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ABSTRACT

Whole exome sequencing (WES) data are allowing re-
searchers to pinpoint the causes of many Mendelian
disorders. In time, sequencing data will be crucial to
solve the genome interpretation puzzle, which aims
at uncovering the genotype-to-phenotype relation-
ship, but for the moment many conceptual and tech-
nical problems need to be addressed. In particular,
very few attempts at the in-silico diagnosis of oligo-
to-polygenic disorders have been made so far, due to
the complexity of the challenge, the relative scarcity
of the data and issues such as batch effects and
data heterogeneity, which are confounder factors for
machine learning (ML) methods. Here, we propose
a method for the exome-based in-silico diagnosis of
Crohn’s disease (CD) patients which addresses many
of the current methodological issues. First, we devise
a rational ML-friendly feature representation for WES
data based on the gene mutational burden concept,
which is suitable for small sample sizes datasets.
Second, we propose a Neural Network (NN) with pa-
rameter tying and heavy regularization, in order to
limit its complexity and thus the risk of over-fitting.
We trained and tested our NN on 3 CD case-controls
datasets, comparing the performance with the par-
ticipants of previous CAGI challenges. We show that,
notwithstanding the limited NN complexity, it outper-
forms the previous approaches. Moreover, we inter-
pret the NN predictions by analyzing the learned pat-
terns at the variant and gene level and investigating
the decision process leading to each prediction.

INTRODUCTION

Sequencing technologies are producing large amounts of
data (1), allowing detailed analysis of the human genetic

variability and its relation with phenotypic traits such as
the susceptibility to genetic disorders (2). Whole exome se-
quencing (WES) focuses only on the 1-2% of our genome
that is responsible for encoding genes and is thus more af-
fordable than WGS. Nonetheless, it is able to sample the ge-
netic variation with highest chance to have a functional im-
pact, such as missense single nucleotide variants (SNVs) (3).
So far WES has indeed been extremely valuable for the dis-
covery of the molecular mechanisms underlying many ge-
netic diseases (2,4).

Large genetic studies are nowadays very common, mean-
ing that increasing amount of data is becoming available
to bioinformaticians, sometimes even in the form of case-
controls datasets targeting particular genetic disorders with
uncertain aetiology (5-7). These kinds of studies are thus
allowing researchers to start investigating the diagnostic po-
tential of machine learning (ML) methods (5,8), paving the
way for future clinical applications and potentially improv-
ing our comprehension of the basis of poorly understood
genetic disorders (5,9).

Notwithstanding the clear scientific opportunity of ap-
plying cutting-edge ML methods directly to the exome-
based in-silico diagnosis of oligo-to-polygenic genetic traits,
many issues need to be solved in order to reach this goal:
standardized, homogeneous and high-quality case-controls
sequencing data for training and testing of ML methods are
indeed still relatively difficult to obtain, due to the follow-
ing three common issues. First, in many studies some level
of batch effect bias is present between cases and controls,
due for example to the different technologies or experimen-
tal settings in which the positive and negative samples have
been sequenced. Second, the selection of the individuals in
the cohorts is crucial: in the case of polygenic disorders, for
example, disease-unrelated factors such as the different eth-
nicity between cases and controls may indeed easily provide
a stronger discrimination signal than the feeble contribu-
tions due to variants differentially accumulated on sensible
genes. Third, on the phenotypic annotation side is equally
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difficult to ensure that all the cases have the same disease
severity and that all the symptoms have been annotated fol-
lowing the same criteria and with the same level of detail.
To the best of our knowledge, only a limited number of
exome-based in-silico diagnostic tools targeting non-trivial
genetic traits with state-of-the-art ML methods have been
published so far, such as (8,10-11) for Crohn’s disease (CD)
and (12) for Bipolar Disorder. Other approaches relied on
more classical statistical methods such as empirical disease
risk scores (6,7).

The application of cutting-edge ML methods to the di-
agnosis of non trivial genetic disorders presents indeed var-
ious technical challenges, due to (i) the intrinsic complex-
ity of the problem, which would require sophisticate non-
linear models to be solved, the (ii) generally high level of
noise in the data and (iii) the widespread presence of con-
founding effects (e.g. batch effects and heterogeneous phe-
notypic annotations). Moreover, (iv) due to experimental
and clinical difficulties, a small amount of samples are gen-
erally available in each dataset. Limited sample size coupled
with the large amount of information encoded in each ex-
ome (WES identifies around 10-20k variants per individ-
ual) pose indeed a clear problem for the successful appli-
cation of ML methods (8), specifically in relation to the
risk of learning dataset-related characteristics (over-fitting)
or unwanted signal due to confounding effects (e.g. batch
effects or ethnicity) instead of disease-mechanisms-related
patterns.

In this study we tackle these difficult problems and we
address them by devising a novel Neural Networks (NN)
approach, called CDkoma, for the exome-based in-silico di-
agnosis of oligo-to-polygenic genetic disorders. We apply
it to the prediction of CD patients from healthy controls
on the case-controls datasets used in the 2011, 2013 and
2016 editions of the Critical Assessment of Genome In-
terpretation (CAGI) (8). We show that our NN improves
over the performances obtained by state of the art meth-
ods in the past CAGI challenges, but at the same time we
put a lot of effort into limiting the detrimental effects of the
data-related issues mentioned above. In particular, (i) we de-
signed our model to allow non-linear inference while mini-
mizing the number of trainable parameters by heavily using
weight sharing and regularization and (ii) we propose an ex-
ome sequencing feature encoding scheme based on the bio-
logical concept of gene mutational burden that allows us to
meaningfully condense the information contained in WES
data into a small tensorial representation suitable for ML
applications on small sample sized data.

At last, we show that our NN allows also the interpreta-
tion of its predictions providing insights on the variants and
gene-level learned patterns, ultimately permitting the inves-
tigating the decision process leading to each case/control
prediction.

MATERIALS AND METHODS

Datasets

The datasets used in this study are taken from the CAGI2
(2011), CAGI3 (2013) and CAGI4 (2016) CD prediction
challenge, which had the goal of distinguish between ex-
omes of CD patients and healthy individuals by analysing

their exomes. We obtained them with the permission of Dr
Andre Franke (CAGI3 and 4), while the CAGI2 dataset is
publicly available.

The CAGI2 dataset contains 56 exomes, consisting of 42
cases and 14 controls. This dataset is known to suffer from
batch effect bias due to the fact that the cases and the con-
trols have been sequenced in different settings (5,8), result-
ing in trivially identifiable differences between the positive
and negative samples (e.g. with a PCA).

The CAGI3 dataset contains 66 sequenced exomes, di-
vided into 51 cases and 15 controls. The samples are orga-
nized into 28 different pedigrees and two discordant twin
pairs (8) and a certain degree of batch effect is noticeable
with a clustering procedure (5), although the effect is less
severe than in the CAGI2 dataset.

The CAGI4 dataset is the largest and highest quality
dataset available. It contains 111 sequenced exomes, divided
into 64 cases and 47 controls. The cases are unrelated and
only two pairs of controls are related, with also no relation-
ship with the datasets from past CAGI editions (8). Further
details about how this data has been collected can be found
in (5,8). All the datasets are provided as VCF files listing the
observed variants, further details about them are available
in Supplementary Material Section S1.

Encoding the exome sequencing data into ML-
understandable features

We used Annovar (13) to annotate the VCF files in the
CAGI CD datasets, obtaining a tab-separated files with
functional annotations for all the variants observed (see
Supplementary Material Section S5 for more details).

One of the most crucial aspects of the application of ML
methods to any specific domain of interest is related to find-
ing the most suitable way to encode real-world informa-
tion into ML-understandable feature vectors, which corre-
spond to the multi-dimensional data points on which the
ML algorithm perform inference for classification or regres-
sion. Such vectors should contain ideally all the information
available from the data, and at the same time their encoding
should be as efficient as possible in order to minimize their
size (the number of features used), which is generally pro-
portional to the complexity of the model and thus closely
linked to the risk of over-fitting. Moreover, a limited num-
ber of dimensions allows computationally faster training
procedure of the ML model.

To the best of our knowledge, a well-defined method
to encode exome sequencing information into feature vec-
tors for the purpose of in-silico diagnosis of oligo-to-
polygenic genetic disorders has not been proposed yet. The
approaches used so far encode the observed variants by list-
ing them and annotating their deleteriousness with variant-
effect predictors (10) or by one-hot encoding the geno-
type information within each chromosome (12), but the
main drawback of both of these approaches is that the
size of the resulting feature vectors is proportional to the
number of variants observed on the input exomes, which
is likely around ten or twenty thousands. Notwithstand-
ing the widespread use of WES technologies, most case-
control datasets available nowadays still have a limited sam-
ple size (few hundreds samples), which requires some pru-
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dence when using feature vectors with too many dimen-
sions.

A feature encoding based on gene-level aggregation of vari-
ants. In this study, we devised a general strategy to en-
code WES data into ML-ready feature vectors which is par-
ticularly suitable for small sample size datasets, because it
encodes the genetic information in a compact form by ag-
gregating the variants at the gene level. Instead of encod-
ing sequentially all the variants annotated in the VCFs,
which would result in large and unstructured feature vec-
tors (10,12), we define the genes to be the smallest concep-
tual entity in our model, and we thus aggregate all the ob-
served variants on the genes on which they are mapped, by
counting how many times each type of variant occur in each
gene. Biologically, this concept can be viewed as analogous
to quantify and encode the genes mutational burden ob-
served in the data (14), which corresponds to the amount
of (possibly damaging) mutations carried by the genes cov-
ered by the WES. This is nevertheless conceptually different
from existing mutation burden testing approaches such as
(15-17), since the goal of our study is mainly predictive and
not just explanatory (18).

While there are many possible ways to encode this bur-
den, such as quantifying the functional impact of each vari-
ant with variant-effect predictors such as CADD (19), M-
CAP (20) or DEOGEN?2 (21), encoding the distributions of
these scores by binning them into a fixed-size feature vector,
in our study we did not use this approach because, due to
the limited amount of data available for training and testing,
we preferred to adopt an even simpler approach. In this con-
text, we believe that proposing a (i) simple encoding which
(1) drastically reduces the feature vectors size required to
represent sequencing data and which (iii) does not require
third-party functional prediction tools enhances greatly its
generality and thus its wide applicability, for example across
data types (WGS, WES) and organisms, since most of the
functional predictions are available only for humans.

For each gene we thus counted the number of variants
mapped by Annovar on it, organizing them in the follow-
ing 9 classes: ‘exonic’, ‘UTR3’, ‘UTRYS’, ‘ncRNA exonic’,
‘ncRNA intronic’, ‘upstream’, ‘downstream’, ‘intronic’ and
‘splicing’. Each exome is thus summarized into a matrix
(called tensor in NN jargon) with size 9 x N, where Ny is
the number of the genes considered among the entire Hu-
man exome.

Since in this study we focus on the in-silico diagnosis of
CD patients, we extracted from PhenoPedia (22) the list of
genes involved in CD, obtaining two possible values for N,
= {222, 691}, which correspond to the genes referenced in
at least 2 or 1 publication. The full list is available in Sup-
plementary Material.

As a last step, we added two extra dimensions to each of
the gene feature vectors, representing the (i) RVIS (23) gene-
burden score and (ii) the publication weight score extracted
from PhenoPedia, which is proportional to the number of
publications in which each gene has been associated with
CD. These two additional features are suppose to provide
general information about the relevance of the gene for hu-
man health (RVIS) and its degree of involvement in CD. The
total number of gene features is thus F, = 11.
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The final shape of our feature encoding scheme for each
exome is thus F, x N,. The feature representation of a
dataset with M samples is thus a 3D tensor with shape M x
(Ng x Fy).

The Neural Network model

The tensorial exome feature representation described so far
cannot be used as input for every ML method, because most
of them (e.g. RandomForest, Support Vector Machines) as-
sume that each sample is represented by a 1-dimensional
vector. A solution to this issue would be to concatenate the
N, gene feature vectors within each exome, but this would
lead to a vector with shape 1 x (N, - F,) and, in conventional
ML methods, to a number of parameters proportional to N,
- Fy > M, which would be excessive due to the small num-
ber of samples M in the CAGI datasets. On the other hand,
Neural Networks (NN) can natively deal with more struc-
tured tensorial feature vectors as input, and the number of
trainable parameters can be reduced by using weight sharing
(also called parameter tying).

We thus devised a NN model specific for the exome-based
in-silico diagnosis of CD patients, and we kept its complex-
ity in terms of trainable parameters as low as possible in
order to limit the risk of over-fitting. Our NN, called CD-
koma, is shown in Figure 1 and has two neurons, called
G (yellow) and P (dark green). The G neuron has W, =
F, = 11 weights and each application of G takes as in-
put one 11-dimensional vector describing one of the N,
genes selected. The first layer of the network thus consists
of N, applications of the same neuron G, similarly to a 1-
dimensional convolutional layer, followed by LeakyReLU
activations (24). Then, we filter these values with a Dropout
layer (25) with a probability P = 0.1 of discarding each input
value. The final layer of the network consists of the neuron
P, which implements a Logistic Regression over the values
computed by the G neurons and outputs probability-like
scores, where predictions close to 1 indicate higher likeli-
hood of CD.

Further details about the NN are available in Supplemen-
tary Material Section S2. The implementation is available
at: https://bitbucket.org/eddiewrc/cdkoma.

Evaluation of the predictions

We evaluated the performance of CDkoma in four differ-
ent prediction settings. First, we trained it on the CAGI4
dataset, which is the highest quality one (8) and we tested it
on the CAGI3 and CAGI2 datasets. We then trained CD-
koma on the CAGI3 dataset, which is the second most reli-
able dataset (8), and tested it on the CAGI4 data. In the last
assessment, we concatenated the CAGI2, 3 and 4 datasets
and we performed a leave-one-out (LOO) cross validation
on the 233 resulting samples.

As evaluation metrics we used the Sensitivity (SEN),
Specificity (SPE), Balanced Accuracy (BAC), Precision
(PRE), Matthews Correlation Coefficient (MCC), Area
Under the ROC curve (AUC) and the Area Under the
Precision-Recall curve (AUPRC).
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Figure 1. Figure showing the structure of the CDkoma NN. The feature vector describing each exome is a tensor with shape (Fy x Ng), encoding the
N, most relevant CD genes. The G neuron is applied iteratively to each 11-dimensional feature vectors encoding the CD genes, each time using the same
weights W,. The N, LeakyReLU activations from the applications of the G neuron are filtered by a Dropout layer and the final neuron P aggregates all
the resulting activations into a logistic regression that yields the final, probability-like, diagnostic score.

RESULTS
Performance of the CAGI dataset

We evaluated the performance of our NN method, called
CDkoma, by training and testing it on CD datasets from
past editions of the CAGI challenge. To test CDkoma on
the CAGI4 dataset, we trained it on the CAGI3 data. To
test our method on the CAGI2 and 3 datasets, we trained it
on the CAGI4 data, which appears to be the highest qual-
ity dataset among the three (8). To corroborate this obser-
vation, Supplementary Figures S1 and 2 show that, when
using our gene-burden-based feature encoding described in
Methods, CAGI3 and 4 datasets do not present any obvi-
ous bias able to trivially distinguish cases from controls in
terms of type of variants observed (see Supplementary Fig-
ure S1) or mean number of variants mapped on the N, se-
lected genes (see Supplementary Figures S2 and 8). On the
other side, this effect is visible on the CAGI2 dataset, in
which controls have a significantly higher number of vari-
ants mapped on each gene and thus we decided not to use
this dataset for training.

Table 1 shows the prediction performance of CDkoma
over the three CAGI datasets, both while using the larger
(691) or the smaller (222) sets of CD genes. In general, the
performance of CDkoma is higher when using the larger
set of genes, probably due to the fact that more informa-

Table 1. Performance of CDkoma using the small and large set of genes
on the 3 CAGI datasets

Target Genes Sen Spe Bac Pre MCC AUC AUPRC

CAGI4 691 722 702 713 77.0 421 744 80.5
222 523 745 634 739 269 642 68.9
CAGI3 691 962 60.0 781 893 632 825 93.1
222 942 600 77.1 89.1 59.0 793 91.8
CAGI2 691 93.0 643 787 889 605 743 86.6
222 977 571 714 875 647 714 84.4

The abbreviations of the evaluation metrics used are explained in ‘Materi-
als and Methods’ section.

tion about the genetic variability in each sample is available
to the predictor, but the two settings are comparable. CD-
koma has a good precision, meaning that nearly 90% of the
samples diagnosed with CD in CAGI3 and 2 datasets are ac-
tually affected by it, and 77% of them in the CAGI4 dataset,
which is appears to be the hardest CD prediction challenge
proposed so far (8).

Supplementary Table S1 shows the prediction perfor-
mances obtained by conventional ML methods such as Lo-
gistic Regression, Support Vector Machine, Random For-
est and a fully connected feed forward NN (DenseNN) on
the same data. Notwithstanding the larger number of pa-
rameters used by these models, these approaches fail to ob-
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Table 2. Comparison our NN (CDkoma) performance (in terms of AUC)
with the best scores obtained in previous CAGI assessments

Target set # Method AUC
CAGI4 CDkoma 74
GWAS marked SNPs + ML # 72
Ensemble 66
Manual prediction 63
Transductive SVM 60
Key variants weighting 59
CAGI3 Biclustering 87
Mixed pedigree 1 84
CDkoma 83
Mixed pedigree 3 80
Count of SNVs in CD genes 74
AVA,Dx" 69
CAGI2 CDkoma 74
Manual prediction 68
SNV co-occurrence 68
Biclustering 67
Count SNVs in CD genes 66

a result reported from (11), ® result reported from (26).
CAGI results have been reported from (8).

tain results that are significantly better than random on the
CAGI4 dataset and they perform at least 13% lower than
CDkoma on the CAGI3 dataset.

Supplementary Figure S3 shows that, notwithstanding
the small sample size, the performances of our NN are al-
ways significantly higher than the random baseline.

Comparison with past CAGI CD challenges

We compared the predictions obtained by CDkoma (using
the full set of 691 CD-related genes) with the results ob-
tained by CAGI participants on the three datasets. Table
2 shows this comparison, with most results reported from
(8). We also reported the performance of (11), which was
the winner of the 2016 CD challenge, and from the recently
published AVA,Dx (26). To reach this result, they used ML
methods such as Naive Bayes or Random Forest along with
inputed marker SNPs information from third-party GWAS
studies to distinguish between CD cases and controls.

The details of the other methods mentioned in Table 2 are
described in (8), but we will briefly recap them here for sake
of clarity. Key variants weighting consists in ranking the
samples in function of the number of known CD-causing
SNVs present in the exomes. Biclustering is the procedure
of performing a K-means clustering on the samples with
k = 2, based on the observed variants. Ensemble method
performs its prediction by combining the scores obtained
by the other approaches described here. Manual prediction
is the diagnostic assessment performed by a human expert.
Methods based on counting the number of SNVs in CD
genes produces a diagnostic score from the total number of
variants observed. Transductive SVM involves the applica-
tion of transductive learning (27) on a set of variants statis-
tically significantly associated with CD.

Table 2 shows the sorted comparison between the per-
formances obtained from our NN model (CDkoma) with
respect to the methods presented in the past CAGI chal-
lenges, reported from (8). We show the comparison of the
AUC scores because it is the metric used in CAGI evalu-
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ations (5). We can see that on the three datasets, our NN
is ranked first two out of three times. In particular, in the
CAGI4 and 2 datasets, our NN is ranked first, respectively
3% and 9% better than the best methods presented in the re-
spective challenges. For what concerns the CAGI3 dataset,
our NN is ranked third, 5% lower than the best performing
biclustering approach. As observed in (8), the success of this
relatively simple method (an unsupervised k-means cluster-
ing with k& = 2) could be due to the fact that there is a batch
effect bias that helps discriminating cases from controls at
the level of the variants distribution.

The comparison shown in Table 2 is meant to show how
the prediction performance of CDkoma relates to the pre-
viously developed tools, but, although very similar, the pre-
diction settings are not completely identical since the scores
reported from (8) have been obtained in true blind test set-
tings. Moreover, the CAGI4 dataset was not available as
training set to test methods on the CAGI2 and 3 datasets.
CDkoma performances on the CAGI4 data, on the other
hand, are directly comparable because both CAGI2 and
3 datasets were available to researchers as training sets to
solve the CAGI4 challenge.

Leave-one out cross-validation

As additional validation, we merged the CAGI2, 3
and CAGI4 datasets and we performed an LOO cross-
validation on the resulting set, which contains 233 sam-
ples, 158 of which are CD patients. Supplementary Table
S2 shows the results obtained by CDkoma when using the
set of 222 or 691 CD-related genes. From this additional as-
sessment we can see that our method obtains consistent per-
formance across different evaluation settings. The AUCs are
comparable with the ones shown in Table 1 and the AUPRC
curve and the high precision (81.6) indicates that most of the
time our model predicts a sample to be associated with CD,
the prediction is correct.

The NN predictions correlate with the disease’s age of onset

The CAGI4 dataset is also annotated with the age of onset
of CD on the cases. After obtaining the probability like pre-
dictions from CDkoma, we thus investigated whether the
NN scores were somehow reflecting the severity of the dis-
ease, measured by the age of onset. Supplementary Figure
S5 shows the correlation between CDkoma predictions and
the age of onset on the CAGI4 dataset. It is important to no-
tice that onset-related information is not passed to the NN
at any time, and thus CDkoma is not specifically trained
to reflect this property. CDkoma predictions have a nega-
tive correlation with the age of onset, meaning that higher
scores are assigned to individuals which show symptoms of
CD earlier in their life, possibly indicating a stronger phe-
notype. The Spearman correlation is ry = —0.27, with sig-
nificant P-values (P = 0.03), notwithstanding the limited
number of samples. The CAGI4 cases have generally a very
young age (<15 years). In particular, the youngest cases (1—
2 years) might have a monogenic cause of disease, for which
our model is not particularly suited, since it is based on
the gene burden concept instead of single driving variants.
CDkoma has been trained on the CAGI3 dataset to per-
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Figure 2. Plot showing the normalized absolute value of the weights learned by the G neuron on the CAGI3 (blue) and 4 (orange) datasets.

form this analysis, but onset ages are not available for that
dataset.

DISCUSSION

The ghost in the machine: opening the NN black-box to allow
a biological interpretation

Besides the prediction of the likelihood of each sample to
be associated with CD, we believe that the application of
ML methods in Bioinformatics should also focus on the in-
terpretation of the model’s decision, in order to extract in-
formation about the biological aspects of the phenomena
under study. NN are known to be one of the most diffi-
cult ML to interpret when it comes to understanding how
the trained model actually makes its predictions. Notwith-
standing these difficulties, we worked on the analysis of the
meaning of the weights used to process each gene feature
vector and of the patterns of activations of the G neurons
when predicting each sample, investigating their contribu-
tions towards the final prediction.

In a NN, each neuron’s activation a(x, w) is computed as
a function f of the input values x multiplied by the learned
weights w, in the following way: a(x, w) = f(3 vix;w;). This
means that, in order to give a contribution to the activa-
tion of the neuron, a feature x; needs to be multiplied by
a non-zero weight w;, otherwise its contribution becomes
null. This means that considering the absolute value of the
weights W, learned by the NN can thus be used as a first
way to investigate how much importance the network as-
signs to each input variant type, provided that the features
have comparable values.

Moreover, the pattern of activations ajcy,(x, w) pro-
duced by the first layer of the NN, which is composed by
N, applications of the G neuron (see Figure 1), can be used
to investigate, for each predicted sample, which genes were
active in that exome and whether they voted towards a ‘dis-
ease’ (class 1) or a ‘control’ (class 0) prediction outcome in
the final layer /neuron P. In the following, we restricted these
interpretation attempts to the set of 222 genes which are ref-
erenced as CD-related in at least two publications in order

to get the most biologically consistent interpretation possi-
ble, reducing the risk of factoring in spurious associations
between genes and CD and thus providing more robust re-
sults.

Exonic and UTR variants are the most relevant features

We extracted the W, = 11 weights of the G neuron learned
when training CDkoma over the CAGI3 (orange) and 4
(blue) datasets, which contain the most reliable data avail-
able, using the set of 222 genes, which are referenced as CD-
related in at least two publications. By analyzing the abso-
lute value of these weights, it is possible to understand how
much relevance the NN assigned to each of them, since all
the features assume comparable values, as shown in Supple-
mentary Figures S1, 2 and 4. .

Figure 2 shows the relevance, normalized over the x axis,
of each of the features describing each gene in each exome.
Interestingly, the pattern of feature relevance are very sim-
ilar regardless of the dataset used to train CDkoma, in-
dicating a good consistency between independent training
procedures on different data. The features representing the
amount of UTRS and exonic variants accumulated on each
gene are generally the most important features, followed by
the number of UTR3 variants. This suggest that, besides the
exonic variants, UTRS variants carry a important signal for
the CD prediction in the NN’s view. Other kinds of varia-
tion, such as intronic variants, appear to be marginal, while
splicing, upstream and exonic ncRNA variants have effec-
tively near zero contribution. This is justified by the fact that
these types of variants are quite rare in the CAGI datasets
(see Supplementary Figures S1 and 4). Intronic non-coding
variants and the RVIS score are assigned a noticeable con-
tribution only when training on the CAGI3 dataset.

Analysis of the most relevant genes across the CAGI datasets

The G neuron is used to transform the input features vec-
tors into gene-level activations using the same 11 weights
W, for all the genes in all the exomes, similarly to a simple
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Figure 3. Figure showing the 25 most relevant genes in the models trained
on the CAGI3 and 4 datasets. The asterisk before the gene name indicates
that the gene has been selected as highly relevant while training on both
datasets.

I-dimensional convolutional layer. When predicting each
sample/exome, the G neuron slides on the list of selected
N, genes, producing an ‘activation’ value which influences
the final prediction computed by the last layer P of the NN
(see Figure 1).

Similarly to what we did for the gene-level features in Sec-
tion 4.2, if we isolate the weights W), learned by the final
neuron P and we compute their absolute value, we can ex-
tract the relevance that the NN has assigned to each gene
and compare them among the datasets.

In Figure 3 we show the absolute relevance assigned to
each gene by CDkoma while training on the CAGI3 and 4
datasets. For each dataset we show only the 25 most relevant
genes selected by the NN among the 222 genes in the initial
pool, ranked by increasing weight. To rapidly identify genes
that are ranked high on both datasets, we highlighted them
with an asterisk.

We can see that IRGM, JAK2, IRF1, TAGAP,
DEFBI and CREM are deemed highly relevant dur-
ing both trainings. In other cases, closely related genes
are picked up, such as NODI1 in CAGI4 versus NOD2
in CAGI3; or TLR1 and TLRS5 in CAGI3 versus TLR2,
TLR4 and TLR10 in CAGI4.

GWAS studies have identified over 200 loci to be asso-
ciated with CD (28,29), the most strongly being NOD?2,
which was among the top 25 most relevant genes for the
CAGI3 dataset (Figure 3). It should be noted that although
NOD?2 did not rank among the top 25 most relevant genes
for the CAGI4 dataset, the CYLD gene, which is located
immediately adjacent to the NOD2 gene on chromosome
16, was ranked high in the CAGI4 dataset. Identification
of NOD2, an intracellular pattern recognition receptor that
recognizes bacterial molecules and stimulates an immune
reaction, has highlighted the importance of innate immu-
nity in CD. This was further underscored by associations
of other genes involved in innate mucosal defense, such as
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some genes of the TLR pattern recognition gene family or
beta-defensins. Besides innate immunity, GWAS findings
also highlighted various aspects of the adaptive immune re-
sponse: T-cell activation (IL2, IL2RA), T-helper-17 cell dif-
ferentiation (JAK?2, 1L2, IRF4), and T-cell and B-cell reg-
ulation (TAGAP, IRFS5). Another important causal gene
for CD is ATGI6L1. Association of ATG16L1 with CD
implicated the autophagy pathway in disease pathogenesis,
with subsequent associations (IRGM, LRRK?2) reinforcing
this view. Other disease-associated pathways are the NF-kB
(TNFAIP3, PTPN2, NFKBI) and IL23R (IL23R, STAT3,
STAT4) pathways. Many of the genes identified in this study
as among the most relevant genes, function in these major
disease associated pathways.

Diving into /how the single predictions are computed

So far, the analysis of our NN has been focused at the level
of the datasets, since we compared the relevance of the fea-
tures assigned by CDkoma during the training process. Ide-
ally, the ultimate goal of ML interpretation would be to di-
rectly ask the algorithm which decision process it followed
in order to reach the specific prediction associated with each
sample. This is for example possible with Random Forests
(21,30), but it is usually not trivial to achieve with NN.

Here we attempted this kind of analysis in the CD pre-
diction context. To do so, we took the gene-level activations
of each sample and we multiplied them by the weights W),
of the last layer’s neuron P. This is the exact same opera-
tion performed by CDkoma during each forward pass, but
in this case we stopped before summing them up to compute
the final prediction from the neuron P (see Figure 1). Since
the activation of the P neuron, which is a Logistic Regres-
sion over the G neuron activations, is Sigmoidal and thus
monotinically increasing, we can interpret these values by
saying that all the positive values obtained are voting for the
‘CD case’ class (1) while all the negative values are voting
for the ‘control’ class since they are effectively lowering the
final probability.

This allows us to investigate the meaning of the gene-level
activations patterns specific to the exome of each sample in
the target dataset, providing insight in the (i) CDkoma de-
cision strategy and (ii) on the disease mechanisms itself, as
perceived by a non-linear ML method trained to differen-
tiate between cases and controls. Supplementary Figure S6
shows a global view of the genes activation profiles across
the datasets.

In Figure 4 we represented as heatmap the activation pro-
files of the 111 samples in CAGI4 (y-axis). Rows marked
with an asterisk correspond to the CD cases. For visualiza-
tion purposes, we selected only the genes with strongest ac-
tivation signals among the 222 genes in the list. The red and
blue colors indicate respectively positive and negative acti-
vations. We can see that the genes that were previously se-
lected as most relevant (see Figure 3) present indeed gener-
ally strong positive (FYN, IRF1, IRGM, CREM, DEFBI)
or negative (NR1I2, TAGAP) activations. Other genes
have more variable activation pattern, such as FKBPS,
IL12RB2, TLR4, TLR10 and ZMIZ]1.

With respect to Figure 3, here we can distinguish between
genes with consistent positive (red) or negative (blue) values.
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Strongest NN activations on CAGI4 dataset
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Figure 4. NN gene activation patterns when predicting the CAGI4 dataset. Samples are listed on the y-axis and the asterisks indicates positive samples.
The genes with the highest activations are shown on the x-axis. Red colors indicate that the activation is pushing towards the positive class (CD case), while

blue colors indicate genes voting for the negative (controls) class.

While it is straightforward to assume that the accumulation
of variants on the genes with positive scores might indeed
have a direct effect on the development of CD, it is unclear
whether genes with strong negative values can be considered
protective for CD, since, due to the small sample size, con-
trols may be enriched for variants on NR112 and TAGAP
by chance. In CAGI3 and CAGI4 datasets, NR112 controls
do not have a significantly larger amounts of variants with
respect to the cases (P-values of 0.42 and 0.49, respectively),
while the controls on CAGI3 present more variants than
cases on TAGAP (P-value = 0.009), but not on CAGI4 (P-
value = 0.59) (see Supplementary Figure S9). We thus can-
not clearly identify those two genes as protective because the
behavior likely driving our model towards this conclusion is
not consistent across our two main datasets.

The activations of each gene, shown as the columns of
Figure 4, present different levels of correlation with the ac-
tual cases/controls labels (shown as asterisks on the y-axis).
Genes with a correlated pattern of activation throughout
the entire dataset are correctly steering the final prediction
towards the disease/healthy class. In Supplementary Fig-
ure S7 we ranked the genes in function of the Pearson cor-
relation of their activations with respect to the class labels,
and we shows the 25 most correlated genes. Indeed, FKBPS,
HLA-B, HSPA2 and IRGM (whose activations are shown
in Figure 4) are also present in such a selection. The corre-
lations are generally low, ranging from 0.3 to 0.11, meaning
that there is no a single or few genes able to well discriminate
the case/control classes, but many small and noisy contribu-
tions need to be properly aggregated by the NN in order to
compute the final prediction, as it should be expected from
a highly non-Mendelian disease such as CD.

CONCLUSION

In this paper we proposed a genome interpretation frame-
work for the exome-based in-silico diagnosis of oligo-to-
polygenic disorders and we applied it to the prediction
of CD patients from controls. We addressed the concep-
tual and technical problems hindering this task by suggest-
ing a feature encoding scheme based on the gene muta-
tional burden reasoning which is suitable for small sam-
ple size datasets. We coupled this feature representation
with a specifically designed low-complexity Neural Net-
work (NN), called CDkoma, with parameter tying and
heavy regularization that can perform inference with re-
duced risk of over-fitting. We trained and tested our model
on the CAGI2, 3 and 4 CD datasets, showing that our
NN outperforms many of the methods developed so far for
exome-based CD diagnosis.

CDkoma shows good performances while using only a
number of trainable parameters that is proportional to the
number of samples in the datasets. The NN contains indeed
only 11 + N, trainable weights, where N, is the number of
the CD-related genes selected as input, ensuring that the
number of parameters is proportional. we to the number
of samples in the datasets even when working with small
sample sizes. This, along with a strong regularization, al-
lows the model to perform meaningful inference from lim-
ited data in the most robust way even in noisy and data-
scarce conditions. In situations involving noisy and small
sample size data, we show that a model with reduced com-
plexity can avoid the pitfalls of over-fitting (see compari-
son with more complex models in Supplementary Table S1)
and at the same time can offer nice opportunities for inter-
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pretation, by highlighting the most relevant aspects in the
model’s decision process.

As a last step in this study, we indeed exploited the sim-
plicity of CDkoma to take a detailed look at the patterns
learned by the NN, analyzing the genes to which the NN
assigned the highest relevance and attempting an interpre-
tation of the per-sample predictions produced by the model,
following its decision process through its layers.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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