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Abstract. Electron Cyclotron Resonance (ECR) ion Sources are the most performing machines for the
production of intense beams of multi-charged ions in fundamental science, applied physics and industry.
Investigation of plasma dynamics in ECRIS still remains a challenge. A better comprehension of electron
heating, ionization and diffusion processes, ion confinement and ion beam formation is mandatory in order
to increase ECRIS performances both in terms of output beams currents, charge states, beam quality
(emittance minimization, beam halos suppression, etc.). Numerical solution of Vlasov equation via kinetic
codes coupled to FEM solvers is ongoing at INFN-LNS, based on a PIC strategy. Preliminary results of the
modeling will be shown about wave-plasma interaction and electron-ion confinement: the obtained results
are very helpful to better understand the influence of the different parameters (especially RF frequency
and power) on the ion beam formation mechanism.

1 Introduction

Among the various types of ion sources developed since
1950s, ECRIS are now the best candidates to support
the growing request of intense beams of multicharged ions
coming from both fundamental science (nuclear and par-
ticle Physics, especially) and applied research (neutrons
spallation sources, subcritical nuclear reactors, hadrother-
apy facilities). Inside an ECRIS machine [1,2] a dense
(ne > 1 × 1018 m−3) and hot (T > 1 keV) plasma, made
of multicharged ions immersed in a dense cloud of ener-
getic electrons, is confined by multi-Tesla magnetic fields
and resonantly heated by some kWs of microwave power
in the 2.45–28 GHz frequency range (2.45 GHz are used
for under-tesla machines, while 28 GHz that is currently
the state of the art require up to 4 T of maximum mag-
netic field). In the last three decades, ECR ion sources
performances have been mainly improved following the
semi-empirical Geller scaling laws [1]. These laws estab-
lish a direct (non-linear) relationship between the output
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currents and charge states, and the ion confinement time
and plasma density; according to this simplified model,
the formers can be increased by boosting the latters, i.e.
by increasing the magnetic fields and the microwave heat-
ing frequency. However, this trend is now approaching
saturation, due to technological issues and rising costs
especially in the matter of superconducting magnets de-
sign and construction (further steps forward should re-
quire �5 T supporting 56 GHz of pumping frequency).
Beside the path traced by Geller’s laws, alternative ap-
proaches have been attempted by some groups spread over
the world. The common idea was that the microwave-to-
plasma interaction was still not fully exploited in terms of
energy deposition in the plasma core, and in the electron
population playing the major role in multi-ionisation (i.e.
the one lying in the 0.5–30 keV energy range). In fact,
conversely to plasmas for fusion scenarios, in ECRIS the
“first-pass” energy absorption in the plasma is deemed
to be quite poor and cavity multireflections are needed
in order to minimize the reflected RF power. Some lab-
oratories have tried the option of multi-frequency heat-
ing [3,4], some others the way of superimposition of a dis-
crete or continuous (broad) set of microwaves at different
frequencies [5]. Another method that is deemed to fur-
ther exploitation is the “frequency tuning effect” [4,6,7].



Due to the encouraging results coming from the frequency 
tuning method, the Catania’s group developed a numeri-
cal code able to model the electron and ion dynamics in 
an ECR ion source using a Monte Carlo approach. This 
model allowed to explain for the first time the impact of 
the frequency tuning on the electron heating rapidity, on 
the plasma density distribution [8],  and in turn on the  
shape, emittance and brightness of the output beam. Al-
ternative models and numerical strategies have been at-
tempted by other authors [9–12], that can be summa-
rized in two groups: (a) assuming a “zero-dimensional” 
model for calculating the charge state distribution in a 
parametric way, or (b) considering a simplified magneto-
static scenario (only simple mirror configuration instead 
of minimum-B) for simulating the plasma dynamics via 
Fokker-Planck calculations based on a diffusion-like model 
for the RF heating [13]. Both these approaches do not 
include peculiarities of electromagnetic wave propagation 
into a dense, non-isotropic, non homogeneous plasma, that 
is indeed the condition holding in ECRIS-like systems. 
These properties are deemed to play a crucial role in fre-
quency tuning effect, two frequency heating, etc. Actually, 
the challenging goal of predicting the electron/ion dynam-
ics in the ECR source in a self-consistent way requires to 
consider the fundamental aspect of the coupling between 
the electromagnetic wave and the plasma.

In this work we describe our approach to numerically 
solve the 3D Vlasov-Maxwell system of equations in a self-
consistent treatment.

2 Particle  method

Our approach is based on a numerical particles-in-cell 
or “particle” method to approximate the distribution 
as a probability distribution function, according to the 
Klimontovich formalism [14]. The Vlasov theory for stud-
ies of plasma waves and wave-particle interactions starts 
from the mean-field Vlasov equation as kinetic model of a 
collisionless plasma with distribution function fα:

∂fα

∂t
+ v · ∂fα

∂r
+

qα

mα
(E + v × B) · ∂fα

∂v
= 0 (1)

with mα and qα mass and charge of the α species. We
consider here a plasma consisting of a single species only
(electrons), so that me and e denote electron mass and
charge, respectively. We assumed the “cold” plasma ap-
proximation (i.e. vφ � vth, being vφ the wave’s phase
speed and vth the electron thermal speed) for modelling
the wave propagation, and we retrieved the electromag-
netic field through 3D numerical simulations using the
FEM solver: COMSOL Multiphysics r©. We do not use
static electric field to compute electron motion; the latter,
in fact, depends mostly on the RF electromagnetic field
while electrostatic fields are dominant only in the sheath
region, that is not important for the scopes of the present
paper.

In the PIC approach to Vlasov equation we can con-
sider a plasma as a collection of N macro-particles (being

N much smaller than real plasma particles), with cor-
responding spatial coordinates and momenta described
by the functions ri(t) and pi(t). These functions can
be viewed as trajectories in the six-dimensional single-
particle phase space. The phase space density is thereby
described by the Klimontovich distribution function:

fα(r, v, t) =
N∑

i=1

δ(r − ri(t))δ(p − pi(t)). (2)

The trajectories obey the equations:
dri

dt
= vi(t) (3a)

dpi

dt
= q [E(ri(t), t) + vi(t) × B(ri(t), t)] (3b)

since according to the Vlasov equation the particle distri-
bution function is constant following the particle motion.

Our Particle method simulates a plasma system by fol-
lowing a number of particle trajectories that obey the sin-
gle particle equations of motion (3), including external RF
field (electric and magnetic) and the superimposed mag-
netostatic field ensuring plasma confinement. Ion motion
is not considered because we would like to explore the
behaviour of the electrons assuming the ions as a back-
ground positive (and uniform) fluid. By the point of view
of RF energy absorption, in fact, ions can be ignored con-
sidering their high inertia relatively to the high frequency
domain. A specific routine of the developed computer code
has been dedicated to particle motion (hereinafter called
“particle mover routine”, or simply “Particle Mover”): we
used the Boris’ scheme including relativistic electron mass
variation [15].

2.1 Mean field definition

ECRIS plasmas are confined by a magnetostatic field (in
the ∼ T range) obtained as the superposition of an axis-
symmetric field produced by Helmoltz coils and a radial
field produced by a hexapole; overall equations describing
B field components are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B0x = x (−B1z + 2Sexy)

B0y = −B1yz + Sex

(
x2 − y2

)

B0z = B1z
2 + B2

(4)

where Sex =
Bext

R2
is a constant related to the gradient of

the hexapolar field, B1 = Binj = 4BECR in the injection
region, B1 = Bext = 2BECR in the extraction region, and
B2 = 0.8BECR are related to the solenoid ones.

In this perspective, equation (1) can be linearised,
splitting the distribution function into a stationary (or
equilibrium) fe0 and an oscillating fe1 part:
[

∂

∂t
+ v · ∂

∂r
+

e

me
(v × B0) · ∂

∂v

]
fe1

= − e

me
(E1 + v × B1) · fe0

∂v
. (5)



Fig. 1. Diagram showing the simulation strategy.

As an approximation of fe0, we will initialize the parti-
cles position by a random sampling weighted on a pre-
setted initial background density, while the velocities can
be taken from a Maxwellian velocity distribution given
by Gaussian distribution in the three axes with standard

deviation σ =
√(

kTe

me

)
, assuming initial electron temper-

ature Te = 1 eV. Then, the particles phase space evolves
according to deterministic equations of motion (3).

The 3D PIC code is coupled to Maxwell’s equations
that, in the case of harmonic time dependence ejωt,
read as:

∇× E(r) = −iωB(r), (6)
∇× H(r) = iωε0E(r) + J(r). (7)

Displacement jωε0E(r), and conduction J(r) currents are
collected in a tensorial term describing the field-plasma
interaction introducing the dielectric tensor:

ε = ε0

(
I − jσ

ωε0

)
(8)

so that substituting (6) in (7) we can obtain the wave
equation for the anisotropic plasma medium:

∇×∇× E − ω2

c2
εr · E = 0 (9)

that is a partial differential equation (PDE) including ten-
sorial constitutive relations. Among the various options of
numerical codes able to solve Maxwell equations, we used
COMSOL Multiphysics for its suitability in modelling ten-
sorial constitutive relations.

The overall simulation strategy is depicted in Figure 1.
The method is based on a strict interplay between COM-
SOL solver and the particle mover implemented in MAT-
LAB. Several loops are expected to be needed in order to
get convergence. Due to huge time-consuming calculations
needed at each loop-step k, hereby we show results up to
step 2, i.e. after evaluation of RF action on electrons and
vice-versa, for two times.

Our code does not assume any rotational symmetry
for the magnetostatic field, so that the real 3D external B
field (B-minimum) is taken into account, thus retrieving
the permittivity tensor of the cold plasma approximation.
In this latter case the determination of ε is based on the
equation of motion for single particle:

(−iω + ωeff)v +
e

me
B0 × v =

e

me
E. (10)

Solving (10) in v and using the constitutive relation:

J = N0qv = σ · E. (11)

We can obtain σ that is related to ε as we can see in [16].
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in which off-diagonal terms cannot be neglected.
In the tensor,

am = (−iω + ωeff)2 + B2
0m

(
e

me

)2

,

cm = B0m

(
e

me

)
(−iω + ωeff), dmn = B0mB0n

(
e

me

)2

with m = x, y, z, n = x, y, z and

Δ = (−iω + ωeff)ax + B0z

(
e

me

)
(cz − dxy)

+ B0y

(
e

me

)
(cy + dxz).

ε′ is the real part of relative permettivity εr, ε′′ is the
imaginary part, ω the angular frequency of the microwave,

ωp =
√

nee2

meε0
the plasma oscillation angular frequency, ne

the electron density, me the electron mass, e the electron
charge, i the imaginary unit and ωeff the collision fre-
quency; the latter accounts for the collision friction (thus
modeling wave damping) and resolves the singularity of
some elements of (12).

The numerical code (written in MATLAB r©) uses a
numerical artifice to consider a well defined statistical
sample and accumulate statistical information for all the
life of the sample itself: in other terms, the “Particle
Mover” code solves the equation of motion (3) of each
single macro-particle for its entire life, accumulating the
electron density in 3D grid. In this sense, our approach
can be defined as a “stationary” PIC.

Particles move inside a 3D frame entering different
cells: the plasma chamber domain is subdivided into
200 × 200 × 600 = 24 × 106 cells (so obtaining a sub-
mm3 precision) thanks to a uniform spatial grid spacing
Δx = Δy = Δz = 0.5 mm. In a time-integration view,
the fields are calculated from an initial charge and current
density, then the particles move for a small distance over
a short Δt, finally the fields are recalculated according
to the new phase space configuration, by repeating this
procedure for N time steps. Conversely, we assume the



Table 1. Simulation input parameters.

Parameter Value Description

L 300 [mm] Cavity length

R 50 [mm] Cavity radius

νRF 5 [GHz] Frequency

λRF 60 [mm] Frequency

ωRF 2πνRF [rad/s] Angular frequency

wg 40.386 [mm] Waveguide width

hg 20.193 [mm] Waveguide height

PRF 1000 [W] RF Power

Tstep 2 [ps] Integration Time step

h λRF
5

Mesh maximum element size

hECR 1 [mm] h close to ECR layer

r 2.5 Mesh growth rate

rECR 1.2 r close to ECR layer

stationary case where a sample of macroparticles followed
for their entire life (i.e. until they impinge on the chamber
walls, meaning they have been lost by plasma confinement
system) describes the stationary structure of the plasma
in the phase space, through the “trick” of density accu-
mulation in a 3D grid; the density accumulation is made
as single particles paths evolve in the volume contained
into the plasma chamber. Indeed, we assume a stationary
electromagnetic field as well.

With the simulation parameters listed in Table 1, we
can follow 300 000 electrons/5 h, with an average elec-
tron life time Tlife = 27 μs. We also consider electrostatic
(Spitzer) collisions at 90◦ between electrons as a stochas-
tic Poisson process, so that the time-dependent proba-
bility between each pair of consecutive events (electron
collisions) has an exponential distribution with parame-
ter 1/τ90◦ . Evaluating the position (therefore the density)
inside the chamber, we can extract a collision probability

P (t) = 1 − e
−

(
t

τ90◦

)

at time t and density ne that depends

on τ90◦ =
m2

e2πε20v
3
e

nee4lnΛ
, i.e. the mean time between two col-

lisions. At each fixed integration time, we compare the
collision probability with a randomly extracted number
and if a collision occurs a new direction is assigned to the
electron by rotating its velocity vector of 90◦. We listed
some details about computation in Table 2.

3 Simulation results

In ECRIS, electrons are resonantly heated by hundred of
watts (or even few kW) of microwave power in the GHz
range. RF is normally coupled to the plasma chamber
through a rectangular waveguide. A simplified cylindrical
chamber geometry, with a single on-axis microwave injec-
tion rectangular waveguide is shown Figure 2, as it was
modelled for calculating RF field in our simulation.

Fig. 2. Simulated geometry: cavity and waveguide.

Fig. 3. Norm of the electric field in vacuum chamber [V/m].

3.1 Modelling ECRIS empty plasma chamber

As a first step k = 0 the electromagnetic field is solved
in a vacuum chamber: the dimensions of the rectangular
waveguide are 40.386 mm × 20.193 mm in order to allow
a single TE10 mode propagation at frequency of 5 GHz;
the radius and length of the cylindrical plasma chamber
are 50 mm and 300 mm, respectively: both geometrical di-
mension and frequency (lower than values normally used
in last generation ECRIS) reduce computational costs
without loss of generality in the approach validity, main-
taining all the significant physical properties of a conven-
tional ECRIS. The meshing sequence is controlled, setting
a very low mesh size hECR = 1 mm on the ECR layer and
increasing it up to h = λRF

5 in the remaining computa-
tional domain, following the FEM “rule of thumb” of five
nodes per wavelength, that represents an optimal compro-
mise between RAM requirement and accuracy.

Figure 3 shows the electric field distribution inside the
cylindrical cavity excited by the rectangular waveguide.
The presence of the cavity walls, modeled via the perfect
electric conductor boundary condition, makes the electro-
magnetic field pattern to configure in a “cavity mode like”
structure.

3.2 Electromagnetic field applied to the particles

Now the RF field should be introduced into the Parti-
cle Mover code, in order to obtain the phase-space sta-
tionary electron distribution. This first step k = 0, in
which particles move in presence of the “vacuum” RF
field, has been obtained elsewhere [8]. These former re-
sults highlight that electrons mostly concentrate into the
iso-magnetic closed surface corresponding to the ECR con-
dition. This high density volume was called “plasmoid”,



Table 2. Details on computation in COMSOL and MATLAB.

Description Value
COMSOL Version 4.3b
MATLAB Version R2011b (“Trivial multithreading1”)

COMSOL Solution Time 44 min 40 s
COMSOL memory occupation 92.68 GB

MATLAB Solution Time 45 min (N = 1000 particles)
Interpolation Time 50 min

Fig. 4. 1D profile along the z (longitudinal) axis of the electron
density and magnetostatic field assumed as input for step k = 1
RF field calculation.

while the surrounding volume was named “halo”. In ref-
erence [8] results about 2D time-dependence PIC model
were also mentioned, confirming this separation between
inner/outer ECR surface plasma regions: a dense plasmoid
surrounded by a rarefied halo. The result – although not
self-consistently obtained by evaluating plasma effect on
RF – was however in qualitative agreement with experi-
mental results of Bibinov et al. [17] and Tuske et al. [18],
they being among the few ones having performed space-
resolved measurements of plasma density through opti-
cal emission spectroscopy techniques [17,18]. Therefore,
in the perspectives on the present paper – where we want
to calculate plasma influence on RF and vice-versa – we
can reasonably assume that the starting condition of the
step k = 0 is given by a “plasmoid-halo” model. We then
proceeded to calculate RF field once defined a plasmoid
region with a maximum density located at the center of
the chamber (z = 0), a “quasi-Gaussian” profile showing a
flat-top shape into the plasmoid and a rapid decrease from
ECR layers towards the plasma chamber walls, according
to the following equation:

ne(x, y, z) = nhalo + nmaxe
−

(
B−0.8BECR

0.2BECR

)6

, (13)

where nc = ω2ε0me

e2 is the cutoff density of the ordinary
wave, nmax = 0.7nc is the maximum electron density and
nhalo is the minimum density (nhalo = 1015), two or-
der of magnitude lower than the nmax = 1017 inside the
plasmoid.

In Figure 4 the 1D density profile is shown along with
the corresponding magnetic field profile. According to the

1 We run the kinetic code on different MATLAB istances to
compute the motion of many set of particles samples.

Fig. 5. Electric field distribution [V/m] considering plasma
effects at simulation step k = 1.

Fig. 6. RF power dissipation [W/m2] into the plasma at sim-
ulation step k = 0.

derived 3D spatial distribution of either ne and B, the ten-
sor (12) can be evaluated at each mesh point. Figures 5
and 6 illustrate the COMSOL outputs for either electric
field distribution and power dissipation (Pdiss = (σ·E)·E)
into the cavity (and the plasma in particular). The pro-
file of the ECR region has been put in evidence. It can
be noted that the electric field distribution [19] is par-
tially perturbed by the plasma, while keeping a disunifor-
mity that still puts in evidence a standing wave nature of
the inner-cavity radiation. The absolute strength of the
electric field inside the plasma chamber is even increased,
(the maximum value of the electric field inside the cham-
ber is increased from 1.2 × 105 to 1.41 × 105), when the
plasma is considered, meaning that in the specific case
(i.e. for the considered frequency) the waveguide-to-cavity
coupling has been improved by the plasma itself. Power
deposition plot (Fig. 6), in addition, shows areas where
the best coupling between the wave and the particles takes
place (note that the figure is given in logarithmic colormap
scale): the largest fraction of energy is obviously absorbed



Fig. 7. From left to right: (a) total electron density distribution (a.u.) in a 3D view (log colormap scale); (b) density distribution
(a.u.) over the plasmoid surface (i.e. ECR iso-magnetic surface)(log colormap scale); (c) 2D transversal density distribution (a.u.)
integrated over the z (longitudinal) axis (linear colormap scale).

at the ECR (as expected), moderate energy exchange oc-
curs in the inner plasmoid volume, while becoming several
orders of magnitudes lower in the halo part of the cham-
ber. The total input RF power was 1 kW, the 45% of
which was reflected.

Once determined how does the simplified step k = 0
model of the plasma density profile affect the RF field, we
can go back using the computed RF field as mean field (in-
put field) of the Particle Mover. The electromagnetic field
coming out from COMSOL mesh-node points is imported
in Matlab, interpolated using the “mphinterp” function
(built in “COMSOL with Matlab” library) that evaluates
the electromagnetic field at the coordinates specified (we
specified those of the space domain of the Particle Mover).
Starting positions of the electrons are chosen according to
a weighted sampling following from the density profile of
Figure 4.

In Figure 7 the obtained 3D distribution of the electron
density in the k = 1 step is shown (on the left), along with
the density distribution projection over the plasmoid sur-
face (i.e. ECR iso-magnetic surface) and the projected 2D
density distribution in the transversal direction. The non-
homogeneous distribution of the density in the plasmoid-
halo scheme is preserved even in step k = 1, meaning that
it is a characteristic feature of this kind of plasmas. In
reference [20] this structure was explained considering the
plugging effect provided by the RF acceleration of elec-
trons passing for the first time through the ECR, which
are expelled at large rates from magnetic loss cones and
whose turning points in the magnetic trap coincide with
the ECR layer itself. An additional effect is probably given
by pseudo-ponderomotive potential, as formerly supposed
by Dimonte et al. [21], even though more detailed analy-
sis are needed to evaluate its relative weight. Other non-
homogeneities are due to the magnetostatic field structure
(the “arms” on the plamoid surface). Another character-
istic feature is given by the “hole” in the near axis region,
due to a density depletion. In order to go more in detail
in understanding plasma structure coming out from the
simulations, we splitted the above pictures according to
different electron energy ranges [22].

3.3 Analisys of electron energy subdomains

We followed a commonly used convention in the ECRIS
field, selecting five different ranges: I1: E < 2 eV, I2: 2 <
E < 100 eV, I3: 100 < E < 1000 eV, I4: 1 < E < 50 keV,
I5: E > 50 keVs, corresponding to the so-called “bulk-
plasma” electrons (I1), to the electrons producing low
charged ions (I2), the ones generating ions at mean charge
states (I3), at high charge states (I4) and, finally, to the
so-called “suprathermal” electrons (I5) whose role and for-
mation mechanism is still controversial [23–25] but useless
for ionization and highly charged ions build-up [23–25].
Density distributions in 3D views and in 2D plots inte-
grated over the axial coordinate are shown in Figure 8.

No electrons populate the I1 domain, meaning that in-
teraction with RF heats the totality of the electrons bring-
ing them in the higher energy domains. A large amount
of electrons have few eV of energy and populate the I2
interval: electrons in this range reach the highest relative
density (>105 in a.u.) among all the selected intervals,
but only in some localized regions. Their concentration
assumes the maximum value in the near axis region.The
distribution of the particles in the I3 interval is smother
than in the second one, but once again concentrated in
the quasi-axial zone. Different is the situation of I4 and I5
domains: in these cases, the density concentrates mainly
in off-axial regions, leaving a depletion hole all around the
axis. Figures in the lower row of Figure 8 allow to compare
relative densities among the various energetic domains,
then comparing them with experimental data. Densities
of electrons in I4 and I5 domains in near-axis region are
about 10% and 1% of the I2 and I3 domains. Since we as-
sumed an absolute plasmoid density value of 0.7nc, these
numbers are in good agreement with the results collected
and discussed in reference [26]: in that paper, authors per-
formed an experiment measuring X-rays energies coming
from near axis plasma in the 2–30 keV domain and in the
>60 keV domain, that are roughly comparable with the
simulated ones. A good agreement also comes out if simu-
lated data are compared to the experiments performed by
Biri et al. [22,27], which showed an off-axis concentration



Fig. 8. Upper row: 3D density distribution (a.u.) at different energy ranges (a.u. in log scale). Lower row: integrated density
distribution in a 2D transversal view (a.u. in linear scale).

Fig. 9. From up-left, clockwise (all plots in log colormap scale):
(a) total electron density distribution (a.u.) over the plasmoid
surface; (b) electron density over the plasmoid concerning I2
energy domain; (c) electron density (a.u.) over the plasmoid
concerning I4 energy domain; (d) electron density (a.u.) over
the plasmoid concerning I3 energy domain.

of highly charged ions and hot electrons [22,27]. As already
argued in reference [20], the hole formation could explain
hollow beams generation often observed in ECRIS work-
ing below 18 GHz of pumping wave frequency [6,7]. In
reference [20], however, calculations were stopped to step
k = 0, and still controversial was the effect of the plasma
on the RF field, also deemed eventually causing stand-
ing wave structure to disappear. Step k = 1 calculations
now confirm hollow density distribution into the plasma.
The reason why standing wave structure distribution is
invoked to explain hollow density/hollow beam formation
can be understood by looking to Figures 9 and 10.

In those figures, it can be seen that the density distri-
bution in the I2 interval is affected by local “bunches” of

Fig. 10. Electric field strength [V/m] over the plasmoid sur-
face (logarithmic colormap scale).

particles roughly corresponding to regions of higher elec-
tromagnetic field (providing electron plugging). Less evi-
dent is the effect on the I3 and I4 domains (more energetic
electrons are more affected by magnetic drifts which par-
tially smooth the density distribution), but a near axis
density depletion is evident in I4, i.e. in a rather high en-
ergetic domain. Figure 10 shows that on the top of plas-
moid surface, corresponding to axial region, the RF field
is one order of magnitude weaker than in off-axis zones.
This may explain a lower plugging efficiency of electrons
and the following axial density depletion. An even more
clear picture of density distribution concerning the differ-
ent energetic intervals is given by the 1D profiles shown
in the sequence of Figures 11–15. In particular, Figure 11
displays the density distribution along a transversal axis
and it shows that the higher is the energy, the far the
density distributes from near axis regions. These outputs
are in agreement with results shown in reference [20], con-
firming that the self-consistent solution is not so far. Con-
centration of the plasma inside the plasmoid is evident
also along the longitudinal direction (see Fig. 12). Peaks
are also placed in proximity of the ECR layers, where the
electrons spend a relevant fraction of their “life” since mir-
rored by the combined effect of magnetic field force plus
RF plugging. Figure 13 illustrates the azimuthal distri-
bution (on the midplane of the plasma chamber) of the
electrons (once again, displaced according to the different



Fig. 11. 1D profiles of the electron density (a.u.) along x-axis
according to the different energetic domains (including ntot),
in a.u.

Fig. 12. 1D profiles of the electron density (a.u.) along z-axis
according to the different energetic domains (including ntot),
in a.u.

energetic intervals). It is clear that the plasma distribu-
tion is modulated by the multi-mirror magnetic structure:
electrons concentrate in pole regions, while being more
rarefied in the gaps zones. This effect is less evident on the
cold population (strong collisionality causes the density to
spread out regardless of magnetic structure) and on the
ultra-hot population (>50 keV), where the electrons are
subjected to strong drifts across the magnetic field lines.
It comes out that the electrons between 1 and 50 keV are
the most affected by the magnetic field. Figures 14 and 15
highlight in more details the difference between poles and
gaps. In near pole positions, the density is increased show-
ing a peak in near resonance zone.

If the electric field causes the density to displace as
discussed above, the frequency tuning should change the
RF distribution, then the density structure. This finally
should modify the ion beam shape, as actually observed
in real experiments [6]. Next steps will try to investigate
plasma structure dependence on fine tunings of the pump-
ing wave frequency.

4 Conclusions

The proposed results can be considered as the first out-
puts from the novel strategy depicted in the paper, and
on which fully self-consistent strategy can be based in
the next future. The most important clues coming out

Fig. 13. 1D profiles of the electron density (a.u.) along φ ac-
cording to the different energetic domains (including ntot), in
a.u.

Fig. 14. 1D profiles of the electron density (a.u.) along a mag-
netic pole according to the different energetic domains (includ-
ing ntot), in a.u.

Fig. 15. 1D profiles of the electron density (a.u.) along a mag-
netic gap according to the different energetic domains (includ-
ing ntot), in a.u.

from the simulations are that although vacuum field RF
field distribution (that is a cavity, modal field distribu-
tion) is perturbed by the plasma medium, the non uni-
formity in the electric field amplitude still persists in the
plasma filled cavity. This non-uniformity can be correlated
with non-uniform plasma distribution, explaining a num-
ber of experimental observations. A first attempt toward



self-consistent, 3D simulation of an ECRIS plasma has 
been done, including the resonant behaviour of the plasma 
vessel. Although we are still far from strict convergence, 
some plasma features are now clear:

– the plasma concentrate mostly in near resonance re-
gion: a dense plasmoid is surrounded by a rarefied halo;

– the resonant cavity effects cannot be neglected:
resonant mode structures modify plasma density
distribution;

– electrons at different energies distribute differently in
the space: cold electrons in the core, hot ones in near
ECR regions;

– simulation results explain quite well the experimental
observations.

Effects on the ion beam formation and beam properties
can be argued:

– ions are formed were hot electrons are placed;
– this implies the ion beam shape depends on elec-

tron/ion distribution on the plasmoid surface;
– optimization of the ion beam formation [28] and trans-

port must begin well inside the plasma.
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