
Managing multi-cloud systems with CloudMF

Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin, Arnor Solberg
Department of Networked Systems and Services, SINTEF, Oslo, Norway

{name.surname}@sintef.no

ABSTRACT
Dynamically adaptive systems (DAS) enable the continuous design
and adaptation of complex software systems, but their main focus
is limited to the application itself rather than the underlying plat-
form and infrastructure. Cloud computing, in contrast, enables
the management of the complete software stack, but it lacks in-
tegration with software engineering approaches, techniques, and
methods from DAS. Model-based approaches have been success-
fully adopted for modelling DAS at design-time and facilitate their
adaptation at run-time. Therefore, a natural next step is to adopt
model-based approaches to enable cloud-based DAS. In this pa-
per, we present the Cloud Modelling Framework (CLOUDMF), a
model-based framework that addresses this issue. It consists of
(i) a tool-supported domain-specific modelling language to model
the provisioning and deployment of multi-cloud systems, and (ii)
a models@run-time environment for enacting the provisioning, de-
ployment and adaptation of these systems.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Configuration Management; H.1.0
[Information Systems]: Models and Principles

Keywords
Cloud computing, provisioning, deployment, dynamic adaptation,
model-driven engineering, domain-specific modelling language,
models@run-time

1. INTRODUCTION
Nowadays, software systems are leveraging upon an aggregation
of dedicated solutions, which leads to the design of large scale, dis-
tributed, dynamic systems. However, the complexity of managing
such systems challenges current software engineering approaches.

Dynamically adaptive systems (DAS) have recently emerged to cope
with this challenge by enabling the continuous design and adapta-
tion of complex software systems. DAS facilitates handling short-
term changes in the execution environment as well as long-term
changes in the system requirements [17]. However, the focus of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NordiCloud 2013, 2-3 September, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-2307-9/13/09 ...$15.00

DAS is typically limited to the application itself rather than the un-
derlying platform and infrastructure.

Cloud computing provides an ubiquitous networked access to a
shared and virtualised pool of computing capabilities (e.g., net-
work, storage, processing, and memory) that can be provisioned
with minimal management effort [16]. In contrast to DAS, cloud
computing enables the management of the complete software stack,
i.e. infrastructure, platform and application, where each layer is
exposed as a service. In particular, cloud computing offers two
types of scalability: horizontal (e.g., add or remove new virtual ma-
chines) and vertical (e.g., increase or decrease resources allocated
to a virtual machine).

A key challenge is then to enable cloud-based DAS, i.e. to integrate
the management capabilities of recent cloud solutions with soft-
ware engineering approaches, techniques, and methods of DAS.

Our proposed solution is a model-based framework called Cloud
Modelling Framework (CLOUDMF) [8, 13], which leverages upon
models@run-time and combines it with recent cloud solutions. It
consists of (i) the Cloud Modelling Language (CLOUDML), a tool-
supported domain-specific modelling language (DSML) to model
the provisioning and deployment of multi-cloud systems [13] and
(ii) a models@run-time environment for enacting the provisioning,
deployment and adaptation of these systems. The run-time envir-
onment provides a model-based representation of the underlying
running system, which facilitates reasoning, simulation, and enact-
ment of adaptation actions.

The remainder of the paper is organised as follows. In Section 2,
we outline SENSAPP, an application that is adopted as a use case
throughout the paper. In Section 3, we present CLOUDMF by first
introducing its architecture and then detailing the modelling- as
well as the models@run-time environments. Section 4, compares
the proposed approach with the state-of-the-art. Finally, Section 5
draws some conclusions and offers some ideas for future work.

2. MOTIVATING EXAMPLE: SENSAPP
SENSAPP1 is an open-source, service-oriented application for stor-
ing and exploiting large data sets collected from sensors and devices.
It is designed to seamlessly bridge the gap between the Internet of
Things (IoT) and the cloud [18]. The SENSAPP application can
register sensors, store their data, and notify clients when new data
are pushed. The third-party application SENSAPP ADMIN uses the
public REST API of SENSAPP to manage sensors and visualise
data using a graphical user interface.
1http://sensapp.org

38

http://sensapp.org

data
miner

sensor
architect

sensors

end users

SensApp Admin

database
registry

notification
dispatcher

Internet of Services Internet of Things

Figure 1: The SENSAPP architecture [18]

SENSAPP provides four essential services to support the definition
of IoT applications (see Figure 1). The registry service stores meta-
data about the sensors (e.g., description and creation date). The
database service stores raw data from the sensors using a Mon-
goDB database. The notification service sends notifications to third-
party applications when relevant data are pushed (e.g., when new
data collected by air quality sensors become available). Finally,
the dispatcher service orchestrates the other services: it receives
data from the sensors, stores these data in the database according
to the metadata from the registry, and finally triggers the notifica-
tion mechanisms for the new data. In order to be deployed, SENS-
APP requires a database and a servlet container, while SENSAPP
ADMIN requires a Web server.

In this paper, we adopt a motivating example illustrating different
scenarios of provisioning and deployment of SENSAPP. First, both
SENSAPP and SENSAPP ADMIN are deployed on the same virtual
machine. Then, this topology is adapted so that SENSAPP is re-
deployed on another virtual machine. These scenarios motivate for
the following requirements for CLOUDMF:

Separation of concerns (R1): CLOUDMF should support a mod-
ular, loosely-coupled specification of the provisioning and
deployment so that the modules can be seamlessly substi-
tuted. This will facilitate the dynamic adaptation of the pro-
visioning and deployment topology.

Cloud provider-independence (R2): CLOUDMF should support
a cloud provider-agnostic specification of the provisioning
and deployment. This will simplify the design of multi-cloud
systems and prevent vendor lock-in.

Reusability (R3): CLOUDMF should support the specification
of reusable types or reusable patterns composing the system.
This will ease the evolution as well as the rapid development
of different variants of a system in time and in space (i.e., a
product line).

Abstraction (R4): CLOUDMF should provide an up-to-date, ab-
stract representation of the running system. This will facil-
itate reasoning, simulation, and validation of adaptation ac-
tions before their actual enactments.

In the following section, we present CLOUDMF and how it ad-
dresses these requirements.

3. CLOUDMF
CLOUDMF includes a set of tools that aims at facilitating the pro-
visioning, deployment, and adaptation of multi-cloud systems by
leveraging upon model-driven engineering (MDE) techniques and
methods.

MDE is a branch of software engineering that aims at improving
the productivity, quality and cost-effectiveness of software develop-
ment by shifting the paradigm from code-centric to model-centric.
Models and modelling languages, as the main artefacts of the de-
velopment process, enable developers to work at a high level of
abstraction by focusing on cloud concerns rather than implement-
ation details. Model transformation, as the primary technique to
generate (parts of) software systems, restrains developers from re-
petitive and error-prone tasks such as coding. This approach, which
is commonly summarised as “model once, generate anywhere”, is
particularly relevant when it comes to provisioning and deployment
of applications across multiple clouds, as well as migrating them
from one cloud to another.

The model-driven approach adopted in CLOUDMF allows developers
to model the provisioning and deployment of a multi-cloud system
at various levels of abstraction. The two proposed levels are: (i)
the Cloud Provider-Independent Model (CPIM), which can be re-
garded as a provisioning and deployment template: it describes the
provisioning and deployment topology of an application in a cloud-
agnostic way; (ii) the Cloud Provider-Specific Model (CPSM), which
can be regarded as a provisioning and deployment model: it refines
the CPIM and describes provisioning and deployment topology in a
cloud-specific way. This two-levels approach is agnostic to any de-
velopment paradigm and technology, meaning that the developers
can design and implement their applications based on their pre-
ferred paradigms and technologies.

The architecture of CLOUDMF consists of two main components:
the modelling environment and the models@run-time environment
(see Figure 2).

Modelling environment

Models@run-time environment

Editor CPIM Refinement
engine

Imperative
deployment

Declarative
deployment

Target
CPSM

Current
CPSM

Diff

Adaptation
engine

Reasoning
engine

Adaptation

Adaptation
actions Monitoring

Provisioning and deployment engine

Figure 2: Architecture of CLOUDMF

The modelling environment is used to specify the provisioning and
deployment of multi-cloud systems with CLOUDML. In particular,
the editor is used to specify one or more CPIMs (e.g., one where
SENSAPP and SENSAPP ADMIN are deployed on a same virtual
machine and another where they are deployed on two different vir-

39

tual machines). These CPIMs are then provided as inputs to the re-
finement engine, which supports the user in the selection of the right
CPIM related to the actual context and needs (e.g., select the tem-
plate where SENSAPP and SENSAPP ADMIN are deployed on dif-
ferent virtual machines). The selected CPIM is semi-automatically
transformed into CPSMs (e.g., Amazon EC2 is selected as provider
and two t1.micro instances running Ubuntu are selected as virtual
machines).

The modelling environment can either enact the initial deployment
of the application imperatively by interacting with the provision-
ing and deployment engine directly, or declaratively by providing
the CPSM to the models@run-time environment, which in turn in-
teracts with the provisioning and deployment engine. In the lat-
ter case, the CPSM is causally connected to the running system;
i.e., a change in the CPSM is reflected on-demand in the running
system, whereas a change in the running system is automatically
reflected in the CPSM. In this way, the models@run-time environ-
ment provides a model-based interface to any reasoning systems
and modelling tools for future adaptation.

3.1 CloudML modelling environment
In this section, we detail the two main components of the modelling
environment.

3.1.1 Editor
The editor uses CLOUDML to specify CPIMs. CLOUDML is defined
by a metamodel inspired by component-based approaches and im-
plements the type-instance pattern [6]. Currently, the editor sup-
ports two formats for the concrete syntax, namely the JavaScript
Object Notation (JSON) and the XML Metadata Interchange (XMI).

Type level. Figure 3 presents the portion of the DSML metamodel
that covers the types of a CPIM. A CPIM encompasses the topo-
logy of the nodes of the cloud infrastructure, the topology of the
software artefacts to be deployed on these nodes, and the possible
bindings between software artefacts.

ElementType

+1id:1String

<<1interface1>>

+1isRemote:1Boolean

PortType

<<1interface1>>

ClientType

+1isOptional:1Boolean

ServerTypeApplicationType

BindingType

ExternalServiceType

+1provided

0..*

+1required

0..*

+1server

+1channel

1

NodeType +1host

0..1

1

ArtefactType

<<1interface1>>

Resource

+1resources

0..*

+1owner

1

+1channels 1..*

+1client1

+1applications 0..*

0..*

+1resources

0..*

+1composed

Figure 3: Type part of the DSML metamodel

Listings 1 - 3 present some excerpts of the types in JSON syntax
specifying the provisioning and deployment of SENSAPP as de-
scribed in our SENSAPP use case.

A node type represents a generic virtual machine (e.g., a virtual
machine running GNU/Linux, see Listing 1). This element can be
parameterised by provisioning requirements (e.g., 2 cores ≤ com-
pute ≤ 4 cores, 2 GiB ≤ memory ≤ 4 GiB, storage ≥ 10 GiB,
location = Europe). All these requirements are optional and do not
have to be defined in the CPIM.

Listing 1: An example of a node type from a CPIM in JSON
"nodeTypes" : [
{
"id" : "SmallGNULinux",
"os" : "GNULinux",
"compute" : [2, 4],
"memory" : [2048, 4096],
"storage" : [10240],
"location" : "eu",
"sshKey" : "smallGNULinux",
"securityGroup" : "SensApp",
"groupName" : "smallGNULinux",
"privateKey" : "YOUR KEY",
"provides" : [
{ "id" : "SSH" }

]
}

]

An artefact type represents a generic component of the system. In
particular, an application type represents a component to be de-
ployed on a node (e.g., a SENSAPP servlet, a Jetty container, or a
MongoDB database, see Listing 2), while an external service type
represents a component managed by an external party. An artefact
type can be associated to resources specifying how to manage the
deployment’s life-cycle of the associated artefact (e.g., retrieve the
servlet from http://cloudml.org/, configure it, and run it).
Application types may be grouped together and reused in the form
of composites.

A port type represents a port of an artefact. In particular, a server
port serves features provided by the artefact (e.g., the Jetty server
is a servlet container), while a client port requests features required
by the artefact (e.g., the SENSAPP servlet requires a servlet con-
tainer). A client port is optional if the required feature is not man-
datory to run the artefact (e.g., the required features of a Jetty con-
tainer and a MongoDB database for the SENSAPP servlet are man-
datory). The visibility of a port can be remote or local. A local port
has to be bound to another port from an artefact on the same node.
A port type can be associated to resources specifying how to con-
figure the artefact accordingly (e.g., configure the Jetty container to
listen on port 8080).

Listing 2: Examples of artefacts types from a CPIM in JSON
"artefactTypes" : [
{
"id" : "Jetty",
"retrieval" : "wget http://cloudml.org/services/jetty

.sh",
"deployment" : "sudo jetty.sh",
"provides" : [
{ "id" : "JettyCapability" }

]
},

40

{
"id" : "SensApp",
"retrieval" : "wget -P ~ http://cloudml.org/SensApp.

war; wget -P ~ http://cloudml.org/startsensapp.
sh ; wget -P ~ http://cloudml.org/deploysensapp.
sh",

"deployment" : "deploysensapp.sh",
"start" : "startsensapp.sh",
"requires" : [
{ "id" : "JettyCapability", "isOptional" : false },
{ "id" : "MongoDBCapability", "isOptional" : false

}
],
"inputs" : [
{

"id" : "RESTChannel",
"portNumber" : "8080",
"isRemote" : true

}
],
"provides" : [
{

"id" : "RESTServer",
"portNumber" : "8080"

}
]

}
]

A binding type represents a binding between two port types with the
same visibility. In particular, a deployment dependency represents a
binding involving a mandatory client port (e.g., the Jetty container
and the MongoDB database have to be deployed before the SENS-
APP servlet), while a communication channel represents the other
bindings (e.g., the SENSAPP servlet communicates with SENSAPP
ADMIN servlet through Hypertext Transfer Protocol (HTTP) on
port 8080 as depicted in Listing 3). A binding type can be asso-
ciated to resources specifying how to configure the artefact types
in order to communicate with each other.

Listing 3: An example of a binding type from a CPIM in JSON
"bindingTypes" : [
{
"id" : "RESTBinding",
"client" : "RESTClient",
"server" : "RESTServer",
"clientResource" : {
"id" : "client",
"retrieval" : "wget -P ~ http://cloudml.org/

configuresensappadmin.sh",
"configuration" : "cd ~; sudo bash

configuresensappadmin.sh"
}

}
]

Instance level. The portion of the DSML metamodel that cov-
ers the instances of the CPIM is akin to the one that covers the
types. Hence, it encompasses three main concepts, namely node
instances, artefact instances, and bindings instances. Please note
that these instances will constitute the provisioning and deployment
template.

Listings 4 and 5 present some excerpts of instances of the types
described above in JSON syntax.

A node instance represents an instance of a virtual machine (e.g., a
virtual machine running GNU/Linux called smallGNULinux1).

Listing 4: An example of a node instance from a CPIM in JSON
"nodeInstances" : [
{
"id" : "smallGNULinux1",
"type" : "SmallGNULinux",
"provides" : [
{
"id" : "ssh1",
"type" : "SSH"

}
]

}
]

An artefact instance represents an instance of a component of the
application on a specific virtual machine (e.g., an instance of the
Jetty container and of the SENSAPP server deployed on the virtual
machine above).

Listing 5: Examples of artefact instances from a CPIM in
JSON
"artefactInstances" : [
{
"id" : "jetty1",
"type" : "Jetty",
"destination" : "smallGNULinux1",
"provides" : [
{
"id" : "jettyCapability1",
"type" : "JettyCapability"

}
]

},
{
"id" : "sensApp1",
"type" : "SensApp",
"destination" : "smallGNULinux1",
"requires" : [
{ "id" : "jettyCapability1" },
{ "id" : "mongoDBCapability1" }

],
"inputs" : [
{
"id" : "restChannel1",
"type" : "RESTChannel"

}
],
"provides" : [
{
"id" : "restServer1",
"type" : "RESTServer"

}
]

}
]

The CPIMs specified with the editor are provided as input to the
refinement engine.

3.1.2 Refinement engine
The aim of the refinement engine is to produce from CPIMs a
CPSM to be consumed by the run-time platform (see Figure 4).
The inputs of this component are three: (i) CPIMs, (ii) deployment
resources (e.g., scripts, binaries, source code) and (iii) constraints
and metadata from the cloud application vendor through a deploy-
ment wizard.

The core element of the refinement engine is an in-memory CPIM.
A CPIM can be loaded through the codecs module. This module
is responsible for serializing and unserializing a deployment model
into or from an in-memory model.

41

Refinement
engine

Application
developer

Editor CPIM

Resources

Application
vendor

W
i
z
a
r
d

JSON XMI …

Codecs

Model
(POJO)

Deployment engine
Target
CPSM

Figure 4: Overview of the architecture of the modelling envir-
onment

The deployment wizard aims at driving the user into the selection
of the CPIM to be loaded. Thanks to this wizard, the cloud ap-
plication vendor can also extend or tune the deployment model
with constraints or metadata related to her business. Once this
process is completed, the refinement engine will interact with the
provisioning and deployment engine in order to transform semi-
automatically the CPIM into a CPSM.

In order to transform a CPIM into a CPSM, the refinement engine
interacts with the provisioning and deployment engine, which in
turn interacts with the underlying provider. This way, the CPIM is
enriched by provider-specific concepts.

Figure 5 presents a sequence diagram of this process applied in the
context of our SENSAPP use case.

:AWS:ProvisioningEnginesensapp:SmallLinux

t1.micro,neu,netc.

build(Provider,nNodeType)

search(Request)

setImage(String)

setLocation(String)

Figure 5: Example of CPSM derivation

The first step consists in the specification of the provider on which
the CPIM instances will be deployed (e.g., the virtual machine
running GNU/Linux called smallGNULinux1 node will be provi-
sioned on Amazon EC2). A request is then sent to the provision-
ing and deployment engine for details on virtual machines available
from this provider according to the constraints defining its type (see
Listing 4). As a result, this engine will interact with the underly-
ing provider in order to retrieve this information before updating
the metadata associated to the instance (e.g., t1.micro instance in
eu-west-1 location).

Once completed, the initial provisioning and deployment process
can be triggered either by interacting directly with the provisioning
and deployment engine or through the models@run-time environ-
ment.

3.2 Models@run-time environment
Models@run-time [17, 7] is an architectural pattern for dynamic
adaptive systems that proposes to leverage models during the ex-
ecution of the system. In particular, models@run-time provides
an abstract representation of the underlying running system, which
facilitates reasoning, simulation, and enactment of adaptation ac-
tions. A change in the running system is automatically reflected
in the model of the current system. Similarly, a modification to
this model is enacted on the running system on demand. A clas-
sical architecture to achieve this is depicted in Figure 2 whose
models@run-time part is inspired from [14]. As mentioned, the
current model of the system is provided by the models@run-time
environment. The current model can then be consumed by a reason-
ing system that produces a target model. The target model may un-
dergo a validation process before enacting the adaptation. If passed,
the current model and the target model of the system are compared.
This way, it is possible to identify the parts of the system that re-
quire adaptation. The adaptation is then enacted by the adaptation
engine and the target model becomes the current model.

This approach enables the continuous evolution of the system with
no strict boundaries between design-time and run-time activities.
Thanks to the use of models, it provides a well-defined interface to
monitor and adapt the system.

In order to use models@run-time, the following entities are re-
quired:

• A metamodel that defines the concepts to specify valid mod-
els of the system.

• A model of the system that conforms to the metamodel and
that is processed by the models@run-time environment.

• Adequate sensors to detect changes in the running system in
order to reflect them in the current model.

• Adequate actuators to enact the modification to the current
model into the running system.

• A synchronisation engine that uses sensors and actuators to
causally connect the current model with the running system.

Within CLOUDMF, the models@run-time environment provides a
CPSM causally connected to the running system. On the one hand,
any modification to the CPIM will be reflected in the CPSM and,
in turn, automatically propagated onto the running system. On the
other hand, any change in the running system will be reflected in
the CPSM, which, in turn, can be compared to the CPIM. The cur-
rent CPSM of the system can be manipulated in both imperative
and declarative ways, i.e., it can be modified through a set of in-
structions, or a new CPSM can be provided to replace the existing
one. In both cases the adaptation can result in: (i) modification
of the deployment and provisioning topology or (ii) modifications
of the status of the artefacts composing the system (see Figures 6
and 7).

42

Initial

Final

Stopped Running

Error

errorstarting error

stop

provisioning
error

start

terminate

provision

Figure 6: Life-cycle of a node

Changing the status of an artefact encompasses adapting all its de-
pendencies accordingly. The resources that can be associated to an
artefact type can be annotated with commands describing how to
move from one state to another.

Initial

Uninstalled

Installed

Configured

Running

Final

Error

erase

error

starting error

installation fail

uninstall

stop start

configure

configure

uninstallinstall

Figure 7: Life-cycle of an application

In our SENSAPP use case, the adaptation will result in the follow-
ing. First, the SENSAPP artefact running on the same node of the
SENSAPP ADMIN artefact is stopped. Then, a new node is pro-
visioned and the SENSAPP artefact is deployed on it with all its
dependencies.

In order to deploy SENSAPP, a first command is triggered in or-
der to retrieve the deployable artefact (e.g., the SENSAPP servlet).
Once completed, this artefact falls in the uninstalled state. Then
commands are called to: (1) install the artefact (e.g., deploy the
servlet in the Jetty container), (2) configure it (e.g., configure the
Jetty for the web-app) and (3) start it (e.g., restart Jetty). During
this process, the CPSM is enriched with run-time information (see
Figure 8).

:AWS:ProvisioningEnginesensapp:SmallLinux

public IP, private IP, DNS, etc.

provision(NodeInstance)

provision(VMDescription)

setPublicIP(String)

setPrivateIP(String)

Figure 8: CPSM run-time enrichment

3.3 Synthesis
As illustrated through our SENSAPP use case, CLOUDMF can be
used to provision, deploy, and adapt multi-cloud systems. The fol-
lowing list summarises how it fulfills the requirements presented in
Section 2.

Separation of concerns (R1): The component-based design of
the CLOUDML metamodel ensures that the provisioning and
deployment templates and models are modular and loosely-
coupled.

Cloud provider-independence (R2): The layering of the model-
ling stack into CPIMs and CPSMs ensures that the provision-
ing and deployment templates are cloud provider-independent.

Reusability (R3): The type-instance pattern in the CLOUDML
metamodel ensures that the types can be reused within sev-
eral models.

Abstraction (R4): The models@run-time environment provides
an abstract and up-to-date representation of the running sys-
tem which can be dynamically manipulated.

3.4 Reference implementation
CLOUDMF is available as an open-source project2. It is implemen-
ted with Java and Scala as programming languages and Maven as a
build tool. The current codebase consists of around 5 000 lines of
Java code and 1 000 lines of Scala code. The CLOUDML models
and metamodels are represented as plain Java objects. These mod-
els can be serialised in either JSON or XMI. The JSON and XMI
codecs are based on Kotlin 3 and the Kevoree Modeling Framework
(KMF) 4 [15], respectively. The current provisioning and deploy-
ment engine is jclouds 5, but other engines such as Cloudify 6 are
under consideration. CLOUDMF has been used with several use
cases from EU projects such as REMICS [4], MODAClouds [1, 5]
and PaaSage [3]. These use cases range from IoT applications to
enterprise systems.

2https://github.com/SINTEF-9012/cloudml
3http://kotlin.jetbrains.org/
4https://github.com/dukeboard/
kevoree-modeling-framework
5http://jclouds.incubator.apache.org/
6http://www.cloudifysource.org/

43

https://github.com/SINTEF-9012/cloudml
http://kotlin.jetbrains.org/
https://github.com/dukeboard/kevoree-modeling-framework
https://github.com/dukeboard/kevoree-modeling-framework
http://jclouds.incubator.apache.org/
http://www.cloudifysource.org/

4. RELATED WORK
Deployment and monitoring of distributed systems have been ex-
tensively researched over the past decades by various communit-
ies including server management systems, distributed systems, and
cloud-based systems. To the best of our knowledge, there is not yet
any approach combining the strength of recent cloud solutions with
the flexibility of the models@run-time architecture.

Server management solutions, such as IBM Tivoli [11], BCFG2 [12],
or CFEngine 3 [10] initially tackled the issue of server (and net-
work) configuration by providing consistent, reproducible and veri-
fiable descriptions of servers configuration. However, by contrast
with our approach, these solutions are not tailored to the cloud en-
vironment, and do not leverage infrastructure as a service facilities
for instance.

In the cloud community, several libraries such as jclouds7, Simple
Cloud8, or DeltaCloud9 recently emerged to help in reducing cost
and effort related to deployment and maintenance of cloud-based
systems. While such libraries effectively foster their deployment
and maintenance, they remain code-level tools, on which making
redesign decisions is difficult and error-prone. Similarly, research
projects such as mOSAIC [2, 20], which tackles the vendor lock-in
problem by providing an API for provisioning and deployment, are
also limited to the code level.

At a higher level of abstraction, more advanced frameworks such
as Cloudify 10, Puppet 11 or Chef 12 provide capabilities for the
automatic provisioning, deployment, monitoring, and adaptation of
cloud systems without being language-dependent. Such solutions
provide DSML to capture and enact cloud-based system manage-
ment. However, by constrast with our approach, the resulting mod-
els are not causally connected to the running system, and may be-
come irrelevant as manual maintenance operations are carried out.
The approach proposed in the CloudScale [9] and Reservoir [19]
projects suffer similar limitations.

In the models@run-time [7] community, several frameworks already
provide causal connections between a running system and its rep-
resentation as a model. Kevoree [14] provides a first complete
models@run-time platform to manage distributed Java applications,
but does not leverage infrastructure as a service to operate on cloud-
based systems. By contrast, the work of Shao et al [21] was the first
attempt to build a models@run-time platform for the cloud, but re-
mained restricted to monitoring, without providing support for con-
figuration enactment. To the best of our knowledge, CLOUDMF is
thus the first attempt to reconcile cloud solutions with modelling
practices through the use of models@run-time.

7http://www.jclouds.org
8http://simplecloud.org/
9http://deltacloud.apache.org/

10http://www.cloudifysource.org/
11https://puppetlabs.com/
12http://www.opscode.com/chef/

5. CONCLUSIONS AND PERSPECTIVES
In this paper, we presented CLOUDMF to enable cloud-based DAS.
The framework is built upon MDE techniques and methods to man-
age multi-cloud systems. The DSML facilitates the specification
of provisioning and deployment concerns of multi-cloud systems
at design-time while the models@run-time environment provides
a model-based abstract representation of the running system that
facilitates reasoning, simulation, and enactment of adaptation ac-
tions.

Until now, our focus has been on managing platforms and infra-
structures. In a future work, we will consider concerns such as cost
or location of data. Moreover, we will introduce the adaptation fea-
tures offered by cloud providers (e.g., load balancing, auto-scaling)
as concepts in CLOUDML. Furthermore, we will improve the syn-
chronisation engine between the CPSM and the running system to
tackle the scenario where if the enactment of an adaptation is too
time-consuming, a change in the environment may require another
adaptation while the system is still being adapted.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number: 318484 (MODAClouds),
317715 (PaaSage) and 257793 (REMICS).

7. REFERENCES
[1] MODAClouds EU project.
[2] mOSAIC EU project.
[3] PaaSage EU project.
[4] REMICS EU project.
[5] D. Ardagna, E. Di Nitto, G. Casale, D. Pectu,

P. Mohagheghi, S. Mosser, P. Matthews, A. Gericke,
C. Balligny, F. D’Andria, C.-S. Nechifor, and C. Sheridan.
MODACLOUDS, A Model-Driven Approach for the Design
and Execution of Applications on Multiple Clouds. In ICSE
MiSE: International Workshop on Modelling in Software
Engineering, pages 50–56. IEEE/ACM, 2012.

[6] C. Atkinson and T. Kühne. Rearchitecting the UML
infrastructure. ACM Transactions on Modeling and
Computer Simulation, 12(4):290–321, 2002.

[7] G. Blair, N. Bencomo, and R. France. Models@run.time.
IEEE Computer, 42(10):22–27, 2009.

[8] E. Brandtzæg, M. Parastoo, and S. Mosser. Towards a
Domain-Specific Language to Deploy Applications in the
Clouds. In CLOUD COMPUTING 2012: 3rd International
Conference on Cloud Computing, GRIDs, and Virtualization,
pages 213–218. IARIA, 2012.

[9] G. Brataas, E. Stav, S. Lehrig, S. Becker, G. Kopčak, and
D. Huljenic. CloudScale: scalability management for cloud
systems. In ICPE 2013: 4th ACM/SPEC International
Conference on Performance Engineering, pages 335–338.
ACM, 2013.

[10] M. Burgess and R. Ralston. Distributed Resource
Administration Using Cfengine. Softw., Pract. Exper.,
27(9):1083–1101, 1997.

[11] T. Delaet, W. Joosen, and B. Vanbrabant. A survey of system
configuration tools. In LISA 2010: 24th international
conference on Large installation system administration,
pages 1–8. USENIX Association, 2010.

[12] N. Desai, R. Bradshaw, S. Matott, S. Bittner, S. Coghlan,
R. Evard, C. Lueninghoener, T. Leggett, J.-P. Navarro,

44

http://www.jclouds.org
http://simplecloud.org/
http://deltacloud.apache.org/
http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

G. Rackow, C. Stacey, and T. Stacey. A Case Study in
Configuration Management Tool Deployment. In LISA 2005:
19th Conference on Systems Administration, pages 39–46.
USENIX, 2005.

[13] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg.
Towards model-driven provisioning, deployment,
monitoring, and adaptation of multi-cloud systems. In
CLOUD 2013: IEEE 6th International Conference on Cloud
Computing, pages 887–894. IEEE Computer Society, 2013.

[14] F. Fouquet, E. Daubert, N. Plouzeau, O. Barais, J. Bourcier,
and J.-M. Jézéquel. Dissemination of Reconfiguration
Policies on Mesh Networks. In K. M. Göschka and S. Haridi,
editors, DAIS 2012: 12th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable
Systems, volume 7272 of Lecture Notes in Computer
Science, pages 16–30. Springer, 2012.

[15] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais,
N. Plouzeau, and J.-M. Jézéquel. An Eclipse Modelling
Framework Alternative to Meet the Models@Runtime
Requirements. In R. B. France, J. Kazmeier, R. Breu, and
C. Atkinson, editors, MODELS 2012: 15th International
Conference on Model Driven Engineering Languages and
Systems, volume 7590 of Lecture Notes in Computer
Science, pages 87–101. Springer, 2012.

[16] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Special Publication 800-145, National Institute
of Standards and Technology, September 2001.

[17] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and
A. Solberg. Models@Run.time to Support Dynamic
Adaptation. IEEE Computer, 42(10):44–51, 2009.

[18] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and
I. Goutier. SENSAPP as a Reference Platform to Support
Cloud Experiments: From the Internet of Things to the
Internet of Services. In SYNASC 2012: 14th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 400–406. IEEE Computer
Society, 2012.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin,
I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Cáceres, M. Ben-Yehuda, W. Emmerich, and F. Galán. The
reservoir model and architecture for open federated cloud
computing. IBM Journal of Research and Development,
53(4):535–545, July 2009.

[20] C. Sandru, D. Pectu, and V. I. Munteanu. Building an
Open-Source Platform-as-a-Service with Intelligent
Management of Multiple Cloud Resources. In UCC 2012:
IEEE 5th International Conference on Utility and Cloud
Computing, pages 333–338. IEEE Computer Society, 2012.

[21] J. Shao, H. Wei, Q. Wang, and H. Mei. A Runtime Model
Based Monitoring Approach for Cloud. In CLOUD 2010:
IEEE 3rd International Conference on Cloud Computing,
pages 313–320. IEEE Computer Society, 2010.

45

	Introduction
	Motivating example: SensApp
	CloudMF
	CloudML modelling environment
	Editor
	Refinement engine

	Models@run-time environment
	Synthesis
	Reference implementation

	Related Work
	Conclusions and Perspectives
	Acknowledgments
	References

