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Abstract

We have developed a new simulation environment, called NeuVision, that is able to perform neuro-robotic ex-
periments in a closed-loop architecture, by simulating a large-scale neuronal network bi-directionally connected to
a robot. We conceived it primarily as a support tool to be used in the context of the `embodied electrophysiology',
a growing field that could help, in the future, to realize innovative bi-directional and adaptive Brain-Machine Interfaces.
The main features of our system are related to the e cient visualization of the neural activity, the possibility to define
di erent connectivity rules and stimulation points, and the integration of statistical analysis tools for fast neural dy-
namics characterization. Our preliminary results show that we are able to reproduce both spontaneous and evoked
activity of cultured networks. Hence, by defining a decoding strategy based on the Center of Activity, we carried out
experiments with a simulated neuronal network in a closed-loop with a robot. Our results suggest the NeuVision
simulated environment could be used as a tool to support in vitro experiments with real systems.
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1. Introduction

In recent years, there has been a growing recognition of the crucial
role played by an animal's body and the surrounding environment in
understanding the neural basis of behavior [1]. According to this view,
behavior arises only through the interaction of neural activity, the body,
and the environment, an idea whose roots go back to cybernetics [2].

Given the importance on the embodiment of a neural circuit and the ''sit-
uatedness'' of that body within an environmental context, it was quite
natural to extend this approach to the electrophysiology field (i.e. em-
bodied electrophysiology) [3, 4]. More specifically, researchers have
begun to explore the possibility to create new systems at the inter-
face between neuroscience and robotics, with the primary aim at un-
derstanding the mechanisms of adaptive behaviors and neural coding.
This has been done: at single neuron level, by interfacing artificial and
actual neurons [5]; at a population level, by controlling the dynamic
regime of neuronal populations [6], of its adaptive properties [7, 8]; at
the level of a ''kind of whole organism'', in experiments in which portions
of nervous tissue are connected to artificial devices [9, 10], virtual bod-
ies [3], or to form artificial/hybrid ''animals'' [11, 12]. Such bi-directional
systems have often been referred as neurally controlled `animats', or
`hybrots'. In all these experiments, the underlying rationale is that the
dynamic and adaptive properties of neural systems can be understood
by looking at their interaction, in a bi-directional closed-loop, with the
external environment.

∗E-mail: michela.chiappalone@iit.it, corresponding author

Cultures of neurons dissociated from di erent districts of the brain (e.g.
cortex, hippocampus, thalamus), with no a erent sensory inputs or ef-
ferent motor outputs, are a good candidate as experimental substrate
for embodied electrophysiology [11, 13]. A complex hw/sw system has
to be implemented to support the execution of real neuro-robotic ex-
perimental protocols. The physical body provided to the culture could
be any device able to explore an environment, like a small mobile robot
equipped with sensors that collect information about the surrounding
world. Starting from the results previously obtained by the members of
our lab [12], we propose here an innovative simulated neuro-robotic en-
vironment, namedNeuVision, to be specifically used in the framework
of embodied electrophysiology (i.e. closed-loop experiments). The
system is composed of two main software modules (i.e., one network
and one robotic module) which can be independently programmed, giv-
ing the user the ability to define the experimental protocol that best
suits their needs. The network module is able to reproduce the electro-
physiological activity typically found in large-scale neuronal networks,
such as primary cultures from the cortex of embryonic/post-natal ro-
dents [14]. The implemented software provides great flexibility to define
neuron models and connectivity rules as well as stimulation protocols,
allowing the user to visualize the neural activity in both standard and
novel ways. The robotic module was developed with the purpose of re-
producing the sensor data of real commercial mobile robots. We refer
in particular to the Khepera robot series by K-Team (Yverdon-les-bains,
Switzerland), equipped with infra-red sensors to estimate obstacle dis-
tances. User-friendly graphical interfaces allow to easily build virtual
worlds and di erent algorithms are available to pre-process sensory in-
formation. The NeuVision code is freely available and can be down-
loaded at the following web-site http://www.neuvisionsimulator.org
under the GNU GPL license.
According to our `new vision', the simulated and the real environment

179

Unauthenticated
Download Date | 3/5/20 7:14 PM

http://www.neuvisionsimulator.org


PALADYN Journal of Behavioral Robotics

Figure 1. The concept of embodied electrophysiology. (A) A typical closed-loop experiment diagram. (B) Overview of the architecture of NeuVision used to
perform closed-loop experiments in a totally simulated environment.

could contribute to the same experimental goal in a very synergistic
way: the simulated network or the real biological network can commu-
nicate with either a real or a simulated robot, simply by exchanging the
modules of the working environment. In this paper we present the first
results related to the fully simulated neuro-robotic environment, which
allows us to test hypotheses and experimental protocols that can then
be implemented on a real system.

2. Methods

2.1. Neuro-robotic Simulator Architecture

The high level interactions among the components in a typical closed-
loop configuration are depicted in diagram A of Figure 1. During an
experimental session, the robot moves inside an arena exploring the
environment through its sensors, and thus generating a stream of sen-
sory information. The sensory information is processed by the Sen-
sory Information Processor which extracts the most suitable fea-
tures which will serve for stimulating the network. The Stimulation
Pattern Generator translates the sensory information in stimulation
patterns, which will be received by theNeural Network. The electrical
activity of the Neural Network is continuously recorded by the Neu-
ral Activity Recorder. The collected data are then processed by the
Neural Activity Decoder, while the motor commands controlling the
robot movements are generated by the Motor Command Generator,
on the basis of the recorded neural activity.
NeuVision simulator has been implemented by interfacing di erent
object-oriented languages, supported by the .NET Framework devel-
oped by Microsoft®. More precisely, we used C# to write the simulation
environment and the data analysis tools, and C++/CLI to run the neural
network model in order to have a strict control on memory management
and to optimize code performance. A diagram of the interactions be-
tween the main components of the neuro-robotic simulator is shown in
Figure 1B, where we highlight the main data flows. The Neuro-robotic
Simulator object manages the simulation progress iteration by iteration,
and contains (i) the Robotic Module, (ii) the Stimulation Manager
and (iii) the Neural Network Model. The user can control all three
components by means of graphical user interfaces (GUIs) that allow
configuring the parameters, and visualizing output data, illustratedmore
in depth in the next section. Each component is able to store and re-
trieve data from storage, such as user configuration files or processing
outputs.

The Robotic Module manages all necessary aspects to simulate
a robot and its environment. We have reproduced a Khepera II/III robot
(K-Team, Yverdon-les-bains, Switzerland), which is the same device we
use for performing real experiments with biological preparations. In the
framework of the `embodied electrophysiology', we did not consider it
important to realistically simulate the actual motor dynamics of the robot
(taking into account, for example, the robot inertia), but simply to give
our network a body, and thus be able to acquire information about the
surrounding world without being a ected by noise or measure errors.
The sensory information, i.e., the distances between the obstacles and
the robot as they are acquired by the sensors, are thus conveniently
processed and provided to the Stimulation Manager. This module
works as an interface between the Robotic Module and the Neu-
ral Network Model. It generates the stimulus patterns that code the
sensory information. These patterns represent the input of the Neural
Network Model which computes the status of the network as a con-
sequence of the provided stimulation. Finally, the simulated neural ac-
tivity is used by theRobotic Module to generate the motor commands
for the robot.

2.2. Neuro-robotic Simulator Features

The neuro-robotic environment implemented within NeuVision o ers
several features of interest from a computational point of view. We con-
ceived it primarily as a support tool for experimental investigations with
a neuro-robotic set-up. For this reasonNeuVision has been tailored to
this particular application, i.e., to study the interactions between neu-
rons and a small robot moving in a virtual environment. According to
this perspective, we did not consider it a primary goal to optimize simu-
lation performances or to introduce biophysically detailed models. We
strategically chose to keep things simple for both the developer and
the user, avoiding the integration of di erent tools, that could be readily
usable but less flexible from the architecture point of view.
Within NeuVision we realized innovative tools in order to visualize and
analyze, in an e ective way, the dynamics of neuronal networks. Some
examples of the available methods for visualizing the neuronal signals
are shown in Figure 2. As an example, the connectivity of a network
can be displayed showing all the links between neurons as reported
in Figure 2B, or highlighting only the connections in input, or in out-
put, of a single neuron. The color of the link identifies the type of the
connection, while the level of transparency its strength.
The overall neural activity can be summarized by the display of the
membrane potentials for each neuron in the network (on the top of Fig-
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Figure 2. Examples of available visualizations. (A) Membrane potential snapshots (top) and raster plot (bottom) of a network burst. (B) Inter-neuronal connections.
(C) Instantaneous spiking rate.

ure 2A) or by the instantaneous spiking rate (Figure 2C). To compute
the spiking rate, the user chooses to keep in consideration all spikes,
or only spikes fired by either excitatory, or inhibitory, neurons. The elec-
trophysiological activity of the network can be displayed by means of
a raster plot (on the bottom of Figure 2A), that makes it easy to distin-
guish between spiking and bursting activity. More precisely, we classify
bursting as the activity of a neuron that fires at least 3 times within a 20
ms time frame. Otherwise we consider the neuron activity as spiking.
Moreover a network burst is a widespread synchronous activation of
almost the entire network, and it is detected whenever at least 30% of
neurons are bursting at the same time [15]. In Figure 2A, an example
of a spontaneous network burst is shown. At the top of the figure, six
snapshots of the membrane potentials are shown.
NeuVision allows to define di erent stimulation protocols in order to
simulate evoked activity. For example the user can select some par-
ticular neurons and stimulate them with periodic pulses. On the other
hand, the graphic interface shown in Figure 3 is used for configuring
a neuro-robotic experiment. More precisely it lets the user to define
how sensory information is translated into electrical stimuli for the net-
work.
NeuVision o ers tools to perform classical analysis for a fast charac-
terization of the neural dynamics. In particular it is possible to detect
on-the-fly bursts and network bursts. Other tools allow computation
of the Post-Stimulus Time Histogram (PSTH), the Inter-Spike Interval
histogram (ISI), the Inter-Burst Interval histogram (IBI) and the Center
of Activity Trajectory (CAT) [16].

2.3. Network Module

NeuVision supports three types of neuronal model: Izhikevic, Integrate
and Fire and Hodgkin-Huxley. Nevertheless, the simulation results pre-
sented in the following sections derive only from networks made up
of Izhikevich neurons [17]. We considered two di erent types of neu-
rons to model excitatory and inhibitory populations, respectively: reg-
ular spiking and fast spiking neurons [18]. To preserve some features
of the structure of in vitro cortical neurons, we set the ratio between
excitatory and inhibitory neurons to 4:1, as reported in [19, 20]. The
neuron dimension is defined by the length of a square placed in the
network grid. The inter-neuronal propagation speed of the action po-
tential (presynaptic conduction) was set in the range 0.1-1.14 m/s, in
accordance with the literature [21]. We stimulate each neuron in the
network with a random sub-threshold current in order to elicit an ongo-
ing spontaneous activity. The user configures this current by setting its

mean intensity and standard deviation.
Each neuron is modeled as a point placed in a cell of a square ma-
trix. The connections between two neurons are described by a single
synaptic weight which defines the variation of the membrane potential
of the post-synaptic neuron when a spike arrives; a weight can be pos-
itive, if the presynaptic neuron is excitatory, or negative if it is inhibitory.
The synaptic weights are initialized according to a uniform random dis-
tribution. The user can choose not to change such values during the
simulation, or take into account plasticity e ects by means of a spike
timing dependent plasticity (STDP) rule. Such synaptic transmission is
also characterized by a synaptic delay, which was set at 2 ms for the
presented simulations.
The connectivity of the network is determined by two parameters that
define, for each couple of neurons, the probability that there is a con-
nection between them. The probability of connections PC between
two neurons placed at a distance d is calculated according to the fol-
lowing equation, inspired from the Waxman algorithm for the random
networks [22]:

PC = PCMAX e
− d

DPC (1)

where PCMAX is the maximum probability of connection (which corre-
sponds to the situation of two neurons at distance 0), and DPC is a de-
cay constant of the probability of connection.

2.4. Robotic Module

The main purpose of the developed software is the simulation of neuro-
robotic experiments, which can support the development of experimen-
tal protocols to be performed in a real closed-loop system. For this rea-
son we implemented editors that allow the user to create simple world
models. More precisely, it is possible to define a two-dimensional vir-
tual arena containing obstacles and robots as shown in Figure 3, hence
reproducing our real set-up, as described in previous works [12]. Ob-
stacles can have a simple geometric shape, like square, circular or tri-
angular, or a complex shape defined by the user (by means of another
editor). The robots are equipped with range finder sensors that provide
information about the distance of the robot from any obstacle, or from
the arena's wall. The user can choose the number of range finders
and their directions. The robot simulation was developed with the pur-
pose of reproducing sensor data of real commercial mobile robots, such
as the Khepera, manufactured by K-Team (Yverdon-les-bains, Switzer-
land).
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Figure 3. Robotic stimulus generator editor. On the left a simulated circular
arena contains 3 obstacles and a robot equipped with 7 range find-
ers. In the middle a panel contains some processing options and
parameters. In the top right corner the image acquired by the robot
sensors is shown.

3. Results

3.1. Validation of the Neural Simulator

NeuVision is able to reproduce the electrophysiological activity com-
posed of synchronized bursts, mixed with random spikes, as typically
exhibited experimentally by dissociated cortical networks [23, 24]. The
results presented here are representative of several simulations but re-
fer in particular to the analyses we performed on 15 minutes of simu-
lated spontaneous activity. The network is made up of 1024 neurons,
with one inhibitory neuron for every four excitatory neurons, randomly
distributed on a 32×32 grid.

The IBI histogram showing the simulated spontaneous activity is shown
in Figure 4A (red trace) compared with the IBI profile coming from the
spontaneous activity of a rat cortical culture at 30 day in vitro (DIV),
reported in the same panel (black trace). The activity is spread quite
uniformly over the entire time, without a dominant peak, as already re-
ported in the literature [25]. The analysis of the PSTH highlights a rele-
vant peak of activity about 60 ms after stimulating an excitatory neuron
as shown in Figure 4B. This peak is due to the network burst that the
stimulation evokes.

Figure 4. Comparison between simulated and experimental activity. (A) Inter-
burst interval (IBI) of simulated spontaneous activity (red line) and ex-
perimental spontaneous activity (black line). (B) Post-stimulus time
histogram (PSTH) of a simulated (red) and experimental (black) net-
work.

3.2. Modeling Spontaneous and Evoked Activity

Spiking and Bursting Activity
We computed the Mean Firing Rate (MFR, spikes/s) of the network,
finding a value of 3.41 ± 6.32 spikes/s (mean ± standard deviation),
comparable with what we can find in our experimental recordings [25].
This high standard deviation is due to the di erent dynamics between
excitatory and inhibitory neurons, respectively modeled as regular and
fast spiking. This di erence is clearly shown in Figure 5 where raster
plots of spontaneous activity are displayed. In the figure, the red points
represent the activity of the regular spiking neurons (i.e. excitatory),
while the blue ones of the fast spiking neurons (inhibitory). It is worth
noting that the activity elicited during a network burst is dominated by
the excitatory component.
The firing rates of excitatory and inhibitory neurons during network
bursts are more similar than during spiking activity, even if there is
a great variability in the spike frequency between any two neurons,
as indicated by high standard deviations. The mean bursting rate
(MBR) is 3.12 bursts/min. The mean network burst rate (MNBR) is
7.07 network bursts/min and the mean duration of a network burst is
71.29 ± 6.36 ms.
In order to characterize the stimulus-evoked dynamics expressed by
a neuronal network, we stimulated di erent types of neurons from dif-
ferent sites. In particular we analyzed the di erence between stimu-
lating only one neuron and four adjacent neurons, and only excitatory
neurons or only inhibitory neurons. To study the network response,
we reproduced the typical low-frequency stimulation protocols experi-
mentally used in multi-recording set-ups [20, 26]. More precisely, we
delivered a monophasic current stimuli pulse (width 10 ms; amplitude
100 µA; frequency 0.2 Hz).

Figure 5. Raster plots of spontaneous activity. Red and blue points respectively
stand for spikes fired by excitatory and inhibitory neurons. (A) Several
network bursts (vertical lines) during 1 minute of activity. (B) Zoom of
a single network burst during 1 second of activity.
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Network Burst Propagations
To characterize the propagation of network bursts both spontaneous
and evoked, wemade use of the Center of Activity Trajectory (CAT) [27,
28]. CAT describes the global neural dynamics and is particularly useful
when propagation phenomena involving large part of a network occur.
CAT is computed similarly to the center of mass, where we consider
the spatial coordinates of each neuron in the network and its firing rate
instead of the mass. More precisely we made use of the following for-
mula:

CA(t, ∆t) = [CAr(t, ∆t), CAC (t, ∆t)] =
∑N

n=1 FRN (t, ∆t) · [rncn]
∑N

n=1 FRN (t, ∆t)
(2)

where N is the total number of neurons in the network and the firing
rate at time t of the neuron n at coordinates (rncn) is calculated as:

FRn(t, ∆t) = NSn(t, t + ∆t)
∆t (3)

where NSn(t0, t1) returns the number of spikes fired by the neuron n
during the time interval (t0, t1).
CAT is obtained by linking temporally consecutive centers of activity.
Figure 6A shows the CAT of a single evoked network burst due to the
stimulation of four excitatory neurons, with a time scale of 50 ms. It can
be clearly seen that the origin of the network burst is in the bottom right
corner. After about 20 ms, the center of activity begins to shift towards
the opposite corner of the network. For evoked network bursts this is
a typical path, as confirmed by Figure 6B that shows the CATs of all the
evoked network bursts superimposed. This regularity is totally missing
for spontaneous network bursts (Figure 6C) and this is particularly evi-
dent in Figure 6Dwhere the CATs of all the spontaneous network bursts
are shown. As can be observed, centers of activity seem to follow no
predefined path, resulting in an unstructured pattern.

3.3. A Simulated Neuro-robotic Experiment

We fully simulated a closed-loop experiment in which a robot, controlled
by the electrical activity of a network of neurons, moves in a circular
arena containing some obstacles (see Figure 7A). The obstacles and
the arena's walls are perceived as real by the sensors of the robot but
they are not able to stop the robot trajectory. In order to bi-directionally
interface the neural network, we defined a decoding and a coding
scheme. The decoding scheme is used to generate motor commands
dependent on the neural activity. The coding scheme allows translation
of the sensory information picked up by the robot sensors into electrical
stimulations for the neurons.

Decoding scheme
In order to generate motor commands we used the Center of Activ-
ity (CA), as previously suggested in the work of Chao [29]. If the CA is
located at the center of the network, the neural activity is uniformly spa-
tially distributed, and the robot keeps on moving in the same direction
at a minimum speed. Otherwise, if the CA is located at another point,
such as for example the red one in Figure 7B, then the speed of the
robot is proportional to the distance from the center d, and its angular
speed of rotation is proportional to the θ angle. In Figure 7B, the robot
is turning to the right.

Figure 6. Center of Activity Trajectory (CAT) (65 ms time scale). (A) A single
evoked network bursts. (B) All the evoked network bursts. (C) A sin-
gle spontaneous network bursts. (D) All the spontaneous network
bursts.

Figure 7. (A) Virtual arena containing the robot and some obstacles. (B) Center
of Activity geometric parameters considered to generate the motor
commands for the robot.

Coding scheme
Figure 8 shows the points used to stimulate the network on the basis
of the sensory information provided by the robot moving in a controlled
environment. Their positions were chosen according to a somatotopic
arrangement, i.e., they topologically correspond to the spatial distribu-
tion of the sensors on the robot's body. For each stimulation point,
the intensity of the supplied stimulus is proportional to the distance
between the robot and the obstacle measured by the corresponding
sensor. At each iteration the stimulation current Is

n due to the sensory
input, is equal to:

Is
n = A · ds (4)

where n is the neuron in correspondence of the stimulation point of
the sensor s, ds is the distance between the robot and the obstacle
measured by sensor s and A is a proportional factor, chosen by the
user.
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The somatotopic arrangement of the stimulation points introduces
a correspondence between the orientations of the neural network and
the robot body. As previously illustrated in the `Decoding scheme' sec-
tion, we synthesized the activity of the network bymeans of the CA, that
is a sort of center of mass of the neural dynamics. Because sensors
that detect farther obstacles are responsible for stronger stimulations,
they tend to increase the network activity around their corresponding
stimulation points. As a consequence the CA is shifted towards those
points and the robot drives towards the farthest obstacles. Actually,
this coding scheme lets a sort of attraction for empty spaces emerge.
Of course we are aware that these rules are far from what could be
found in nature. In other contexts, for example in unbounded environ-
ments, it could be inappropriate tomake the robot explore its world in an
e ective way, because of over-stimulations. Nevertheless we adopted
it to show the possibility to exploit the properties of a neural network to
control a robot, and to illustrate how it is possible to use NeuVision to
implement a neuro-robotic interface.

Figure 8. Stimulation points to provide sensory information to the network (yel-
low spots). Excitatory and inhibitory neurons are respectively repre-
sented by red and blue squares.

Application of coding/decoding schemes to a simulated bi-directional
system
Figures 9A-D show four examples of trajectory of the robot controlled
using the aforementioned rules. As it can be observed, the control is
not perfect, but the robot always moves inside the arena and always
avoids obstacles except for one single case (Figure 9C). A completely
di erent situation is depicted by Figures 9E-H which show robot trajec-
tories obtained only by the spontaneous activity of the simulated net-
work, without any sensory information (i.e. without stimulation and, as
a consequence, without any feedback information from the robot). In
this case, the robot moves as if it were blind, without taking into account
the positions of the obstacles or the arena boundaries.
The described results suggest that, to let a simple intelligent behavior
emerge, the bi-directional communication between a neuronal network
and an artificial body must be provided through specific algorithms of
coding/decoding.

4. Discussion and Conclusions

We have presented a new simulation environment, namedNeuVision,
able to reproduce neuro-robotic experiments. The software was pri-
marily designed as a support tool for conducting real experiments within
the field of the embodied electrophysiology, i.e. biological neuronal net-

Figure 9. (A-D) Four examples of trajectories of the robot controlled providing
sensory information. (E-H) Four examples of trajectories of the robot
controlled without providing sensory information.

works bi-directionally connected to an external artifact moving in a con-
trolled environment. The software architecture has been designed and
implemented within the .NET framework (Microsoft). As a matter of fact
this development platform is still little used for simulation because of its
recent introduction, but we think it could o er important advantages in
that context, especially in relation to the thread management and the
graphical user interface development. The modularity of the architec-
ture makes it easy to interface simulated large-scale neural networks,
and virtual/real mobile robots, within the same experiment. Thus, with
the goal to improve the complexity of the experimental design, we have
made it possible to add new functionalities to the software, which has
been designed to be simple for both users and developers.
For the above reasons, we chose to develop a completely new environ-
ment rather than making use of available network simulators [30--36]
or interfacing our computational model with more sophisticated robot
models [37--39], already presented in the literature and freely available.
This gave us a strict control on the definition of both the network con-
nectivity and the stimulation protocol and the possibility to easily add
all the functionalities we need to manage the experimental phases of
a closed-loop session, such as specific visualization and analysis tools.
The implemented software provides great flexibility for defining neuronal
networks and connectivity rules as well as stimulation protocols, also
allowing the user to visualize the neural activity in both standard and
novel ways [14]. The validation results show that the neural simulator
is able to reproduce both the spontaneous and evoked activity of neu-
ronal networks. We computed the firing and the bursting rate (i.e.MFR
and MBR), obtaining statistics comparable with those found during real
experiments [25]. We characterized the neural dynamics considering
excitatory and inhibitory neurons separately. Our Inter-Spike-Interval
(ISI) analyses highlighted that neurons in the modeled network tend to
fire with the same type of activity, either spiking or bursting, found in
real networks.
In order to validate the stimulus-evoked activity, we tried to reproduce
low-frequency stimulation protocols, by stimulating di erent types of
neurons from di erent sites in the network. Moreover we also used
non-standard analysis tools, such as the Center of Activity Trajec-
tory [16], to characterize the propagation of network bursts, finding
a clear distinction between spontaneous and stimulus-evoked network
bursts. More precisely, we found that evoked network bursts follow few
predefined propagation paths, whereas spontaneous ones are much
less regular; this has also been demonstrated for biological networks
of neurons cultured over multi-electrode arrays [28].
In this work we also presented a fully simulated neuro-robotic experi-
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ment, to show the potentialities of NeuVision. The obtained results
highlight the importance of a feedback signal from the environment,
given through the `eyes' of the robot, to e ectively control the robot's
trajectory. The great advantages of such a neuro-robotic simulator
mostly rely on the possibility to explore di erent experimental protocols
and di erent coding/decoding schemes, to let the culture interact with
an external environment. The same experimental procedures could
then be implemented in a real closed-loop system. In the future we
plan to extend the available schemes of coding and decoding to make
possible the emergence of di erent intelligent behaviors. Forthcom-
ing software improvements will focus on the implementation of a more
general network topology editor that will allow users to define di erent
types of connectivity, such as small-world and scale-free. Di erent
STDP rules will soon be included in the simulations to enable synaptic
plasticity studies. At a later time we plan to introduce the support for
three-dimensional visualization and for parallel computing, with partic-
ular regard to the latest GPU technology. Moreover, we will add the
possibility to use Microsoft Robotics to configure more realistic robotic
simulations.
We are convinced that a synergistic approach is crucial to increase the
e ectiveness of closed-loop electrophysiological experiments in order
to understand how networks encode information [13]. As a matter of
fact, simulations can help in overcoming the technical limitations of real
experiments, allowing users to monitor the neural activity with a level
of detail unreachable by present recording technologies. This makes it
possible to highlight phenomena that otherwise would go unobserved
during an experiment. At the same time, without the constraints of
physical stimulation through microelectrodes, sensory information can
be provided to the network in a more detailed and reliable way. More-
over, because there is no risk of killing a simulated culture, or of dam-
aging virtual electrodes, it is possible to freely try a wide variety of ex-
perimental protocols. This makes more likely the appearance of un-
expected results that can suggest new real experiments specifically
designed to reproduce the simulated emergent behaviors. A better un-
derstanding of the processes leading to biological cognition can, in turn,
facilitate progress in understanding neural pathologies, designing neu-
ral prosthetics, and creating fundamentally di erent types of artificial
intelligence.
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