
obtained by differentiation of the diffusion equation (1) with
respect to the parameters 𝛽

󸀠

𝑖
; that is,

𝜕

𝜕𝛽
󸀠

𝑖

(𝑎

𝜕
2
𝑇

𝜕𝑧
2 ) =

𝜕

𝜕𝛽
󸀠

𝑖

(

𝜕𝑇

𝜕𝑡

) (17)

by using the notation

Ψ
𝑖
=

𝜕𝑇

𝜕𝛽
󸀠

𝑖

. (18)

Equation (17) is written as

𝑎

𝜕
2
Ψ
𝑖

𝜕𝑧
2 =

𝜕Ψ
𝑖

𝜕𝑡

. (19)

Initial and boundary conditions are obtained in the same way
and coupled to the above equation:

𝑡 = 0; 0 ≤ 𝑧 ≤ 𝐿; Ψ (𝑧, 0) =

𝜕

𝜕𝜔
𝑖

(∑

𝑖

𝜔
𝑖
⋅ 𝑧
𝑖
) = 𝑧

𝑖
;

𝑡 > 0; 𝑧 = 0; Ψ (0, 𝑡) = 0;

𝑡 > 0; 𝑧 = 𝐿; Ψ (𝐿, 𝑡) = 0.

(20)

By solving the boundary problem ((19) and (20)), we obtain
the sensitivity needed by the inverse reconstruction problem
using, as an example, the OLS method accurately described
in [25].

In the specific case, we made use of the Gauss minimiza-
tion algorithm to minimize the functional (14) associated
with the temperature residuals, but other common methods
can be used from gradient minimization algorithm to more
sophisticated Kalman filter if one wants to correctly account

for other quantities like random errors on the control tem-
peratures.

In case of “simulated” experiment, the algorithm shows
the ability to converge quickly to the exact solution in both the
linear and nonlinear cases. In this last case, the simultaneous
identification of different temperature dependent functions is
required. In this second part of the study, random errors were
always added to the temperature measures. In what follows,
the results from a typical application of thermophysical
property reconstruction are reported. The considered tran-
sient experiment simulates a dynamic thermal conduction
problem starting with a parabolic shaped initial temperature
distribution but it has to be underlined that the algorithm
works with every kind of initial error. On the other hand,
in this test, the reconstruction algorithm assumes a uniform,
therefore incorrect, initial temperature field.

In the case of temperature measurements alone, the ther-
mophysical properties that can be identified are, for example,
[21]

𝑘
󸀠
(𝑇) =

𝑘 (𝑇)

𝐶0
;

𝐶
󸀠
(𝑇) =

𝐶 (𝑇)

𝐶0
,

(21)

where 𝐶
0

= 𝐶(𝑇
0
) is a reference value of the material vol-

umetric heat capacity. The functions 𝑘
󸀠 and 𝐶

󸀠 (normalized
thermal conductivity and heat capacity, resp.) are assumed to
be linear functions of the temperature; that is,

𝑘
󸀠

= 𝑘
󸀠

0 + 𝑘
󸀠

1 ⋅ (𝑇 − 𝑇0) ,

𝐶
󸀠

= 1+ 𝐶
󸀠

1 ⋅ (𝑇 − 𝑇0) .

(22)

A linear temperature increase is imposed as the control at 𝑧 =

0. Starting from an initial value 𝑇
0
= 20∘C, it achieves, within

an hour, a temperature of about 𝑇max = 160∘C.
A zero mean random Gaussian noise (std. dev of 0.015 K)

has been superimposed on the simulated temperature mea-
surements and the typical simulated acquisition rate is
around 1Hz for one-hour long tests.We use such a value since
it characterizes the experimental set-up actually employed in
our experimental work. It is, however, of little importance and
also noise free temperature could be used.

Table 2 shows the reconstructed values obtained with and
without estimating the initial temperature field, that is, with



Mathematical Problems in Engineering 7

0.0

0.25

0.5

0 2000 4000
Time (s)

−0.25

−0.5

𝜎T = 0.10K

Δ
T

 (K
)

Figure 6: Temperature residuals in presence of an initial uncom-
pensated temperature error with peak magnitude 𝛿max = 0.5∘C.

and without the compensation of the initial temperature bias.
To give an idea of the mean error affecting the identified
temperature dependent properties, a percentage integral
error 𝑒% has been introduced as follows (the example refers
to the 𝑘

󸀠 function):

𝑒% =

100
𝑇max − 𝑇0

∫

𝑇max

𝑇0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘
󸀠
(𝑇)estimated − 𝑘

󸀠
(𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑘
󸀠
(𝑇)

𝑑𝑇. (23)

Table 2 reports test results in case of unknown, temperature
dependent thermophysical properties. Despite the fact that
the assumedmaximum temperature bias is only 𝛿max = 0.5∘C,
the error introduced by the initial temperature bias result
is to be remarkable, in particular, for the 𝐶

󸀠

1 coefficient.
On the other hand, if the initial temperature distribution
is added, as an unknown, to the function to be identified,
accurate estimates will result and the initial bias is com-
pletely eliminated just from the beginning of the simulated
experiment as Figures 6 and 7 clearly show. Figure 6 shows
the effect of the temperature error at sensor location due to
the error in the initial temperature distribution. The effects
on the residuals persist with relevant amplitude for a long
time during the (simulated) experiment, lasting for 1000–
1500 s. Even if the bias in the initial temperature distribution
“relaxes” in time thanks to the thermal diffusion process, the
standard deviation of the residuals, 𝜎

𝑇
= 0.097∘C, is one order

of magnitude greater than that of the random error (0.015∘C)
superposed onto the measurements. Furthermore, all the
estimated values of the thermophysical properties are affected
by strong errors, ranging from a value of 1.32% (on 𝑘

󸀠

0) to
maximum value of 13.6% (on 𝐶

󸀠

1), with average errors being
around 1.5%. On the contrary, Figure 7 shows a practically
unbiased residual history, that is, to say that the initial
temperature error has been identified and compensated and
no longer has any effect (or at least a negligible effect) on
the parameter identification process. Indeed, the temperature
residuals show a standard deviation of 0.016∘C, which is
statistically equal to the one superimposed on the simulated
measurements. This behavior is generally an indicator of
bias absence. Accordingly, Table 2 shows that the values of
the identified parameters, 𝑘

󸀠

0, 𝑘
󸀠

1, and 𝐶
󸀠

1 in column #6, are
essentially equal to the exact ones in column #2.
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Figure 7: Temperature residuals as in Figure 6 but with the com-
pensation of the initial temperature error by means of the inverse
algorithm. Last iteration.

6. Caution in the Estimation of
(Bias) Parameters

If the model utilized to describe the actual experiment is
exact (typically in simulated tests), no problem arises during
the identification process and correct results can be found
also in the presence of large errors in the initial temperature
distribution. If, on the contrary, our description of the phe-
nomenon contains some known or unknown approximations
and incorrectness (as always occurs in true experimental
tests), the identification of suspected biases (in this case
the error in the initial temperature distribution) must be
used with caution. In fact the inverse solution algorithm,
whose primary target is to minimize temperature residuals,
might confuse the bias on temperature residuals due to
incorrect modeling of the experiment, with errors in the
initial distribution. On the other hand, initial distribution
errors cannot be ignored because of possible detrimental
effects on the evaluation of thermophysical parameters.
A reasonable compromise between these conflicting needs
seems to be the following: the identification of the initial
temperature distribution within the specimen should be
always introduced in the general estimation algorithm, but
the final results should be rejected if the identified errors
exceed a reasonable initial tolerance (maximum a posteriori
case). A correct application of the above procedure requires,
however, some practice.

7. Conclusions

With reference to the inverse heat conduction problem
(IHCP) applied to the reconstruction of thermophysical
properties of materials with tests in transient regime, the
effect of an error in the initial temperature distribution on
both the temperature residuals and the estimated values of
the thermophysical properties has been analyzed. In order
to quantify in a simple way the magnitude of this effect, two
suitable correlations are suggested for the linear case andwith
a single unknown parameter to be estimated, the thermal
diffusivity.Then, amethod is proposed to compensate for this
type of error that has shown to be very effective either in the
simple linear case or in more complex nonlinear ones, with
several unknown functions to be simultaneously identified
and in a noisy environment.
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The analysis has shown that errors in the initial tem-
perature distribution gave rise to biases on both the time
temperature residuals and the value of the estimated param-
eters. Despite the quite small extent of the initial bias here
considered, the need for compensation of such error is
evident. The method proposed to face this problem consists
in adding the initial temperature distribution among the
“properties” to be identified by the inverse procedure. The
method, very efficient when the “experimental” measure-
ments are simulated numerically by solving the correspond-
ing direct problem, should be used with some caution in
actual experiments. In fact, in this case the algorithm could
interpret the temperature residuals as coming from an initial
temperature error even if they are actually due to a nonperfect
correspondence between the experimental setup and the
assumed physical model.

Nomenclature

Symbols

𝑎: Thermal diffusivity, m2⋅s−1
𝑏: Control variation rate, K s−1
𝑐
𝑝
: Specific heat, J⋅kg−1 K−1

𝐶: Volumetric heat capacity, J⋅m−3 K−1
𝐶
0
: Reference value at 𝑇

0
, J⋅m−3 K−1

𝐶
󸀠: Normalized vol. heat capacity

𝑒: Error (of some parameter)
𝑒: Averaged error (of some function)
𝐸: Nondimensional error
Fo: Fourier number
𝑘: Thermal conductivity, Wm−1 K−1
𝑘
󸀠: Normalized thermal conductivity, m2⋅s−1

𝐿: Specimen length, m
𝑁: Number of measurements
𝑇: Temperature, K
𝑡: Time, s
𝑡exp: Time duration of the experiment, s
𝑢: Temperature control, K
𝑧: Spatial coordinate, m.

Greek Symbols

𝛽: Generic unknown parameter
𝛿: Temperature error (direct problem), K
Δ: Temperature error (inverse problem), K
𝛾
𝑖
: Temp. error coeff. (direct problem), Km−𝑖

𝜃: Nondimensional temperature
𝜌: Density, kgm−3
𝜎
𝑇
: Std. dev. of temp. residuals, K

𝜔
𝑖
: Temp. error coeff. (inverse problem), Km−𝑖.

Subscripts

0: Initial
𝑚: Measured

max: Maximum
exp: Relative to the experiment.
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tion of temperature-dependent volumetric heat capacity and
thermal conductivity functions via neural networks,” Interna-
tional Journal of Heat and Mass Transfer, vol. 68, pp. 1–13, 2014.
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