
ht

00

P D F
PAGES
E X -
CEEDS
M O R E
THAN
PAGES
R E -
QUIRE-
MENT

Pe
⇑

tr

Available online at www.sciencedirect.comH O S T E D  B Y

Th
www.elsevier.com/locate/sandf

ScienceDirect

Soils and Foundations 58 (2018) 1446–1457
Simplified analysis of cantilever diaphragm walls in cohesive soils

Enrico Conte, Antonello Troncone ⇑

Department of Civil Engineering, University of Calabria, 87036 Rende, Cosenza, Italy

Received 4 January 2018; received in revised form 11 July 2018; accepted 9 August 2018
Available online 12 November 2018
Abstract

In this paper, a method is presented for a simplified analysis of cantilever diaphragm walls in cohesive soils under undrained and
drained conditions. A rectilinear distribution of the net contact stresses that are not completely predetermined by the limit state is
assumed at the soil-wall interface, consistently with the mechanism usually experienced by these structures. Simple equations are derived
to readily calculate the contact stress distribution on the wall and the associated internal forces in the ultimate and service conditions.
Moreover, these equations require few parameters as input data. Comparisons are carried out with a limit equilibrium method commonly
used in design to show the usefulness of the proposed method for practical purposes.
� 2018 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.
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1. Introduction

Diaphragm walls are extensively employed as temporary
and permanent retaining structures to provide a lateral
support to an unstable soil mass owing to excavations.
These structures can be cantilevered, usually when the
retained height is relatively low, or anchored. The wall sta-
bility of cantilevered structures is essentially ensured by the
passive resistance in front of the structure on the excavated
side, and the embedment depth is designed to allow the
development of this resistance. In addition, the structure
has to be designed to resist the internal forces induced by
the contact stresses, with the mechanical behaviour of the
involved materials properly taken into account (Conte
et al., 2013, 2015).

In many situations, the wall is constructed in clayey or
silty soils. In these circumstances, the stress removal due
tps://doi.org/10.1016/j.sandf.2018.08.012
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to excavation induces negative excess pore water pressures
that progressively dissipate with time. As steady state seep-
age conditions are approached, the dissipation of these
pore pressures has a destabilising effect on the wall. By con-
trast, the movements of the wall may result in a significant
increase in pore water pressure in the soil in front of the
wall (on the excavated side), the dissipation of which leads
in principle to an improvement of the wall stability. It is
generally difficult to establish a priori which effect prevails
and whether there is an increase or a reduction in the safety
margin during the consolidation process (Lancellotta,
2002). Consequently, the designer should consider both
outcomes by analysing the wall behaviour under undrained
and drained conditions, especially in soft clays. An
undrained analysis is especially important for temporary
diaphragm walls.

Conventional calculations are based on the limit equilib-
rium method, in which the mechanism considered for the
structure is a rotation around a pivot point located near
the wall toe (Burland et al., 1981; Bowles, 1982; Padfield
and Mair, 1984, Bolton and Powrie, 1987; Bica and
Clayton, 1989; King, 1995; Osman and Bolton, 2004;
Japanese Geotechnical Society.
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Madabhushi and Chandrasekaran, 2005; Gaba et al.,
2017). Owing to this mechanism, it is assumed that the nor-
mal stresses above the pivot consist of active stresses on the
retained side and passive stresses on the excavated side.
Below the rotation point, soil goes from the active to the
passive state, with passive stresses on the retained side.
As a further simplification, the contact stress distribution
shown in Fig. 1 is often considered, with the horizontal
contact stresses below the rotation point, which are
replaced by a resultant force, R, applied at this point
(Blum, 1931). The required embedment depth is evaluated
from the moment equilibrium about the same point, and
the resulting depth is empirically increased by 20% in order
to allow the development of R. Once this force is calculated
from the equilibrium of the horizontal forces, it is also nec-
essary to check whether the resulting embedment depth is
sufficient to generate the force R under the action of the
passive pressures behind the wall and the active pressures
in front of it. This method was originally proposed by
Blum (1931) and is commonly used in practice, especially
in Europe. To analyse the behaviour of the wall under ser-
vice conditions, a similar contact stress distribution is often
used in conjunction with a safety factor that should over-
come the uncertainties in the input parameters and ensure
that the structure remains serviceable under working con-
ditions (Burland et al., 1981; Valsangkar and Schriver,
1995; Powrie, 1996; Pane and Tamagnini, 1997). However,
a drawback of this approach is that the resulting internal
forces in the wall depend on the value of the safety factor
and also on the particular way in which this safety factor
is introduced into the calculations (Bolton et al., 1989).

In the present study, a simple to use method is proposed
for the analysis of cantilever diaphragm walls in cohesive
soils under undrained and drained conditions. In this
method a rectilinear distribution of the net contact stresses
is assumed at the soil-wall interface, the values of which are
not completely predetermined by limit state. A similar
Fig. 1. Horizontal stress distribution assumed by Blum (1931).
distribution was also proposed by King (1995), Day
(1999) and more recently by Conte et al. (2017), for analys-
ing the behaviour of retaining walls embedded in dry sand.
Simple equations are derived to calculate the contact stress
distribution and the associated internal forces arising in the
structure. These equations can be readily used to analyse
the wall behaviour in ultimate and service conditions. Some
comparisons with Blum’s method are also carried out to
show the usefulness of the proposed method for practical
purposes.

2. Proposed method

Under the assumption that a structural failure does not
occur, a cantilevered diaphragm wall generally moves as an
approximately rigid body that rotates about a point
located in proximity of the base of the structure (Fig. 2)
owing to the soil excavation in front of it (Bolton and
Powrie, 1987, 1988; Clough and O’Rourke, 1990). As a
consequence of this mechanism, the soil and the wall
undergo large displacements in their upper portion, and
much smaller displacements in the lower portion. As an
example, Fig. 3 shows the excavation-induced soil move-
ments observed during a centrifuge test (Bolton and
Powrie, 1988). It is clearly evident from this figure that
the soil displacements significantly reduce near the base
of the structure. In view of the above mechanism, it is rea-
sonable to assume that, up to a certain depth from the
excavation level, the wall is subjected to active stresses on
the retained side and to passive stresses on the excavated
side. Below the above-mentioned depth, however, the
assumption that the contact stresses are at limit state is
not appropriate, as it was documented in several experi-
mental studies (Terzaghi, 1934; James and Bransby, 1970;
Clayton and Milititsky, 1986).

The method proposed in this paper is based on this evi-
dence and allows the behaviour of diaphragm walls in
Fig. 2. Displacement pattern of a cantilevered diaphragm wall.



Fig. 3. Excavation-induced soil movements observed during a centrifuge test (modified from Bolton and Powrie, 1988).
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cohesive soils to be analysed under both the undrained and
drained conditions. A detailed description of this method is
provided in the subsequent sections.
3. Diaphragm wall under undrained conditions

A diaphragm wall embedded in a purely cohesive soil
with horizontal ground surface is schematized in Fig. 4.
Height H and penetration D of the structure are assigned.
The soil is completely saturated with unit weight c, and
undrained strength cu. Considering that the installation
of the wall generally produces some smear of the soil in
contact with the wall, a resistance ca (adhesion) is assumed
at the soil-wall interface, with ca 6 cu. Therefore, the active
and passive stresses ra and rp (in terms of total stress) at a
given depth are approximately evaluated using the follow-
ing equations (Rowe, 1957):

ra ¼ rv � a cu ð1Þ
rp ¼ rv þ a cu ð2Þ
Fig. 4. Net horizontal stress distribution assumed in the proposed method
for diaphragm walls in cohesive soils under undrained conditions.
where rv is the vertical total stress at that depth, and a is
given by

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ca

cu

r
ð3Þ

with a = 2 when the adhesion effects are ignored.
Fig. 4 also shows the net horizontal stress diagram con-

sidered in the present study. Specifically, it is assumed that
the soil above the excavation level is in an active limit state
owing to the wall movement. In this connection, the value
of ra at any depth is calculated using Eq. (1). The scheme
of Fig. 4 also accounts for the presence of a vertical tension
crack on the retained side, the depth of which is estimated
as hc ¼ a cu=c. For simplicity, the active stresses acting on
the portion of wall with height H � hc are replaced by their
resultant force Sa applied at a distance y1 from the excava-
tion level. The expression of Sa and y1 are respectively:

Sa ¼ 1

2
c ðH � hcÞ2 ð4Þ

y1 ¼
1

3
ðH � hcÞ ð5Þ

In order to calculate the lateral stresses below the exca-
vation level, it is convenient to treat the soil mass above
this level as a surcharge q ¼ cH (Fig. 4). Considering that,
up to a depth X measured from the excavation level
(Fig. 4), the active and passive stresses are fully mobilised
behind and in front of the wall respectively, the net lateral
stress (i.e. the difference between the passive stress and the
active stress) acting on the portion of wall from the excava-
tion level to depth X, is constant with depth and is given by

r1 ¼ 2 a cu � q ð6Þ
where r1 > 0, otherwise a wall with that height is impossi-
ble to be stable.

At depths greater than X, where the contact stresses are
not at limiting conditions owing to a significant reduction of
the soil displacements (Figs. 2 and 3), the net stress varies
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linearly from r1 at depth X on the excavated side, to r2 at
the wall toe on the retained side (Fig. 4). In other words,
unlike the traditional methods based on the limit equilib-
rium approach (Blum, 1931; Padfield and Mair, 1984), the
assumption of rigid-plastic behaviour of the soil is not
maintained in the proposed method. It is also worth noting
that the net stress diagram shown in Fig. 4 is completely
defined once X and r2 are known. To this end, equating
the horizontal forces acting on the wall and the moments
generated by these forces about the wall toe, leads to a sys-
tem of two equations from which the following expressions
for X and r2 can be readily obtained (See Appendix A):

X ¼ D� 3

2

½r1 D2 � 2 Sa ðy1 þ DÞ�
ðr1 D� SaÞ ð7Þ

r2 ¼ 4

3

ðr1 D� SaÞ2
½r1 D2 � 2 Sa ðy1 þ DÞ� � r1 ð8Þ

with 0 < X < D and r2 not exceeding a limit value, rlim,
given by the difference between the passive stress and the
active stress at the wall toe, i.e.

rlim ¼ 2 a cu þ q ð9Þ
In other words, the net stress diagram shown in Fig. 4,

with X and r2 calculated using Eqs. (7) and (8) respectively,
can be employed for any assumed value of D provided that
0 < X < D and r2 6 rlim. It is also worth noting that Eq.
(8), in which it is imposed r2 ¼ rlim, allows an evaluation
of the minimum embedment necessary to ensure the wall
stability, Dmin. In this circumstance (i.e., when r2 ¼ rlim),
the proposed method coincides with the method developed
by Bowles (1982), which is commonly used in the USA for
the design of diaphragm walls.

Once X and r2 are known, the internal forces (i.e., shear
force T, and bending moment, M) can be calculated at any
depth. Considering that the internal forces in the portion of
the wall above the excavation level are simple to be calcu-
lated, the expressions of T and M at depth z below the
excavation level (Fig. 4) are only provided in the present
paper. These expressions are:

– for z 6 X

T ¼ �r1 zþ Sa ð10Þ

M ¼ �r1

z2

2
þ Sa ðy1 þ zÞ ð11Þ

– for X 6 z 6 D
T ¼ Sa þ r1 þ r2

D� X

� � ðz� X Þ2
2

� r1 z ð12Þ

M ¼ Sa ðy1 þ zÞ þ r1 þ r2

D� X

� � ðz� X Þ3
6

� r1

z2

2
ð13Þ
4. Diaphragm wall under drained conditions

For cohesive soils under drained conditions, the active

and passive effective stresses, r
0
a and r

0
p, acting on the wall

in the horizontal direction, can be evaluated using the fol-
lowing equations:

r
0
a ¼ Ka r

0
v � Kacc0 ð14Þ

r
0
p ¼ Kp r

0
v þ Kpcc0 ð15Þ

where

Kac ¼ ð1� KaÞ cotg/0 ð16Þ
Kpc ¼ ðKp � 1Þ cotg/0 ð17Þ
r

0
v is the vertical effective stress at a given depth, Ka and Kp

are respectively the active and passive earth pressure coef-

ficients, c
0
is the effective cohesion and /0 is the shearing

resistance angle of the soil. Eqs. (14)–(17) have been
derived in the present study using the theorem of the corre-
sponding states (Caquot, 1934) under the assumption that
the effects of the adhesion at the soil-wall interface are neg-
ligible (See Appendix B for their derivation). In order to
calculate the coefficients Ka and Kp appearing in these
equations, the analytical expressions derived by
Lancellotta (2002, 2008) can be used. These expressions
are:

Ka ¼ cos d

1þ sin/0 cosd�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2/0 � sin2d

q� �� �
e�2 #a tan/

0

ð18Þ

Kp ¼ cos d

1� sin/0 cosdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2/0 � sin2d

q� �� �
e2 #p tan/

0

ð19Þ
with

2#a ¼ sin�1 sin d

sin/0

� �
� d ð20Þ

2#p ¼ sin�1 sin d

sin/0

� �
þ d ð21Þ

and d is the soil-wall friction angle the effect of which is
hence accounted for in Eqs. (14)–(17),

As is well known, the pore water pressures acting on the
wall under drained conditions can be calculated separately
from the effective stresses. In order to evaluate these pres-
sures when water flows through soil, the steady-state
hydrodynamic equation is generally solved using some
numerical techniques, such as the finite element method
or the finite difference method. However, if the wall is
impermeable and the hydraulic head is dissipated uni-
formly with depth, the pore water pressures on the wall
can be readily calculated using an approximate solution
in which a one-dimensional water flow is considered
(Symons, 1983). This flow is characterized by a constant
hydraulic gradient, i, that is a function of the total head dif-
ference, h, and the length of the submerged portion of the
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wall on the excavated side, d (Fig. 5). The net pore water
pressure distribution calculated using this approximate
solution is shown in Fig. 5a and b for two possible situa-
tions, in which i ¼ h=ðhþ 2dÞ (Fig. 5a) and
i ¼ h=ðhþ d þ DÞ (Fig. 5b). In these figures, it is also indi-
cated the maximum net pore water pressure, um, the expres-
sion of which is

um ¼ cwh
2 d

hþ 2 d
ð22Þ

or

um ¼ cwh
d þ D

hþ d þ D
ð23Þ

for the situation schematized in Fig. 5a and b, respectively.
In these equations, cw is the unit weight of water. For sim-
plicity but without loss of generality, the case considered in
the present study is when the groundwater level is located
at the ground surface, both on the retained side and the
excavated side. In this circumstance, h = H and d = D are
Fig. 5. Approximate net pore water pressu

Fig. 6. Net horizontal stress distribution and net pore water pressure distribut
under drained conditions, when c0 P Ka q

K .
used in Eqs. (22) and (23), and the vertical effective stress
at a given depth beneath the ground surface is

r0
v ¼ c0m z ð24Þ

on the retained side, and

r0
v ¼ c0v z ð25Þ

on the excavated side, where

c0m ¼ c0 þ i cw ð26Þ
c0v ¼ c0 � i cw ð27Þ
and c0 is the effective unit weight of the soil.

To analyse the long term behaviour of a diaphragm
wall, the profile of the net horizontal effective stress shown
in Fig. 6 is considered. In the same figure, it is also plotted
the assumed distribution of the net pore water pressure.
The resultant force of the active stresses above the excava-
tion level is again denoted as Sa with y1 defining the posi-
tion of its application point. In addition, the depth of the
tension crack on the retained side is
re distributions on a diaphragm wall.

ion assumed in the proposed method for diaphragm walls in cohesive soils
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hc ¼ Kac c
0

Ka c
0
m

ð28Þ

Depth X defines again the extension of the plastic zone
(measured from the excavation level) where the active
and passive stresses are fully mobilized. The net stress dis-
tribution on this portion of wall is linear with a gradient
given by ðKp c0v � Ka c0mÞ and the net horizontal effective

stress r
0
o at the excavation level (i.e. at z = 0) is

r
0
o ¼ K c0 � Ka q ð29Þ

where K ¼ Kac þ Kpc and q ¼ c0m H . Although the scheme

shown in Fig. 6 refers to the case when c0 P Ka q
K , the equa-

tions presented below can be also used when c0 < Ka q
K

(Fig. 7). In Figs. 6 and 7, the net horizontal effective stress
r0
1 at depth X, and the net horizontal effective stress r0 at

the wall end on the excavated side, are also shown. The
expressions of these net stresses are:

r0
1 ¼ ðKp c

0
v � Ka c

0
mÞX þ r

0
o ð30Þ

and

r0 ¼ ðKp c
0
v � Ka c

0
mÞDþ r

0
o ð31Þ

At depths greater than X, it is assumed that the net lat-
eral effective stress varies linearly from r0

1 at depth X to r0
2

at the wall toe. The unknown quantities X and r0
2 can be

calculated from the equilibrium conditions of the wall
(including the pore water pressure contribution). The
resulting expressions of X and r0

2 (obtained using a similar
procedure to that described in Appendix A) are
respectively:

X ¼ D� ðr0 þ 2 r
0
oÞD2 � 6 ½Sa ðy1 þ DÞ þ Sw yw�

½ðr0 þ r0
oÞD� 2 ðSa þ SwÞ� ð32Þ
Fig. 7. Net contact stress distribution and net pore water pressure distributio
under drained conditions, when c0 < Ka q

K .
r0
2 ¼

½ðr0 þ r
0
oÞD� 2 ðSa þ SwÞ�2

ðr0 þ 2 r0
oÞD2 � 6 ½Sa ðy1 þ DÞ þ Sw yw�

� r0 ð33Þ

with 0 < X < D and r0
2 6 r0

lim, where

r0
lim ¼ ðKp c

0
m � Ka c

0
vÞDþ Kp qþ K c0 ð34Þ

Sw is the resultant of the net pore water pressures acting on
the wall and yw defines the position of the application point
of Sw from the wall toe. The terms Sw and Sw yw appearing
in Eqs. (32) and (33) are expressed by

Sw ¼ 1

2
um ðH þ DÞ ð35Þ

Sw yw ¼ 1

6
um ðH 2 þ 3HDþ 2D2Þ ð36Þ

In addition, the internal forces at a depth z measured
from the excavation level, are given by the following
equations:

– for z 6 X
T ¼ � 1

2
ðKp c

0
v � Ka c0mÞ z2 � r

0
o zþ Sa þ T w ð37Þ

M ¼�1

6
ðKp c

0
v�Ka c

0
mÞ z3�

1

2
r

0
o z2þ Sa ðy1þ zÞþMw ð38Þ
– for X 6 z 6 D
T ¼ r0
1 þ r0

2

D� X

� � ðz� X Þ2
2

� r0
1 ð z� X Þ þ Sa

� r0
o þ r0

1

2

� �
X þ T w ð39Þ

M ¼ r0
1 þ r0

2

D� X

� � ðz� X Þ3
6

� r0
1

ðz� X Þ2
2

þ Sa ðy1 þ zÞþ

� r0
o X z� X

2

� �
þ r0

1 � r0
o

2

� �
X z� 2

3
X

	 
� �
þMw

ð40Þ
n assumed in the proposed method for diaphragm walls in cohesive soils
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where T w and Mw are the shear force and the bending
moment at depth z due to the pore water pressures acting
on the wall. For the net pore pressure profile shown in
Figs. 6 and 7, T w and Mw are

T w ¼ 1

2
um H þ um 1� z

2D

� �
z ð41Þ

Mw ¼ 1

2
um H

H
3
þ z

� �
þ um

2
1� z

3D

� �
z2 ð42Þ

Finally, it must be noted that, for both drained and
undrained conditions, a factor of safety can be calculated
as the reduction factor of the soil strength parameters
which determines a condition of incipient collapse of the
wall (i.e., when r2 ¼ rlim under undrained conditions, or
r0
2 ¼ r0

lim under drained conditions).
12

Fig. 8. Comparison between the bending moment distribution calculated
using the present method and the values of the bending moment measured
by King (1995) during a centrifuge test.
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Fig. 9. Comparison between the bending moment distribution calculated
using the present method and the values of the bending moment measured
by Madabhushi and Zeng (2006) during a centrifuge test.
5. Limitations of the proposed method

The proposed method can be used for the preliminary
design of a cantilever diaphragm wall that moves as an
essentially rigid body rotating around a point located near
the base of the structure. In view of this behaviour, it is
assumed that the net normal stresses acting on the wall
are at limit state (active on the retained side/passive on
the excavated side) up to a depth X measured from the
excavation level (Figs. 4 and 6). In particular, for dia-
phragm walls under drained conditions, these stresses can
be readily calculated using some existing solutions
(Janbu, 1972; Caquot and Kerisel, 1948) or the equations
suggested in the present paper for the case of vertical and
rough walls and horizontal ground surface. Some simple
solutions are also reported for evaluating approximately
the net pore water pressures acting on the wall, under the
assumptions of impermeable wall and water seepage with
constant gradient. Below depth X, it is assumed that the
net normal stress varies linearly with depth and attains
an unknown value (r2 or r0

2) at the wall base, on the
retained side (Figs. 4 and 6). The above-mentioned wall
mechanism (a rigid rotation) generally occurs when the
embedment length, D, is not excessively long. From an
analytical point of view, this condition is met when, for
an assigned value of D (with D > Dmin), the calculated
depth X falls into the range 0 < X < D, and the calculated
net normal stress at the wall base (r2 or r0

2) is not greater
than the respective net normal stress at the limit state
(i.e., r2 6 rlim or r0

2 6 r0
lim). These limitations define the

field of applicability of the proposed method for the design
of cantilever diaphragm walls.
5.1. Comparison with experimental data

To validate the proposed method, some comparisons
with experimental data are shown in Figs. 8 and 9 in terms
of bending moment distribution with depth. These data
were obtained by King (1995) and Madabhushi and Zeng
(2006) from centrifuge tests on diaphragm walls embedded
in cohesionless soils. Unfortunately, the authors are not
aware of similar results concerning walls in cohesive soils.
In both case studies, the wall underwent a rotation about
a point located in proximity of its base, consistently with
the main assumption on which the present method is based.

The case considered by King (1995) concerns a dia-
phragm wall with an excavation height of 6 m and an
embedment length of 5 m. The wall was embedded in a
sand with c = 14.2 kN/m3 and /0 = 40�. In addition,
d = 15.8�. These data were obtained by King (1995) from
the results of plane strain and direct shear tests. The soil
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used in the tests by Madabhushi and Zeng (2006) was a fine
sand with a relative density of 92%. The input data for this
case study are H = 7.2 m, D = 7.2 m, c = 16.4 kN/m3,
/0 = 40� and d = 12� (See also Conti and Viggiani, 2013).
As can be seen from Figs. 8 and 9, there is good agreement
between the bending moment diagram calculated using the
proposed method and the available experimental data.
Other comparisons with numerical and experimental
results concerning diaphragm walls embedded in cohesion-
less soils can be found in Conte et al. (2017).
Fig. 10. Effect of the embedment length D on the extension of the plastic
zone, X.
6. Comparison with the limit equilibrium method

In this section, some comparisons with the classical
method developed by Blum (1931) are presented to show
the usefulness of the proposed method for practical pur-
poses. Although Blum’s method was proposed many years
ago, it is still extensively used in many countries of the
world, especially in Europe. A description of this method
has been provided in a precedent section of the present
paper. A diaphragm wall with H = 6 m is considered as
an example. The assumed soil properties are c = 20 kN/
m3, cu = 40 kPa, c´ = 5 kPa and /0 = 26�. In addition, it
is assumed that d = 20� and the adhesion effects are
ignored. For this wall, three conditions are considered:
(1) the soil is completely saturated and the analysis is per-
formed under undrained conditions (Case A). (2) The soil is
completely saturated with the groundwater level at the
ground surface (both on the retained side and on the exca-
vated side), and the analysis is performed under drained
conditions (Case B). In this connection, the approximate
solution previously described in the present paper is used
to evaluate the net pore water pressure distribution due
to the steady-state seepage from the ground surface on
the retained side into the soil below the excavation level.
(3) A drained analysis is again performed, but it is assumed
that the groundwater level is at the excavation level both
on the retained side and the excavated side (Case C). In this
latter case, no water flow occurs and the net water pressure
is zero at any depth. A different unit weight is, however,
used for the soil above and below the excavation level,

i.e. c and c
0
respectively.

The minimum embedment length Dmin is first calculated
using the present method. The resulting values are shown
in Table 1 for each case study considered. As expected,
the most critical condition for the wall stability is the long
term one when the soil is completely saturated and a
steady-state flow occurs (Case B). In this case, in fact, a
Table 1
Minimum embedment length Dmin calculated using the
present method for the considered case studies.

Case Dmin (m)

A 2.68
B 9.10
C 4.95
much higher value of Dmin (9.10 m) is required to ensure
stability. Different values of the embedment length D are
then assumed (with D>Dmin) to show the influence of this
parameter on the lateral stress distribution and the internal
forces of the wall. In this connection, the depth X and the
net horizontal stress at the wall toe (r2 for Case A, or r0

2 for
Cases B and C) are calculated using the equations derived
in the present study (Eqs. (7) and (8) or Eqs. (32) and (33)),
and the respective results are shown in Figs. 10 and 11 as a
function of D. As can be seen, all the above parameters
increase with decreasing D. In other words, the smaller
the embedment length, the deeper the extension of the plas-
tic zone below the excavation level (Fig. 10) and the higher
the net normal stress at the wall toe (Fig. 11). The results of
Figs. 10 and 11 (along with the data in Table 1) also define
the range of the possible values of D for which the pro-
posed method can be used for each case study considered.

Finally, Figs. 12–15 compare the bending moment and
shear force distributions predicted by Blum’s method and
those calculated using the present method, for some values
of D. The sign convention used for the bending moment
and shear force is indicated in Fig. 12. As expected, the
results provided by the above-mentioned methods (both
Fig. 11. Effect of the embedment length D on the net horizontal stress at
the wall toe (i.e., r2 for Case A, or r0

2 for Cases B and C).



Fig. 12. Bending moment and shear force distributions calculated using the present method and Blum’s method for Case A when D = 4 m. The sign
convention used for the shear force and bending moment is also indicated.

Fig. 13. Bending moment and shear force distributions calculated using the present method and Blum’s method for Case B when D = 12 m.
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in terms of bending moment and shear force) are coinci-
dent in the upper portion of the wall. At greater depths,
however, the internal forces are rather different, both in
magnitude and trend. Blum’s method generally provides
a good estimation of the maximum bending moment, but
it could underestimate this internal force when D is signif-
icantly greater than Dmin (Fig. 15). Another drawback of
Blum’s method is that it provides the same results (both
in terms of bending moment and shear force) irrespective
of the value of D (Figs. 14 and 15). It is also worth noting
that Blum’s method considerably overestimates the maxi-
mum shear force and could lead to unsustainable values
of this internal force (Figs. 13–15).

In summary, as Blum’s method (as well as other similar
methods based on the limit equilibrium concept) refers to
an incipient failure condition of the wall (when
D = Dmin), the contact stresses and the internal forces cal-
culated using this method do not change with changes in
D (with D > Dmin). In addition, in the lower portion of
the wall, Blum’s method provides values of the internal
forces (especially the shear force) that are not realistic.
These drawbacks can be overcome using the proposed



Fig. 14. Bending moment and shear force distributions calculated using the present method and Blum’s method for Case C when D = 6 m.

Fig. 15. Bending moment and shear force distributions calculated using the present method and Blum’s method for Case C when D = 12 m.
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method that hence represents a reliable alternative to the
conventional methods.

7. Concluding remarks

A method has been proposed for a simplified analysis of
diaphragm walls in cohesive soils under undrained and
drained conditions. In this method, it is assumed that the
wall moves as an approximately rigid body rotating around
a point located in proximity to its base. Due to this move-
ment, a rectilinear distribution of the net contact stresses
not predetermined by the limit state is considered at the
soil-wall interface. Simple equations have been derived to
calculate the contact stresses and the associated internal
forces arising in the structure. These equations can be
easily implemented in a common spreadsheet to readily
analyse the wall behaviour in the ultimate and service con-
ditions. Moreover, few parameters are required as input
data.

The proposed method overcomes the limitations of the
conventional design methods based on the limit equilib-
rium approach and is hence a reliable alternative to these
methods. In this connection, some comparisons have been
carried out between the present method and Blum’s
method which is widely used in practice. The results, in
terms of the bending moment and shear force provided
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by these methods, are coincident in the upper portion of
the wall. At greater depths, however, the calculated values
of the internal forces could differ considerably both in mag-
nitude and trend. Specifically, Blum’s method grossly over-
estimates the maximum shear force and could
underestimate the maximum bending moment when the
embedment length of the wall is significantly higher than
the minimum value required for ensuring wall stability.

Appendix A. A.1. Calculation of depth X and net lateral

stress r2 in cohesive soils under undrained conditions

With reference to Fig. 4, the equilibrium equation for
the horizontal forces acting on the wall can be written as:

Sa þ ðr1 þ r2Þ y
2
� r1 D ¼ 0 ðA-1Þ

where y ¼ D� X . In addition, moment equilibrium about
the wall toe gives

Sa ðy1 þ DÞ þ ðr1 þ r2Þ y
2

6
� r1

D2

2
¼ 0 ðA-2Þ

Solving Eq. (A-1) for y yields

y ¼ 2
r1 D� Sa

ðr1 þ r2Þ ðA-3Þ

and substituting Eq. (A-3) into Eq. (A-2) leads to the fol-
lowing expression for r2:

r2 ¼ 4

3

ðr1 D� SaÞ2
½r1 D2 � 2 Sa ðy1 þ DÞ� � r1 ðA-4Þ

Finally, after substituting Eq. (A-4) into Eq. (A-3) and tak-
ing into account that X ¼ D� y, the expression of X can be
also obtained, i.e.

X ¼ D� 3

2

½r1 D2 � 2 Sa ðy1 þ DÞ�
ðr1 D� SaÞ ðA-5Þ
Appendix B. B.1. Calculation of the active and passive

effective stresses r
0
a and r

0
p in cohesive soils

Consider a vertical wall that sustains a horizontal back-
fill. It is assumed that the soil obeys the Morh-Coulomb

failure criterion with strength parameters c
0
and /

0
, and

the wall is rough with friction angle d whereas adhesion
is nil. In accordance with the theorem of the corresponding
states (Caquot, 1934), an ideal soil having the same value

of /
0
but with c

0 ¼ 0 is considered. However, an uniform
surcharge q� is applied at the boundary of this ideal soil
(i.e., at the ground surface and the soil-wall interface),
where

q� ¼ c
0
cotg/

0 ðA-6Þ
With reference to this ideal soil, the active and passive

stresses, r
0
a and r

0
p, acting on the wall in the horizontal

direction, are expressed by the following equations:
r
0
a ¼ Ka r

0
v þ Ka q� � q� ðA-7Þ

r
0
p ¼ Kp r

0
v þ Kp q� � q� ðA-8Þ

where r
0
v is the vertical effective stress at a given depth, Ka

and Kp are the active and passive earth pressure coefficients

that depend on /
0
and d. These coefficients can be calcu-

lated using the analytical expressions derived by
Lancellotta (2002, 2008). Substituting Eq. (A-6) into Eqs.
(A-7) and (A-8) leads to the following equations:

r
0
a ¼ Ka r

0
v � Kac c

0 ðA-9Þ
r

0
p ¼ Kp r

0
v þ Kpc c

0 ðA-10Þ
where

Kac ¼ ð1� KaÞ cotg/0 ðA-11Þ
and

Kpc ¼ ðKp � 1Þ cotg/0 ðA-12Þ
Similarly, the equations for calculating the associated

contact stresses in the vertical direction can be derived.
They take the form:

r
0
av ¼ Ka tgd r

0
v þ c

0
cotg/0	 
 ðA-13Þ

r
0
pv ¼ Kp tgd r

0
v þ c

0
cotg/0	 
 ðA-14Þ
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