© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of samarium nickel tetraaluminide, SmNiAl₄

M. L. Fornasini*,^I, R. Raggio^{II} and G. Borzone^I

^I Università di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, I-16146 Genova, Italy
^{II} Università di Genova, Dipartimento di Scienze Farmaceutiche, Viale Benedetto XV 3, I-16132 Genova, Italy

Received March 3, 2004, accepted and available on-line April 22, 2004; CSD no. 409776

Abstract

Al₄NiSm, orthorhombic, *Cmcm* (no. 63), a = 4.0948(6) Å, b = 15.582(3) Å, c = 6.610(1) Å, V = 421.8 Å³, Z = 4, $R_{gt}(F) = 0.028$, $wR_{obs}(F^2) = 0.074$, T = 293 K.

Source of material

The metals used were Sm (99.9 wt.%), Ni and Al (99.999 wt.%). The samples, each with a total weight of 1-1.5 g, were prepared by induction melting of the components in alumina crucibles un-

Table 2. Atomic coordinates and	displacement parameters (in A ²).
---------------------------------	---

der an argon flow. In order to attain proper homogenization the samples were remelted several times under continuous shaking. The alloys were then annealed at 773 K for 15 days and finally water quenched.

Discussion

A recent investigation of the phase relations in the ternary system Sm–Ni–Al at 773 K [1] revealed the formation of four new ternary compounds, namely SmNiAl₄, Sm₄Ni₆Al₂₃, SmNiAl₃ and SmNi₂Al₃. The compound SmNiAl₄ (Pearson code *oS*24) was found to be isotypic with YNiAl₄ [2]. The Ni atom is surrounded by a trigonal prism formed by 2Sm+4Al capped on each lateral face by three other Al atoms. The Sm atom is at the centre of a pentagonal prism formed by 8Al+2Ni with all lateral faces capped by aluminium atoms. These polyhedra are highlighted in the figure. The Ni—Al distances are the shortest ones, reaching with 2.297(4) Å a 14.2 % contraction with respect to the sum of the metallic radii for *CN*12 [3], while contractions of 8.9 % and 6.5 % are found for 2.608(4) Å Al—Al and 3.023(3) Å Sm—Al contacts, respectively. On the contrary, the Sm—Ni distances are about 5 % greater than the sum of the metallic radii.

Table 1. Data collection and handling.

Crystal:	silver luster prism,
•	size $0.04 \times 0.12 \times 0.13$ mm
Wavelength:	Mo K_{α} radiation (0.71070 Å)
μ:	188.60 cm^{-1}
Diffractometer, scan mode:	Bruker-Nonius MACH3, ω - θ
$2\theta_{\text{max}}$:	59.8°
N(hkl) _{measured} , N(hkl) _{unique} :	747, 374
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 354$
N(param) _{refined} :	23
Programs:	SHELXL-97 [4], ATOMS [5]
-	

Atom	Site	x	У	z	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Sm	4 <i>c</i>	0	0.38404(3)	1/4	0.0068(3)	0.0031(3)	0.0070(3)	0	0	0
Ni	4c	0	0.72547(8)	1/4	0.0065(6)	0.0045(5)	0.0064(5)	0	0	0
Al(1)	8 <i>f</i>	0	0.1900(1)	0.0527(3)	0.009(1)	0.0070(9)	0.0049(9)	0	0	0.0001(7)
Al(2)	4c	0	0.5780(2)	1/4	0.013(2)	0.005(1)	0.012(1)	0	0	0
Al(3)	4a	0	0	0	0.012(1)	0.006(1)	0.013(1)	0	0	0.002(1)

* Correspondence author (e-mail: cfmet@chimica.unige.it)

References

- Borzone, G.; Raggio, R.; Delsante, S.; Ferro, R.: Phase equilibria in the Sm-Ni-Al alloy system. Submitted to Intermetallics.
- Rykhal', R. M.; Zarechnyuk, O. S.; Yarmolyuk, Ya. P.: Crystal structure of the compounds YNiAl₄ and YNiAl₂. Sov. Phys. Crystallogr. 17 (1972) 453-455.
- Teatum, E.; Gschneidner Jr., K. A.; Waber, J.: Rep. LA-4003. National Technical Information Service, Springfield, VA, USA 1968.
- 4. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
- Dowty, E.: ATOMS. Version 5.1 for Windows. Program for Displaying Atomic Structures. Shape Software, Kingsport TN, USA 2000.