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A fast Total Variation-based iterative
algorithm for digital breast
tomosynthesis image reconstruction

E Loli Piccolomini1 and E Morotti2

Abstract

In this work, we propose a fast iterative algorithm for the reconstruction of digital breast tomosynthesis images.

The algorithm solves a regularization problem, expressed as the minimization of the sum of a least-squares term and

a weighted smoothed version of the Total Variation regularization function. We use a Fixed Point method for the solution

of the minimization problem, requiring the solution of a linear system at each iteration, whose coefficient matrix is

a positive definite approximation of the Hessian of the objective function. We propose an efficient implementation of the

algorithm, where the linear system is solved by a truncated Conjugate Gradient method. We compare the Fixed Point

implementation with a fast first order method such as the Scaled Gradient Projection method, that does not require any

linear system solution. Numerical experiments on a breast phantom widely used in tomographic simulations show that

both the methods recover microcalcifications very fast while the Fixed Point is more efficient in detecting masses, when

more time is available for the algorithm execution.
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Introduction

Digital breast tomosynthesis (DBT) is a 3D emerging
technique for the diagnosis of breast tumors that has
some advantages over the traditional 2D mammog-
raphy suffering from the fact that the lesions can be
hidden by overlaying tissues in the plane representation
of a 3D object. In DBT, the breast volume is recon-
structed in a stack of 2D slices and the structure is
resolved in space, reducing the impact of the overlap-
ping tissues on the tumor and making easier the tumor
detection by the radiologist.

The volume image is reconstructed from 2D cone
beam projections data acquired at a limited number
of views over a limited angular range, in order to
reduce the X-ray dose across the body. Due to the
data incompleteness, DBT image reconstruction is chal-
lenging. One pass algorithms, such as Filtered Back
Projection (FBP), traditionally used in complete data
tomography, introduce artifacts and noise and lose the
information about tissue density when used in limited
angle tomography.1–3 Iterative statistical reconstruction

algorithms, that maximize the similarity between the
computed and measured projections at each iteration
and enable the introduction of priors, have some advan-
tages over FBP in the noise reduction and in the identi-
fication of the object borders. Investigation of iterative
algorithms derived from complete data tomography and
applied to DBT, such as Maximum Likelihood or
Algebraic Iterative Algorithms (ART), can be found in
Wu et al.4 and Zhang et al.5 Mathematically, they can be
formulated as minimization problems of the form:

min
f
J ð f,M, gÞ ð1Þ
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where f is the image to be reconstructed, M is the pro-
jection operator and g is the data vector. In this paper,
we consider the function J ð f,M, gÞ as the least squares
function:

J ð f,M, gÞ ¼ kMf� gk22 ð2Þ

As evidenced in Lu et al.,2 tomosynthesis reconstruc-
tion is an illposed problem both for the ill posedness
of the continuous projection operator6 and for the data
incompleteness, that causes infinite solutions to
the underdetermined least squares problem (2).2 For
this reason, the idea of using a regularization operator
has been introduced in Lu et al.2 and Sidky et al.,7

with the double purpose of loosening up the consist-
ency with the data and of selecting an image with the
prescribed regularity among the infinite possible solu-
tions. The regularization function makes assumption
on the reconstructed image and forces the choice of
one of the infinite possible solutions.

Recently, the compressed sensing theory8 has been
used in Computed Tomography. If the image is sup-
posed sparse in some domain, the minimization of
the 1-norm in that domain guarantees the sparsity of
the solution. For breast images, where the interest is
to identify microcalcifications and/or masses, the
image gradient is supposed to be sparse and the Total
Variation (TV) regularization function has been suc-
cessfully employed.1,7,9–12

In this case, the minimization problem can have a
constrained formulation:

min
f

TVð f Þ s:t: kMf� gk22 � � ð3Þ

or an equivalently unconstrained formulation:

min
f
kMf� gk22 þ �TVð f Þ: ð4Þ

Some iterative algorithms for the solution of problem
(3) or (4) applied to the reconstruction of 3D tomo-
graphic images have been investigated in litera-
ture.2,9,10,13–17 All the cited algorithms are first order
algorithms, since they use only the gradient information
of the objective function. We refer in particular to Jensen
et al.15 for a comparative analysis of first order methods
for the minimization of a least-squares TV function
applied to 3D tomography.

Aim and contribution

In this paper, we apply to DBT image reconstruction a
Newton-like method, the Lagged Diffusivity Fixed
Point (FP) algorithm by Vogel,18 that uses second

order information of the TV function. The FP algo-
rithm is efficiently used in other imaging applications,
such as deblurring or denoising, and in this paper, we
show that it performs very well even in DBT imaging
reconstruction. On the basis of the results obtained in
Jensen et al.,15 where first order methods are applied to
3D tomography, we compare the proposed algorithm
with the Scaled Gradient Projection (SGP) algorithm
accelerated by Barzilai–Borwein rules, as the represen-
tative of efficient first order methods for this particular
application.

The main contribution of the paper is the efficient
implementation of a method with second order infor-
mation for the reconstruction of DBT images, i.e. a
very large size problem with unstructured matrix.
The method has better performance when compared
with the methods traditionally used for DBT images
reconstruction both in the first iterations and at con-
vergence, so that in the final images not only the micro-
calcifications but also the masses can be better
distinguished. Hence, it could be potentially used in
clinical applications.

The paper is organized as follows. In the section
‘‘Mathematical model of digital tomosynthesis’’ we pre-
sent the mathematical model of DBT image formation
and the numerical optimization problem for the DBT
image reconstruction; in the section ‘‘Algorithms for
DBT image reconstruction’’ we describe, with imple-
mentation details for this particular application, the
proposed FP method and the SGP method considered
for comparison; in the section ‘‘Numerical experi-
ments’’ the numerical results on a digital breast phan-
tom are reported and lastly in the section
‘‘Conclusions’’ we make some final observations.

Mathematical model of
digital tomosynthesis

Digital tomosynthesis

Digital tomosynthesis is a cone-beam tomographic
technique where the projections are obtained along
a smaller range of incident angles.19 Usually, 10–25
projections along a range of up to 40–45� are obtained
and from these projections a pseudo-3D representation
of the object is reconstructed, with lower resolution
in the z-direction perpendicular to the detector plane
(see Figure 1 for a schematic representation of the
tomosynthesis system).20 There are different geometries
of motion of the X-ray tube, but the reconstruction
algorithms can be easily adapted to each one without
significant changes.5 In our case, the source rotates in
the yz plane with x-coordinate equal to zero. The detec-
tor is positioned onto the xy plane and the breast is
compressed over it.
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The mathematical model of image formation

If we suppose a monochromatic X-ray source, the con-
tinuous mathematical model of the image formation
process is described by Beer’s law that relates the mea-
sured values �g

ð�Þ
i at each pixel i of the detector, for a

fixed angle �, with the attenuation coefficient � for each
position w of the object:

�g
ð�Þ
i ¼ exp �

Z
L�

�ðwÞdl

� �
þ ��ð�Þi , i ¼ 1 . . .Np, � ¼ 1, . . .N�

ð5Þ

where:

. Np is the number of pixels in the detector (Np is of
the order of millions in the real systems);20

. N� is the number of angles (common values are
10 � N� � 25 in the real systems);20

. L� is the line followed by the X-ray beam through
the object;

. �ðwÞ is the linear attenuation coefficient, at the posi-
tion w ¼ ðx, y, zÞ, depending on the material in the
object and characterizing the structures inside the
object. We remind that denser materials, such as cal-
cifications, have a greater attenuation coefficient;

. ��ð�Þi is the noise measured at the detector (pixel i,
angle �) and it includes scattering and electronic
noise.

The discretization of equation (5) is:

�g
ð�Þ
i ¼ exp �

XNv

l¼1

m
ð�Þ
il �l

 !
þ ��ð�Þi ð6Þ

where:

. Nv is the number of voxels (few billions in the real
systems) in the discretized 3D object;

. m
ð�Þ
il is the element of a matrix Mð�Þ obtained with the

ray-tracing technique proposed by Siddon.21

If we take the negative logarithm of (6) and we reor-
der all the resulting projections and noise elements in
vectors g and � of length Np �N�, we obtain the matrix
equation:

g ¼Mfþ � ð7Þ

where the matrix M ¼ m
ð�Þ
il is sparse with size

ðNp �N�Þ �Nv, and f is the vector with elements
�l, l ¼ 1, . . .Nv.

Numerical model for tomosynthesis
image reconstruction

DBT images are the grayscale representation of the
attenuation coefficients of each voxel of the breast.
Hence, aim of the reconstruction algorithms is to compute
the values of the vector f, given the projection data g.

From the previous model (6), it is clear that the
problem of reconstructing f can be reduced to the solu-
tion of the linear system (7). In the real cases
N� �Np 5Nv, hence the system is underdetermined
and it has infinite possible solutions. Moreover, since
the system comes from the discretization of the ill-
posed integral equation (5),22 the noise is amplified in
the computed solution. For this reasons, a prior infor-
mation is used embedded in a regularization term, in
order to choose a solution with the characteristics of
the true object and to prevent the noise amplification.

Therefore, the reconstructed image f can be com-
puted as the solution of a minimization problem of
the form:

min
f

Jð f Þ ¼
1

2
kMf� gk22 þ �Rð f Þ ð8Þ

where R(f) is a suitable regularization function and
�4 0 is the regularization parameter. In tomographic
reconstructions a widely used regularization function is

Figure 1. Tomosynthesis system in yz plane.
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the TV function18,23 defined as:

TVðxÞ ¼

Z
�

jrxjdx ð9Þ

where � is the image domain and j � j is the L2 norm.
Since the TV is not differentiable, usually it is sub-

stituted by a smooth differentiable function. For exam-
ple, in Jensen et al.15 the Huber function is used instead
of the TV. In deblurring and denoising applications (see
for example18,24,25) a small parameter � is often added
and a smoothed version of the TV function is obtained
as:

TV�ð f Þ ¼

Z
�

jr f þ �jdf ð10Þ

with � a small positive value. In this paper, we use this
last strategy and TV�ð f Þ is considered in place of TV(f)
in the following.

Hence, the reconstructed image is the solution of the
minimization problem:

min
f
J ð f Þ ¼

1

2
kMf� gk22 þ �TV�ð f Þ ð11Þ

Since the reconstructed image f should have nonne-
gative values, the constraint f � 0 can be added to the
problem (11).

Algorithms for DBT image reconstruction

In this section, we briefly revise the algorithms that we
compare for the solution of problem (11): the SGP and
the FP methods. The SGP method finds a nonnegative
solution of the minimization problem (11). It is a gra-
dient-like method26 accelerated by using a scaling
matrix and the Barzilai–Borwein rules for the choice
of the steplength. This algorithm has been recently pro-
posed in imaging applications with very good results in
terms of efficiency and precision.27,28 The FP method is
a Newton-like method for the solution of the minimiza-
tion problem (11),26 whose descent step is computed by
solving a linear system. The coefficient matrix is an
approximation of the Hessian of the objective function
J ð f Þ. The FP algorithm has been proposed by Vogel18

and Vogel and Oman25 for the solution of image
denoising and image deblurring TV regularized prob-
lems due to its fast convergence. It has never been used
in tomographic applications, probably because the
solution of a linear system for each FP iteration is con-
sidered too expensive in terms of time and mainly of
memory requirements for a very large size application.

In this paper, we present an efficient implementation
of the FP method tailored for the tomographic

problem; at the same time the FP method maintains
its desirable convergence properties.

Scaled Gradient Projection method

The SGP method is a gradient-like method solving the
constrained minimization problem:

min J ð f Þ ¼
1

2
kMf� gk22 þ �TV�ð f Þ

s:t: f � 0

ð12Þ

exploiting scaling strategies and step-length selection
rules to improve the convergence speed (see
Bonettini et al.27 and references therein). In each iter-
ation, the scaling matrix is a diagonal matrix Dk ¼

diag ðd
ðkÞ
1 , d

ðkÞ
2 , . . . , d

ðkÞ
Nv
Þ, whose entries are computed

effortless as d
ðkÞ
i ¼ minfL, maxf1L , ð fkÞigg 8i ¼ 1, . . . ,Nv,

and L is an appropriate threshold. In addition, starting
from the well-known Barzilai–Borwein original ideas, in
Bonettini et al.27 the authors propose an efficient strategy
for the step-length updating rule: given a suitable posi-
tive range [�min, �max] in input, we define �k choosing
alternatively a value between

�ð1Þk ¼
stk�1D

�1
k D�1k sk�1

stk�1D
�1
k zk�1

and �ð2Þk ¼
stk�1Dkzk�1

ztk�1DkDkzk�1

ð13Þ

where sk�1 ¼ fk � fk�1 and zk�1 ¼ rJJ ð fkÞ�rJ Jð fk�1Þ.
Avoiding to introduce significant computational

costs, simple projections on � :¼ ff : f � 0g are added
to the basic model (11).

A trace of the algorithm is reported in Table 1.
Implementation notes. The step 5 of the SGP algo-

rithm computes the most appropriate step length �k for
the descent passage, with a backtracking loop. This is
the most expensive point of the algorithm, because it
requires one function evaluation in each inner execu-
tion plus one matrix-vector product.

For the evaluation of J ð f Þ, the TV�ð f Þ is computed
by discretizing (10) as:

XNx
v

i¼1

XNy
v

j¼1

XNz
v

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxFijlÞ

2
þ ðryFijlÞ

2
þ ðrzFijlÞ

2
þ �2

q
ð14Þ

where Nx
v , N

y
v , N

z
v are the number of voxels along the

x, y, z axis respectively and Fijl is the three dimensional
matrix of size Nx

v �Ny
v �Nz

v obtained by reshaping the
vector f of length Nv. The computation of rxFijl,ryFijl

and rzFijl is made by forward differences.
Moreover, only one function assessment and one gra-

dient evaluation are involved for each main iteration k.
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We use a convergence criterium based on the differ-
ence between two successive iterates, since in imaging
applications it is useless to go on with the iterations if
the image does not change any more:

k fk � fk�1k2 5 tolSGP

Lagged Diffusivity FP method

The FP method is a Newton-like method for the solu-
tion of the minimization problem (11), with an FP
method that makes use of approximated second order
information.

To solve the convex optimization problem (11), the
first order condition

rJ ð f Þ ¼MtðMf� gÞ þ �rTV�ð f Þ ¼ 0 ð15Þ

must be satisfied and the proposed FP method, given a
starting guess f0, computes the sequence

fkþ1 ¼ ðM
tMþ �Lð fkÞÞ

�1Mtg; 8k ¼ 0, 1, . . . :

that leads to the following updating rule:

fkþ1 ¼ fk � ðM
tMþ �Lð fkÞÞ

�1
rJð fkÞ ð16Þ

In this notation, Lð fkÞ is the discretization matrix of
the diffusion operator L(f) acting on f as Lð f Þ f ¼
rTV�ð f Þ as described in Vogel.18

Following the notations used in Vogel,18 L(f) can be
written as:

Lð f Þ ¼ Dt
xdiagð 0ð f ÞÞDx þDt

ydiagð 0ð f ÞÞDy

þDt
zdiagð 0ð f ÞÞDz

ð17Þ

where Dx is the matrix of the backward differences for
the first order operator in the x direction (the same is for
Dy and Dz in the y and z direction, respectively), and

 ð f Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ �2

p
A scheme of the FP algorithm for the solution of the

problem (11) is shown in Table 2.
Implementation notes. In step 1, rJð fkÞ is computed as:

rJð fkÞ ¼MtðMfk � gÞ þ �Lð fkÞ fk

In step 2, the matrix Hk is never stored since the
matrix L is made of only five diagonal vectors (of max-
imum length Nv) and MtMf

k is computed by two matrix-
vector products.

Step 3 is the most computationally expensive part,
because a large size linear system is to be solved with
the CG algorithm. We require the CG not to converge
exactly, in order to get more regularized final solutions.
For this reason, the CG algorithm is stopped when the
residual 2-norm is smaller than a tolerance of 10�3 or a
maximum number of iterations is reached.

Finally, step 4 performs a backtracking procedure,
as in the SGP algorithm, to compute the step-length �k.

The FP stopping criterion is set as:

k fk � fk�1k2 5 tolFP

Numerical experiments

The experiments of this section aim to show the effi-
ciency and effectiveness of the FP method, comparing it

Table 1. The SGP algorithm. For more details, see [27].

SGP algorithm to solve: Jð f Þ ¼ 1
2
jjMf � gjj22 þ �TV�ð f Þ,

s:t: f 2 �

choose initial f0
set parameters 	 2 ð0,1Þ,05 �min 5�max, K 2 N, �bt 4 0

set k¼ 0

while (convergence)

1. choose �k 2 ½�min,�max� and the scaling matrix Dk

with the BB rules (13)

2. compute the projection hk ¼ P�,D�1
k
ð fk � �kDkrJð fkÞÞ

3. if hk¼ fk then stop

4. compute the descent direction dk ¼ hk � fk
5. backtracking loop to compute the steplength �k:

set �k ¼ 1,fmax ¼ max0�j�minðk,K�1ÞJð fk�jÞ

while (Jð fk þ �kdkÞ4 fmax þ �bt�krJð fkÞ
tdk)

�k ¼ 	�k

end

6. fkþ1 ¼ fk þ �kdk

7. k ¼ kþ 1

end

SGP: Scaled Gradient Projection.

Table 2. The FP algorithm.

FP algorithm to solve: Jð f Þ ¼ 1
2
jjMf � gjj22 þ �TV�ð f Þ

choose initial f0
k¼ 0

while (convergence)

1. compute the gradient gk ¼ rJð fkÞ

2. compute the approximated hessian Hk ¼ MtMþ �Lð fkÞ

3. solve the linear system Hksk ¼ �gk with CG method

4. backtracking loop to compute the steplength �k

5. fkþ1 ¼ fk þ �k 	 sk

6. k¼ kþ 1

end

FP: Fixed Point.
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with the SGP method. We analyze the results obtained
by the two methods after few iterations of the algo-
rithms, i.e. what can be obtained during clinical trials,
and at convergence, when a posteriori executions can
be performed offline. We think that both the simula-
tions are interesting in practical use.

All the methods are implemented inMatlab R2015a and
the experiments are performed on a computer equipped
with two processors Intel Pentium G2120 3.1GHz, with
3.6GB RAM, using Linux operating system.

Test problem

The tests are made on a digital version of a real
accreditation phantom, called ‘‘CIRS mod. 015.’’29 In
our tests, it is discretized in 128� 128� 15 voxels with a
resolution of 1� 1� 3mm3. These dimensions are pro-
portional to a real case.

Figure 2 shows the central slices of this phantom:
inside a voxel-thin boundary of simulated skin, objects
like fibers, microcalcification and masses are neatly put
in a uniform background of adipose tissue. Outside the
skin-made boundary, air is simulated with null attenu-
ation coefficient and it is part of the volume we want to
reconstruct together with the phantom. This phantom
is used to check the competency of mammographic sys-
tems because the included objects are very important
for the early detection of a breast cancer. In more

detail, they are of different dimensions and thickness,
in order to analyze and compare the 3D graphic reso-
lution of different reconstructions, and their attenu-
ation values are performed taking into account a low
X-ray scan of 20 keV.

In Table 3, we report the attenuation coefficients used
to create our digital phantom.30 The central layer
includes one-voxel thin microcalcifications on the right,
in order to analyze the algorithm even on the smallest
objects. In Figure 3, the reverse gray-scale representation
of Figure 2(c) is reported to better appreciate the low
contrast between structures and adipose background.

In our tests, the detector is made of 128� 128 pixels
and its extension is the same of the volume area on the
xy-plane. Moreover the volume leans on the detector,
so it captures all the projections of the CIRS even from
the most angled views (since it is smaller than the

Figure 2. Central layers of the digital mammographic phantom CIRS mod. 015, sliced in 15 digital planes with resolution of

128� 128 pixels. (a–e): Layers (6–10).

Table 3. Attenuation coefficients of different

materials, related to a 20 keV scan.

Object

Attenuation

coefficient

Adipose tissue 0.1703

Skin 0.24

Fibers and masses 0.27

Microcalcifications 3
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volume, because of the surrounding air ring). The
tomosynthesis acquisition parameters that we use in
our simulations are inspired by the real systems pro-
duced by IMS (Internazionale Medico Scientifico). We
consider 13 angles, uniformly distributed from �17 and
þ17�. The central cone beam starts 64 cm above the
detector and the X-ray monochrome source wheels
along the x-direction, with a 59 cm ray.

The simulation problem is defined by computing the
projections:

g ¼Mfþ �

where � is Gaussian noise of relative noise level:

rnl ¼
k�k

k gk
¼ 10�3

Evaluation criteria. Outputs are evaluated by com-
puting the relative error

RE ¼
k fout � f	k

k f	k

where f	 is the true object and fout is the reconstructed
image.

Figure 4 shows profiles and objects, on the eighth
layer, that we use to analyze all the outputs in more
details. Denoising, in fact, is estimated taking the stand-
ard deviation value (StdDev) on a rectangle in the
upper-right side of the central layer, where the actual
phantom is uniform (Figure 4(a)): smaller values mean
stronger noise reduction. To better highlight the object
reconstruction, during the code executions, we analyze
some early outputs comparing profiles taken on micro-
calcifications and on masses along the horizontal lines
in Figure 4(b) and (c). In order to analyze the 3D accur-
acy of the algorithm we focus on the two voxels pointed
by arrows in Figure 4(d).

Algorithms parameters. The TV makes use of
� ¼ 10�6 for its differentiability.

The regularization parameter has been heuristically
chosen for both algorithms as � ¼ 0:01: this choice
ensures good results since we carefully evaluated the
robustness of both methods.

Both the algorithms always start from an initial null
vector f0 ¼ 0 and the convergence tolerances are
tolSGP ¼ tolFP ¼ 10�4. A further control is added to
ensure the convergence of the solution of problem
(11) to the minimum relative error: the algorithms
may stop if semiconvergence is achieved with respect
to the exact solution f	, that is

k fk � f	k

k f	k
4
k fk�1 � f	k

k f	k

where f	 is the exact image and fk is the kth computed
iteration.

In the SGP code, we used L¼ 10 to construct the
scaling matrices Dk, �min ¼ 10�10,�max ¼ 105, and
�0 ¼ 10�2 to ensure �k positivity; we set K¼ 0,
� ¼ 0:4, and �bt ¼ 10�4 for line-search backtracking
loop. We heuristically tested different sets of param-
eters and we reported the best performing one; the
values are the same proposed in Bonettini et al.27

The maximum number of iterations for the inner CG
loop, in the FP algorithm, is 150.

Figure 4. Objects we will focus on to analyze reconstructions deeply.

Figure 3. Layer 8, in reverse gray-scale.
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Results at the algorithms convergence

Figures 5 and 6 show the central layer (in reverse gray-
scale) of SGP and FP reconstructions together with
the absolute errors between the original and the recon-
structed images. First of all, we can appreciate that all
the microcalcifications are detected, even the smallest
ones, in both outputs and this is an encouraging
remark. Actually speaking, the SGP is faster than the
FP method, since it requires about one fifth time to get
up to its convergence: more precisely, the SGP conver-
gence takes 105 s while the FP makes use of 505 s to
provide its output. On the other hand, the FP output
looks much more precise than the SGP output. In fact,
focusing on the central layer that has values in [0, 3], the
FP pointwise absolute error is always smaller than 10�1

and, as we can observe comparing the two color bars in
Figures 5 and 6, it is 10 time smaller than the SGP

value. In addition, these inaccuracies are mainly located
in the CIRS horizontal edges (that are harder to detect
precisely, because they are parallel to the X-ray source
motion) and around the masses, while only tiny errors
are near the microcalcifications. Finally, the FP recon-
struction also shows a uniform background, without
shadows along the acquisition direction, and this fea-
ture is particularly appreciable, because shadows may
overlap with other structures and conceal them.

Results after few algorithms iterations

Due to the practical aim, where there is no time to wait
for the convergence, it is essential to analyze how the
algorithms behave during their execution, with untimely
outputs. From now on, we analyze the performance in
temporal windows of 5, 20, and 60 s of computations: it
is interesting to see how the profiles (related to the lines

Figure 5. SGP reconstruction in the eighth layer and the related absolute error.

SGP: Scaled Gradient Projection.

Figure 6. FP reconstruction in the eighth layer and the related absolute error. To notice that the color bar scale is one order smaller

than that in Figure 5.

FP: Fixed Point.
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plotted in Figure 4(b) and (c)) on the partial reconstruc-
tions become closer and closer to their target.

Figures 7 and 8 point out the main differ-
ences between the two methods. If we concentrate on
the microcalcifications, we can realize how the SGP is
really fast in its first computations: it makes the micro-
calcifications visible after only 5 s, while in that time
the FP hardly moves from its initial null guess.
On the contrary, in 20 s the FP becomes more effective,
since the smallest object detection is very accurate, and
later outputs show that the SGP never manage in reach-
ing the tops, even in its convergence. On the other
hand, the FP reconstructions are almost perfect.

Focusing on the masses (Figure 8), the gap between
the two outputs becomes more and more noticeable
since the blue lines representing the FP output
approach more and more to their target, as time goes
by, while the SGP suffers from inaccuracy when it deals
with all these low-attenuation elements.

At last, we cannot appreciate significant improve-
ments between the 60-s and the convergent outputs.

Numerical parameters to compare all the corres-
ponding solutions are reported in Table 4. The rows
correspond to the shots at different execution times;
5 s, 20 s, and 60 s. The first column shows the computed
relative errors for each reconstruction, taking into
account all the layers. It confirms the SGP speed and
the FP accuracy: in initial outputs the SGP error is
smaller, while for the final reconstructions the FP
error is half of the SGP one.

The second column reports the number of performed
iterations, together with the number of backtracking
executions for the SGP method (between brackets),
and the total number of CG inner loops for the FP
method (between brackets). As we can see, each FP
iteration takes more time than a SGP iteration.

Finally, the third column compares the two algo-
rithms in terms of noise removal through the

Figure 7. Profiles related to Figure 4(b), taken from some early reconstructions of both methods. In black continuous lines the exact

profiles, in red circles the SGP, and in blue asterisks the FP profiles. (a): 500, (b): 2000, (c): 6000, and (d): Convergence.
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standard deviation value. We remark that the
images obtained with the FP method always have a
very low value of standard deviation. The values of
the means of these test are not reported, since they
all approximate the exact value with an error lower
than 10�3.

3D accuracy

As we are interested in three-dimensional reconstruc-
tions, we now investigate the accuracy of both the
methods along the z direction, in the two voxels pointed
by arrows in Figure 4(d).

Figure 8. Profiles related to Figure 4(c), taken from some early reconstructions of both methods. In black continuous lines the exact

profiles, in red circles the SGP, and in blue asterisks the FP profiles. (a): 500, (b): 2000, (c): 6000, and (d): Convergence.

Table 4. Results for the FP and SGP methods at different execution times.

RE Iterations Std Dev

SGP FP SGP FP SGP FP

5 s 0.28135 0.54478 13 (þ1) 1 (þ85) 1e–3 5.4e–4

20 s 0.17416 0.18484 57 (þ15) 4 (þ505) 1e–3 3.5e–4

60 s 0.13355 0.10717 174 (þ53) 8 (þ1105) 8.3e–4 5.6e–4

Convergence 0.12221 0.062893 283 (þ84) 62 (þ9055) 6.2e–4 3.2e–4

SGP: Scaled Gradient Projection; FP: Fixed Point.
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Looking at the plots in Figure 9 related to a thin
microcalcification, we can confirm the excellent cap-
ability of both the methods to locate voxel-wise elem-
ents of high intensity in their exact positions, even in
few iterations. Hence, we plot the values of the recon-
structed voxels in the 15 slices along the z axis. This is
an important validation for the prefixed model.

On the contrary, the plots in Figure 10 are related to
the central voxel of the biggest mass on the left (that is
three layers thick) and they reveal the inability of the
SGP algorithm to detect lighter and plainer objects;

the FP method, on the contrary, needs short time to
detect smoother structures. We remark that, for what
concerns the masses, in the z direction the two methods
produce very different results, since the SGP method
detects an object with very low intensity diffused in
too many slices, while the FP method accurately finds
the intensity and depth of the original structure. These
profiles are concerning reconstructions obtained after
20 and 60 s. We notice that if we make many more iter-
ations of the SGP algorithm the relative error does not
decrease and the reconstructed image remains the same.

Figure 9. z-Profiles related to the one-voxel thin microcalcification: in black continuous lines the exact profiles, in red dots the

output after 5 s, and in blue squares output after 20 s. (a): SGP and (b): FP.

Figure 10. z-Profiles related to the central voxel of the biggest mass: in black continuous lines the exact profiles, in blue squares the

output after 20 s, and in red asterisks the output after 60 s. (a): SGP and (b): FP.
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Conclusions

In this paper, we have proposed to use an FP method
for the solution of a regularized TV least squares mini-
mization problem for the reconstruction of DBT
images. In tomographic applications, only first order
methods have been used up to now, because one iter-
ation of a first order method is less expensive than one
iteration of a method using approximate second order
information. We proposed an efficient implementation
of the FP method, suited for DBT applications, that
makes it competitive with a fast first order method
such as SGP.

Numerical experiments performed on a medium size
phantom showed that the FP method is very well per-
forming, both after very few iterations and at conver-
gence. Both the FP and SGP methods detect
microcalcifications in a very short time, while in a
longer time the FP method recovers different structures,
as masses, that cannot be obtained with SGP. For prac-
tical purposes, this is very useful when a deeper inves-
tigation is needed to make a diagnosis, if the operator
has quite a lot of time or a powerful computing config-
uration available.
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