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Abstract

Back in 1967 the linguist Ž. Muljačić used an additive distance between ill-defined linguistic features which is a forerunner of
the fuzzy Hamming distance between strings of truth values in standard fuzzy logic. Here we show that if the logical frame is
changed one obtains additive distances which are either sorely inadequate, as in the Łukasiewicz or probabilistic case, or coincide
with the distance originally envisaged by Muljačić, as happens with a whole class of T-norms (abstract logical conjunctions)
which includes the nilpotent minimum. All this strengthens the role of Muljačić distances in linguistic clustering and of Muljačić
distinguishabilities (a notion subtly different from distances, but quite inalienable) in linguistic evolution. As a preliminary example
we re-take and re-examine Muljačić original data.
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1. Introduction

Back in 196714 the Croat linguist Ž. Muljačić introduced what appears to us as a natural fuzzy generalization of
crisp Hamming distances between binary strings of fixed length n, called henceforth Muljačić distance; he wanted to
show that Dalmatic, now an extinct language, is a bridge between the Western group of Romance languages and the
Eastern group, mainly Romanian and its variants. The situation is the following: Romance languages L,Λ, . . . are each
described by means of n features, which can be present or absent, and so are encoded by a string s(L) = x = xi . . . xn,
where xi is the truth value of the proposition feature i is present in language L; however, presence/absence can be
ill-defined and so each x = xi is rather a truth value x ∈ [0, 1] in a multi-valued logic; x = xi is a crisp value only
when x = 0 = f alse = absent, or x = 1 = true = present, else is a strictly fuzzy value. In the sequel we set
x ∧ y=̇min[x, y], x ∨ y=̇max[x, y] and x=̇1 − x; these are the truth values of conjunction AND, disjunction OR and
negation NOT w.r. to propositions with truth values x and y in standard fuzzy logic, a popular form of multi-valued
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logic, while e.g. Łukasiewicz logic, cf. below, has the same negation but different conjunctions and disjunctions. What
happens if one changes the logical framework, and minima and maxima are replaced by another T-norm (conjunction)
and the corresponding T-conorm (disjunction)? Section 2 shows that the alternatives are either sorely inadequate, as in
the Łukasiewicz and probabilistic case, or give back the very same distance, as in the nilpotent-minimum case: thus,
our results enhance the relevance of Muljačić distances and Muljačić distinguishabilities in computational linguistics
(the coding-theoretic notion of distinguishability, as opposed to distance, was introduced by Cl. Shannon back in the
fifties17, cf. Section 2).

While Section 2 is rather technical, Section 3, which is based on Muljačić’ original data of 1967, is a description
of the use one might make of our tools in computational linguistics, a task we are beginning to tackle in ongoing
research3 on extensive data within the activities of the Human Language Technologies Research Center, Bucharest
University, cf. also10. To the best knowledge of these authors, the implications of Muljačić research as far as fuzziness
is concerned have been overlooked in literature, possibly because in his years fuzziness was still an emerging and not
yet well understood notion, cf. 9. We are confident that Muljačić distances, coupled with Muljačić distinguishabilities,
may prove to be a useful tool not only, in the wake of Muljačić, in linguistic classification and linguistic evolution, cf.
Section 3, but also in other domains, coding theory as already dealt with in9, or even bioinformatics, cf. the concluding
section.

2. Methods: fuzzy distances and T-norms

For the moment being we stick to the logical operators which are standard in fuzzy logic, maxima and minima. We
move to additive distances between logical strings and in particular between two truth values x and y ∈ [0, 1], i.e.
between strings of length 1, x and y being the truth-values of propositions Px and Py, respectively. Mimicking usual
Hamming distances, we set d(x, y)=̇

[
(Px true) AND (Py false)

]
OR

[
(Px false) AND (Py true)

]
, i.e. d(x, y) =[

x ∧ (1 − y)
]
∨
[
(1 − x) ∧ y

]
.

Two truth values x and y are consonant if x ∨ y ≤ 1
2 or x ∧ y ≥ 1

2 , else they are dissonant; the fuzziness of the
truth value x, is f (x)=̇x AND x = x ∧ (1 − x). It has been proved9 that d(x, y) can be equivalently expressed as
d(x, y) = f (x) ∨ f (y) or 1 − f (x) ∨ f (y), according whether x and y are consonant or dissonant, or also9,15, as
d(x, y) = |x − y| + f (x) ∧ f (y). Additively, the first equivalence gives an expression for string distances which stresses
its relation to the crisp Hamming situation (D and C denote dissonant and consonant positions, respectively):

d(x, y)=̇
∑
i∈D

[
1 − [ f (xi) ∨ f (yi)]

]
+
∑
i∈C

[
f (xi) ∨ f (yi)

]
(1)

The second equivalence makes clear the relation with taxicab distances, or Minkowski distances. We stress that (1) is
a distance between strings of truth values, rather than a distance between the corresponding languages, cf. Section 3.

Back in 1956 Claude Shannon introduced11,17 into information and coding theory the notion of distinguishability,
later generalized to broader contexts as ours in1,2,3:

δ(x, y)=̇min
z

[d(x, z) ∨ d(y, z)] (2)

In9 Muljačić distinguishability or fuzzy Hamming distinguishability has been computed to be:

δ(x, y)=̇
∑
i∈D

1
2
+

[∑
i∈C

f (xi) ∨
∑
i∈C

f (yi)
]

(3)

In a general continuous context, minima in (2) should be replaced by infima, at least a priori; however, in our case
minima are always attained, even if z is constrained to belong to the ternary alphabet {0, 1

2 , 1}9. Both Muljačić
distances (called Sgarro distances in6) and Muljačić distinguishabilities are fuzzy metrics, cf. the Appendix; self-
distances d(x, x) and self-distinguishabilities δ(x, x) are strictly positive, unless x is crisp, i.e. all its components xi

are crisp. We stress that, unlike the corresponding distances, Muljačić distinguishabilities do not have an additive

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.08.163&domain=pdf
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(the coding-theoretic notion of distinguishability, as opposed to distance, was introduced by Cl. Shannon back in the
fifties17, cf. Section 2).

While Section 2 is rather technical, Section 3, which is based on Muljačić’ original data of 1967, is a description
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may prove to be a useful tool not only, in the wake of Muljačić, in linguistic classification and linguistic evolution, cf.
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section.
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For the moment being we stick to the logical operators which are standard in fuzzy logic, maxima and minima. We
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Hamming distances, we set d(x, y)=̇

[
(Px true) AND (Py false)

]
OR

[
(Px false) AND (Py true)

]
, i.e. d(x, y) =[

x ∧ (1 − y)
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2 , else they are dissonant; the fuzziness of the
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1 − [ f (xi) ∨ f (yi)]
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+
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(1)

The second equivalence makes clear the relation with taxicab distances, or Minkowski distances. We stress that (1) is
a distance between strings of truth values, rather than a distance between the corresponding languages, cf. Section 3.

Back in 1956 Claude Shannon introduced11,17 into information and coding theory the notion of distinguishability,
later generalized to broader contexts as ours in1,2,3:

δ(x, y)=̇min
z

[d(x, z) ∨ d(y, z)] (2)
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]
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In a general continuous context, minima in (2) should be replaced by infima, at least a priori; however, in our case
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2 , 1}9. Both Muljačić
distances (called Sgarro distances in6) and Muljačić distinguishabilities are fuzzy metrics, cf. the Appendix; self-
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nature, due to consonant positions. For metric distances, be they crisp or fuzzy, one soon proves the basic bounds, cf.
e.g.1,2,3,9:

d(x, y)
2
≤ δ(x, y) ≤ d(x, y) (4)

Often distinguishabilities are equal to the lower bound, in case corrected to its integer ceiling
⌈

d(x,y)
2

⌉
when distances,

and so distinguishabilities, cf. (2), are constrained to be integers: this e.g. happens with crisp Hamming distances,
edit distances or Kendall permutation distances, by this trivializing the notion of distinguishability. However, in our
case, cf. Section 2 and Appendix B, Muljačić’ distinguishabilities span the interval in (4), and equality of distances
does not imply equality of distinguishabilities, cf. Section 3 and Appendix B. As we argue below in Section 3, distin-
guishabilities are essential when one moves from static linguistic classification and clustering to dynamic linguistic
evolution.

While in a crisp setting it is quite clear what disjunctions and conjunctions should be, this is not so in a fuzzy context
as ours is: one has a whole range of abstract conjunctions AND and disjunctions OR, called T-norms and T-conorms
respectively (cf. Appendix A for definitions and basic properties), which compete with the standard choice of minima
and maxima, and which give rise to alternative forms of multi-valued logics. Remarkable cases are Łukasiewicz,
probabilistic and nilpotent-minimum as covered below (cf. again Appendix A for definitions); actually, in the paper
additional options will be taken into account.

Given additivity (1), in this section we take n = 1, x, y ∈ [0, 1]; the generalization to n-length sequences is straightfor-
ward. Since all T-norms take the same values on the border x ∧ y = 0 or x ∨ y = 1, and so do all the T-conorms, we
shall operate mainly on the open unit square. Recall that for any T-norm x�y or T-conorm x⊥y, one has x�y ≤ x ∧ y,
x⊥y ≥ x∨ y, cf. Appendix A. We generalize nilpotent mimima to parametric β-nilpotent minima, where the inequality
in Appendix A is replaced by

x + y < β , 0 < β ≤ 2

We add also the T-norm introduced in8 for technical reasons of fuzzy arithmetic, but actually quite meaningful as we
argue below, that is the α-minima T-norms and the corresponding dual T-conorms:

x�y = 0 for x ∨ y < α, else x�y = x ∧ y
x⊥y = 1 for x ∧ y > 1 − α, else x⊥y = x ∨ y; 0 < α ≤ 1

Observe that the drastic T-norm as in Appendix A is re-obtained as a limit case both of parametrized β-nilpotent
minima when β = 2, and of α-minima when α = 1, while non-interactivity is re-found for α = β = 0. Actually, we
find it convenient to take more general R-minima where R is a region of the closed unit square which verifies:

(i) x, y ∈ R implies x ∨ y � 1
(ii) x, y ∈ R implies y, x ∈ R
(iii) x, y ∈ R , u ≤ x, v ≤ y implies u, v ∈ R

and define the R-minimum T-norm by:

x�y = 0 for x, y ∈ R, else x�y = x ∧ y

The fact that any R-minimum is actually a T-norm is soon checked: e.g. for the associative property take, say, x, y ∈ R:
one has (x�y)�z = 0�z = 0, and x�(y�z) = x�u = 0 since either u = 0 or u = y ∧ z ≤ y, and so x, u ∈ R, use
(iii) . Note that on the 1-complement or negated region RN , defined by x, y ∈ R iff (if and only if) x, y ∈ RN , the
corresponding conorm is 1, else is x ∨ y. The underlying idea is that when the truth values x and y of the propositions
Px and Py are “too small”, i.e. belong to R, then the possibility (the truth value) of the disjunction Px ∨ Py is nil in
practice, and so is set straightaway equal to 0. Our interpretation makes “large values” of the parameters α and β
rather odd, as will be confirmed below when α > 1

2 or β > 1. Note that the nilpotent minimum is hybrid, having

Laura Franzoi, Andrea Sgarro / Procedia Computer Science 00 (2017) 000–000

a Łukasiewicz disjunction x + y which defines R versus a non-interactive conjunction outside R, this being a reason
why we prefer the option put forward in8; a Łukasiewicz conjunction outside {x, y : x + y < 1} would give x�y = 1,
and correspondingly one would have to generalize nil-potent minima to an operator xτy ∈ {0, 1} which is not even
associative: (xτy)τz = 0, while xτ(yτz) = x as soon as x + y < 1, y + z ≥ 1.

The region R is called proper when it has void intersection with RN . Equivalently, R is proper when x, y ∈ R implies
x + y < 1: else by (iii) there would be an intersection x, 1 − x with the segment x + y = 1, and by (ii) also 1 − x, x
would belong to R which would then have a non-void intersection with its negation RN . Proper regions R are those
of α-minima with α ≤ 1

2 and β-nilpotent minima with β ≤ 1, including non-interactivity. The largest proper region R
corresponds to standard nilpotent minima (β = 1), the smallest to non-interactivity (α = β = 0).

Given a T-norm x�y and the corresponding dual T-conorm x⊥y, the fuzziness of the truth value x ∈ [0, 1] is defined
as f (x)=̇x�(1− x) = x�x. Of course f (x) = f (1− x), f (x) = 0, while f ( 1

2 ) ≤ 1
2 ∧ (1− 1

2 ) = 1
2 . The fuzziness is called

proper when:

� f (x) increases (possibly weakly) from f (0) = 0 to f ( 1
2 ) > 0

These authors deem that a proper fuzziness, i.e. the possibility to give a positive truth value to the conjunction of
a proposition and its negation, is an inalienable property of multi-valued logical systems which aim at modeling
fuzziness in a significant way. In the example below of proper and improper fuzziness we assume x ≤ 1

2 .

Proper cases:
minimum or non-interactive norm, standard nilpotent minimum, and more generally α-minima with α ≤ 1

2 , β-nilpotent
minima with β ≤ 1: f (x) = x
product or probabilistic: f (x) = x − x2, f ( 1

2 ) = 1
4

Improper cases:
Łukasiewicz, drastic, β-nilpotent minimum with β > 1: f (x) = 0
α-minimum with α ≥ 1

2 : f (x) = x for x < 1 − α else f (x) = 0

We move to distances between truth values for a given T-norm, which one can soon extend to additive distances d(x, y)
for strings x and y of length n:

d(x, y) =
[
x�(1 − y)

]
⊥
[
(1 − x)�y

]

Whatever the T-norm the following properties are obviously verified:

[i] 0 ≤ d(x, y) ≤ 1
[ii] d(x, y) = d(y, x) , d(x, y) = d(x, y)
[iii] on the border d(x, y) = |x − y|

So there is symmetry and invariance w.r. to negation of both arguments; [iii] explains why below the border is mainly
ignored. We stress the following obvious properties for self-distances d(x, x) (recall that x⊥y ≥ x ∨ y):

Lemma 1. d(x, x) ≥ f (x), d(x, x) = 0 iff f (x) = 0

E.g. in the probabilistic case d(x, x) = f (x) [2 − f (x)] > f (x) unless x = 0. Let us move to distances. For the
proper-fuzziness case of Muljačić or fuzzy Hamming distances one has the fuzzy metric distance:

dM(x, y) = 1 − f (x) ∨ f (y) or f (x) ∨ f (y)

according whether x, y are dissonant or consonant. Does one have other such well-behaved examples?
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nature, due to consonant positions. For metric distances, be they crisp or fuzzy, one soon proves the basic bounds, cf.
e.g.1,2,3,9:

d(x, y)
2
≤ δ(x, y) ≤ d(x, y) (4)

Often distinguishabilities are equal to the lower bound, in case corrected to its integer ceiling
⌈

d(x,y)
2

⌉
when distances,

and so distinguishabilities, cf. (2), are constrained to be integers: this e.g. happens with crisp Hamming distances,
edit distances or Kendall permutation distances, by this trivializing the notion of distinguishability. However, in our
case, cf. Section 2 and Appendix B, Muljačić’ distinguishabilities span the interval in (4), and equality of distances
does not imply equality of distinguishabilities, cf. Section 3 and Appendix B. As we argue below in Section 3, distin-
guishabilities are essential when one moves from static linguistic classification and clustering to dynamic linguistic
evolution.

While in a crisp setting it is quite clear what disjunctions and conjunctions should be, this is not so in a fuzzy context
as ours is: one has a whole range of abstract conjunctions AND and disjunctions OR, called T-norms and T-conorms
respectively (cf. Appendix A for definitions and basic properties), which compete with the standard choice of minima
and maxima, and which give rise to alternative forms of multi-valued logics. Remarkable cases are Łukasiewicz,
probabilistic and nilpotent-minimum as covered below (cf. again Appendix A for definitions); actually, in the paper
additional options will be taken into account.

Given additivity (1), in this section we take n = 1, x, y ∈ [0, 1]; the generalization to n-length sequences is straightfor-
ward. Since all T-norms take the same values on the border x ∧ y = 0 or x ∨ y = 1, and so do all the T-conorms, we
shall operate mainly on the open unit square. Recall that for any T-norm x�y or T-conorm x⊥y, one has x�y ≤ x ∧ y,
x⊥y ≥ x∨ y, cf. Appendix A. We generalize nilpotent mimima to parametric β-nilpotent minima, where the inequality
in Appendix A is replaced by

x + y < β , 0 < β ≤ 2

We add also the T-norm introduced in8 for technical reasons of fuzzy arithmetic, but actually quite meaningful as we
argue below, that is the α-minima T-norms and the corresponding dual T-conorms:

x�y = 0 for x ∨ y < α, else x�y = x ∧ y
x⊥y = 1 for x ∧ y > 1 − α, else x⊥y = x ∨ y; 0 < α ≤ 1

Observe that the drastic T-norm as in Appendix A is re-obtained as a limit case both of parametrized β-nilpotent
minima when β = 2, and of α-minima when α = 1, while non-interactivity is re-found for α = β = 0. Actually, we
find it convenient to take more general R-minima where R is a region of the closed unit square which verifies:

(i) x, y ∈ R implies x ∨ y � 1
(ii) x, y ∈ R implies y, x ∈ R
(iii) x, y ∈ R , u ≤ x, v ≤ y implies u, v ∈ R

and define the R-minimum T-norm by:

x�y = 0 for x, y ∈ R, else x�y = x ∧ y

The fact that any R-minimum is actually a T-norm is soon checked: e.g. for the associative property take, say, x, y ∈ R:
one has (x�y)�z = 0�z = 0, and x�(y�z) = x�u = 0 since either u = 0 or u = y ∧ z ≤ y, and so x, u ∈ R, use
(iii) . Note that on the 1-complement or negated region RN , defined by x, y ∈ R iff (if and only if) x, y ∈ RN , the
corresponding conorm is 1, else is x ∨ y. The underlying idea is that when the truth values x and y of the propositions
Px and Py are “too small”, i.e. belong to R, then the possibility (the truth value) of the disjunction Px ∨ Py is nil in
practice, and so is set straightaway equal to 0. Our interpretation makes “large values” of the parameters α and β
rather odd, as will be confirmed below when α > 1

2 or β > 1. Note that the nilpotent minimum is hybrid, having
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a Łukasiewicz disjunction x + y which defines R versus a non-interactive conjunction outside R, this being a reason
why we prefer the option put forward in8; a Łukasiewicz conjunction outside {x, y : x + y < 1} would give x�y = 1,
and correspondingly one would have to generalize nil-potent minima to an operator xτy ∈ {0, 1} which is not even
associative: (xτy)τz = 0, while xτ(yτz) = x as soon as x + y < 1, y + z ≥ 1.

The region R is called proper when it has void intersection with RN . Equivalently, R is proper when x, y ∈ R implies
x + y < 1: else by (iii) there would be an intersection x, 1 − x with the segment x + y = 1, and by (ii) also 1 − x, x
would belong to R which would then have a non-void intersection with its negation RN . Proper regions R are those
of α-minima with α ≤ 1

2 and β-nilpotent minima with β ≤ 1, including non-interactivity. The largest proper region R
corresponds to standard nilpotent minima (β = 1), the smallest to non-interactivity (α = β = 0).

Given a T-norm x�y and the corresponding dual T-conorm x⊥y, the fuzziness of the truth value x ∈ [0, 1] is defined
as f (x)=̇x�(1− x) = x�x. Of course f (x) = f (1− x), f (x) = 0, while f ( 1

2 ) ≤ 1
2 ∧ (1− 1

2 ) = 1
2 . The fuzziness is called

proper when:

� f (x) increases (possibly weakly) from f (0) = 0 to f ( 1
2 ) > 0

These authors deem that a proper fuzziness, i.e. the possibility to give a positive truth value to the conjunction of
a proposition and its negation, is an inalienable property of multi-valued logical systems which aim at modeling
fuzziness in a significant way. In the example below of proper and improper fuzziness we assume x ≤ 1

2 .

Proper cases:
minimum or non-interactive norm, standard nilpotent minimum, and more generally α-minima with α ≤ 1

2 , β-nilpotent
minima with β ≤ 1: f (x) = x
product or probabilistic: f (x) = x − x2, f ( 1

2 ) = 1
4

Improper cases:
Łukasiewicz, drastic, β-nilpotent minimum with β > 1: f (x) = 0
α-minimum with α ≥ 1

2 : f (x) = x for x < 1 − α else f (x) = 0

We move to distances between truth values for a given T-norm, which one can soon extend to additive distances d(x, y)
for strings x and y of length n:

d(x, y) =
[
x�(1 − y)

]
⊥
[
(1 − x)�y

]

Whatever the T-norm the following properties are obviously verified:

[i] 0 ≤ d(x, y) ≤ 1
[ii] d(x, y) = d(y, x) , d(x, y) = d(x, y)
[iii] on the border d(x, y) = |x − y|

So there is symmetry and invariance w.r. to negation of both arguments; [iii] explains why below the border is mainly
ignored. We stress the following obvious properties for self-distances d(x, x) (recall that x⊥y ≥ x ∨ y):

Lemma 1. d(x, x) ≥ f (x), d(x, x) = 0 iff f (x) = 0

E.g. in the probabilistic case d(x, x) = f (x) [2 − f (x)] > f (x) unless x = 0. Let us move to distances. For the
proper-fuzziness case of Muljačić or fuzzy Hamming distances one has the fuzzy metric distance:

dM(x, y) = 1 − f (x) ∨ f (y) or f (x) ∨ f (y)

according whether x, y are dissonant or consonant. Does one have other such well-behaved examples?
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Łukasiewicz: A straightforward computation gives back the taxicab or Minkowski distance d(x, y) = |x − y|, “too
crisp” a distance in a fuzzy context; recall that the Łukasiewicz fuzziness is improper, actually fuzziness is “ignored”,
f (x) = 0.

Product: The fuzziness f (x) = x − x2 is proper, but, unfortunately, the fuzzy metric property d(x, x) ≤ d(x, y) falls.
E.g. d( 1

3 ,
1
3 ) = 2

32⊥ 2
32 =

32
34 , while d( 1

3 ,
1
6 ) = 29

34 < d(x, x). Observe that the metric property here violated is needed to
have the basic inequality for distinguishabilities δ(x, y) ≤ d(x, y), cf. (4).

Lemma 2. If d(x, z) = 0 for any two distinct point x and z in the open unit square then the triangle inequality falls.

Proof. Just take y on the border, the inequality would write d(x, z) + |y − z| = 0 + |y − z| ≥ |y − x| whatever y, which is
absurd, just take y on the border strictly nearer to z than to x in the Euclidean or taxicab geometry (the two coincide
for n = 1).

Lemma 3. If R is not proper, then d(x, y) = 0 whenever x, y ∈ R ∩ RN.

To check the lemma, recall the definition of RN and just observe that x, y ∈ R ∩ RN iff x, y ∈ RN ∩ R = R ∩ RN .
However straightforward, this lemma is enough to show the inadequateness of α-minima with α > 1

2 and β-nilpotent
minima with β > 1:

Drastic, α-minima with α > 1
2 , β-nilpotent minima with β > 1: the intersection R ∩ RN has size > 2, e.g. in the

drastic limit case one has d(x, y) = 0 over the whole of the open unit square; so the triangular property falls, e.g. in the
drastic case with y = 0, 0 < z < x < 1 one has d(x, z) + d(y, z) = |y − z| = z < d(x, y) = |x − y| = x.

In the special case of α-minima with α > 1
2 the intersection of R and RN is the open square of sides ]1 − α, α[, and

so the condition x, y ∈ R ∩ RN in Lemma 2 is equivalent to x, y ∈ R ∩ RN , without the negation; this is not so with
β-nilpotent minima, 1 ≤ β < 2, as soon checked.

The proper region R is as large as possible with the standard nilpotent minimum, β = 1, while in the non-interactive
case it is as small as possible, actually void in the open unit square. From now on we stick to proper R-minimum
norms; we show in the theorem and in the corollary that fuzziness and self distance w.r. to any proper R, fR(x) and
dR(x, x), or w.r. to non-interactivity as in the Muljačić case, fM(x) and dM(x, x), all coincide:

Theorem 1. Whichever R-mimimum T-norm with R proper gives back Muljačić distance: dR(x, y) = dM(x, y).

Proof. Given the invariance of T-norm distances w.r. to complementation of the arguments, we deal only with the
case x + y ≤ 1, and, given symmetry, we assume also x ≤ y, which implies x ≤ 1

2 ∧ y. One has x + y ≤ 1 i.e.
y ≤ 1 − x, and so one soon checks that x ∧ y ≤ x ∧ y. We move to our T-norms; notice that the couple 1 − x, y cannot
belong to R, because this would imply 1 − x + y < 1, i.e. x > y. This proves that dM(x, y) = x ∧ y; observe that
dR(x, y) = x ∧ y = dM(x, y) whenever x, y ∈ R, x�y = 0. If instead x, 1 − y lies outside R one might have either
dR(x, y) = (x ∧ y)⊥(x ∧ y) = (x ∧ y) ∨ (x ∧ y) = x ∧ y = dM(x, y) or d(x, y) = (x ∧ y)⊥(x ∧ y) = 1; in the latter case,
however, the couple x∧ y , x∧ y should belong to RN , i.e., using De Morgan rules, one should have (x∨ y, x∨ y) ∈ R.
Using (iii) above to diminish the coordinates, this implies that y, x and x, y both belong to R, but then, using symmetry,
also x, y and x, y would both belong to R, which would then intersect RN , which is absurd.

Corollary 1. If R is proper fR(x) = dR(x, x) = fM(x) = dM(x, x) = x ∧ (1 − x)

Proof. The couple x, 1− x cannot belong to R, because then also 1− x, x would belong to it, and x, 1− x would belong
to both R and RN : thus fR(x)=̇x�(1 − x) = x ∧ (1 − x). Now use the theorem.

Comment: Take n ≥ 1; additive distances as found above are either inappropriate or coincide with Muljačić dis-
tance dM(x, y) as in (1), in which case the corresponding distinguishabilities coincide with Muljačić distinguishability
δM(x, y) as in (3). We deem that the present paper enhances the appropriateness of choosing the logical operators of
standard fuzzy logic, minimum and maximum, i.e. of choosing the non-interactive norms. In particular, the possibly
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most popular norms apart from interactivity, i.e. Łukasiewicz and probabilistic, give an improper fuzziness or violate
basic metric requirements. In next section our tools are applied, as a preliminary example, to Muljačić’ original data;
they are being used in ongoing research on computational dialectology4, cf. also10.

In clustering and distance-based methods one would prefer a crisp metric distance for languages. If to each language
L we associate its string s(L) of n fuzzy truth values

(
s(L) = s(Λ) does not imply L = Λ), let us set d∗(L,Λ) =

d
(
s(L), s(Λ)

)
for distinct languages L � Λ, else d∗(L, L) = 0. One has a crisp metric for equivalence classes each

made up of languages at distance 0 from each other. We deem that it is precisely here that the advantages of having
a proper fuzziness show up: if one takes usual distances for strings in the unit n-cube, the Euclidean distance, say, or
the taxicab distance as derived from Łukasiewicz norms (both give back crisp Hamming distances in the special case
when the arguments are crisp), two languages L and Λ are declared equivalent whenever they have the same string, be
it crisp or fuzzy. Instead, with a proper fuzziness as in the Muljačić case, equivalence requires that the common string
be also crisp, since Muljačić self-distance is zero only when its argument is crisp. As for language distinguishabilities
δ∗(L,Λ) and the corresponding equivalence classes, dealt with in the same way, they coincide with those for the
associated strings, as soon checked, unless the two associated strings are equal and crisp, when the distinguishability
is “forced” to be zero. Languages which are ill-defined are never put into the same equivalence class, even when the
two associated strings are equal.

3. Experimental data: back to Muljačić and a re-start

As a preliminary example, we go back to Muljačić original data14; he uses 12 ternary strings of length 40, and makes
a very sparse use of fuzziness: the only strictly fuzzy value is .5, below replaced by a star ∗ to help readability. The 12
languages are, respectively: R=Romanian, D=Dalmatic, I=Italian, Sa=Sardinian, Frl=Frioulan, spoken in North-East
Italy, Rsh=Romansh, the 4th language of Switzerland, Pr=Provençal, FP=Francoprovençal spoken across Italian and
French Alps, F=French, C=Catalan, S=Spanish (Castilian) and P=Portuguese.

R 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1
D 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 * 0 1 1 1 1 1 1
I 1 1 1 0 0 0 1 0 1 0 0 0 1 * 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0

Sa 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 * 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1
Frl 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 * 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0
Rsh 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 * 1 1 1 0 1 1 1 0 1 0 0 1 0 1 * 0 1 1 0 0
Pr 1 0 0 1 0 0 0 * 1 0 0 0 0 0 * 0 1 1 1 1 1 0 1 0 1 1 1 * 0 0 0 0 1 0 0 * 1 1 0 0
FP 1 0 1 0 1 1 0 * 1 0 0 0 * 0 0 * 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0
F 0 0 0 0 1 1 0 * 1 0 0 0 0 0 0 * 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0
C 1 1 1 0 0 0 0 1 1 * 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0
S 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 * 0 0 0 0 1 0 0 1 0 0 0 0
P 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0

Classification. Using directly (1) and (3) to write a simple Python code, we re-compute distances, correcting a couple
of slips, and compute the corresponding distinguishabilities for the first time; distances have been multiplied by 2 and
distinguishabilities by 4 only to facilitate reading; Muljačić used strict fuzziness quite sparsely, and so 4δ is either
equal to its crisp lower bound 2d or only slightly above it9.
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Łukasiewicz: A straightforward computation gives back the taxicab or Minkowski distance d(x, y) = |x − y|, “too
crisp” a distance in a fuzzy context; recall that the Łukasiewicz fuzziness is improper, actually fuzziness is “ignored”,
f (x) = 0.

Product: The fuzziness f (x) = x − x2 is proper, but, unfortunately, the fuzzy metric property d(x, x) ≤ d(x, y) falls.
E.g. d( 1

3 ,
1
3 ) = 2

32⊥ 2
32 =

32
34 , while d( 1

3 ,
1
6 ) = 29

34 < d(x, x). Observe that the metric property here violated is needed to
have the basic inequality for distinguishabilities δ(x, y) ≤ d(x, y), cf. (4).

Lemma 2. If d(x, z) = 0 for any two distinct point x and z in the open unit square then the triangle inequality falls.

Proof. Just take y on the border, the inequality would write d(x, z) + |y − z| = 0 + |y − z| ≥ |y − x| whatever y, which is
absurd, just take y on the border strictly nearer to z than to x in the Euclidean or taxicab geometry (the two coincide
for n = 1).

Lemma 3. If R is not proper, then d(x, y) = 0 whenever x, y ∈ R ∩ RN.

To check the lemma, recall the definition of RN and just observe that x, y ∈ R ∩ RN iff x, y ∈ RN ∩ R = R ∩ RN .
However straightforward, this lemma is enough to show the inadequateness of α-minima with α > 1

2 and β-nilpotent
minima with β > 1:

Drastic, α-minima with α > 1
2 , β-nilpotent minima with β > 1: the intersection R ∩ RN has size > 2, e.g. in the

drastic limit case one has d(x, y) = 0 over the whole of the open unit square; so the triangular property falls, e.g. in the
drastic case with y = 0, 0 < z < x < 1 one has d(x, z) + d(y, z) = |y − z| = z < d(x, y) = |x − y| = x.

In the special case of α-minima with α > 1
2 the intersection of R and RN is the open square of sides ]1 − α, α[, and

so the condition x, y ∈ R ∩ RN in Lemma 2 is equivalent to x, y ∈ R ∩ RN , without the negation; this is not so with
β-nilpotent minima, 1 ≤ β < 2, as soon checked.

The proper region R is as large as possible with the standard nilpotent minimum, β = 1, while in the non-interactive
case it is as small as possible, actually void in the open unit square. From now on we stick to proper R-minimum
norms; we show in the theorem and in the corollary that fuzziness and self distance w.r. to any proper R, fR(x) and
dR(x, x), or w.r. to non-interactivity as in the Muljačić case, fM(x) and dM(x, x), all coincide:

Theorem 1. Whichever R-mimimum T-norm with R proper gives back Muljačić distance: dR(x, y) = dM(x, y).

Proof. Given the invariance of T-norm distances w.r. to complementation of the arguments, we deal only with the
case x + y ≤ 1, and, given symmetry, we assume also x ≤ y, which implies x ≤ 1

2 ∧ y. One has x + y ≤ 1 i.e.
y ≤ 1 − x, and so one soon checks that x ∧ y ≤ x ∧ y. We move to our T-norms; notice that the couple 1 − x, y cannot
belong to R, because this would imply 1 − x + y < 1, i.e. x > y. This proves that dM(x, y) = x ∧ y; observe that
dR(x, y) = x ∧ y = dM(x, y) whenever x, y ∈ R, x�y = 0. If instead x, 1 − y lies outside R one might have either
dR(x, y) = (x ∧ y)⊥(x ∧ y) = (x ∧ y) ∨ (x ∧ y) = x ∧ y = dM(x, y) or d(x, y) = (x ∧ y)⊥(x ∧ y) = 1; in the latter case,
however, the couple x∧ y , x∧ y should belong to RN , i.e., using De Morgan rules, one should have (x∨ y, x∨ y) ∈ R.
Using (iii) above to diminish the coordinates, this implies that y, x and x, y both belong to R, but then, using symmetry,
also x, y and x, y would both belong to R, which would then intersect RN , which is absurd.

Corollary 1. If R is proper fR(x) = dR(x, x) = fM(x) = dM(x, x) = x ∧ (1 − x)

Proof. The couple x, 1− x cannot belong to R, because then also 1− x, x would belong to it, and x, 1− x would belong
to both R and RN : thus fR(x)=̇x�(1 − x) = x ∧ (1 − x). Now use the theorem.

Comment: Take n ≥ 1; additive distances as found above are either inappropriate or coincide with Muljačić dis-
tance dM(x, y) as in (1), in which case the corresponding distinguishabilities coincide with Muljačić distinguishability
δM(x, y) as in (3). We deem that the present paper enhances the appropriateness of choosing the logical operators of
standard fuzzy logic, minimum and maximum, i.e. of choosing the non-interactive norms. In particular, the possibly
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most popular norms apart from interactivity, i.e. Łukasiewicz and probabilistic, give an improper fuzziness or violate
basic metric requirements. In next section our tools are applied, as a preliminary example, to Muljačić’ original data;
they are being used in ongoing research on computational dialectology4, cf. also10.

In clustering and distance-based methods one would prefer a crisp metric distance for languages. If to each language
L we associate its string s(L) of n fuzzy truth values

(
s(L) = s(Λ) does not imply L = Λ), let us set d∗(L,Λ) =

d
(
s(L), s(Λ)

)
for distinct languages L � Λ, else d∗(L, L) = 0. One has a crisp metric for equivalence classes each

made up of languages at distance 0 from each other. We deem that it is precisely here that the advantages of having
a proper fuzziness show up: if one takes usual distances for strings in the unit n-cube, the Euclidean distance, say, or
the taxicab distance as derived from Łukasiewicz norms (both give back crisp Hamming distances in the special case
when the arguments are crisp), two languages L and Λ are declared equivalent whenever they have the same string, be
it crisp or fuzzy. Instead, with a proper fuzziness as in the Muljačić case, equivalence requires that the common string
be also crisp, since Muljačić self-distance is zero only when its argument is crisp. As for language distinguishabilities
δ∗(L,Λ) and the corresponding equivalence classes, dealt with in the same way, they coincide with those for the
associated strings, as soon checked, unless the two associated strings are equal and crisp, when the distinguishability
is “forced” to be zero. Languages which are ill-defined are never put into the same equivalence class, even when the
two associated strings are equal.

3. Experimental data: back to Muljačić and a re-start

As a preliminary example, we go back to Muljačić original data14; he uses 12 ternary strings of length 40, and makes
a very sparse use of fuzziness: the only strictly fuzzy value is .5, below replaced by a star ∗ to help readability. The 12
languages are, respectively: R=Romanian, D=Dalmatic, I=Italian, Sa=Sardinian, Frl=Frioulan, spoken in North-East
Italy, Rsh=Romansh, the 4th language of Switzerland, Pr=Provençal, FP=Francoprovençal spoken across Italian and
French Alps, F=French, C=Catalan, S=Spanish (Castilian) and P=Portuguese.

R 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1
D 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 * 0 1 1 1 1 1 1
I 1 1 1 0 0 0 1 0 1 0 0 0 1 * 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0

Sa 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 * 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1
Frl 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 * 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0
Rsh 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 * 1 1 1 0 1 1 1 0 1 0 0 1 0 1 * 0 1 1 0 0
Pr 1 0 0 1 0 0 0 * 1 0 0 0 0 0 * 0 1 1 1 1 1 0 1 0 1 1 1 * 0 0 0 0 1 0 0 * 1 1 0 0
FP 1 0 1 0 1 1 0 * 1 0 0 0 * 0 0 * 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0
F 0 0 0 0 1 1 0 * 1 0 0 0 0 0 0 * 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0
C 1 1 1 0 0 0 0 1 1 * 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0
S 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 * 0 0 0 0 1 0 0 1 0 0 0 0
P 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0

Classification. Using directly (1) and (3) to write a simple Python code, we re-compute distances, correcting a couple
of slips, and compute the corresponding distinguishabilities for the first time; distances have been multiplied by 2 and
distinguishabilities by 4 only to facilitate reading; Muljačić used strict fuzziness quite sparsely, and so 4δ is either
equal to its crisp lower bound 2d or only slightly above it9.
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2d/4δ R D I Sa Frl Rsh Pr FP F C S P

R
D 23/24
I 37/38 26/26

Sa 33/34 32/32 30/30
Frl 37/38 26/26 32/32 38/38
Rsh 38/40 25/26 31/32 40/42 19/20
Pr 38/42 27/30 33/36 41/44 21/24 24/26
FP 47/50 32/34 36/38 52/54 22/24 23/24 20/22
F 54/56 39/40 43/44 59/60 29/30 30/30 21/24 9/12
C 37/38 26/26 32/32 38/38 22/22 23/24 19/22 22/24 29/30
S 31/32 30/30 30/30 34/34 30/30 31/32 26/30 34/36 41/42 14/14
P 34/34 39/40 33/34 41/42 39/40 32/34 30/34 31/34 38/40 19/20 9/10

Following Muljačić, in the 12 × 12-matrix we have left blank the all-zero secondary diagonal and, by symmetry, the
triangle entries above it; we have omitted the uninformative R-row and the P-column. Take e.g. the remarkable case
of Provençal Pr, Romanian R, French F and Dalmatic D: one has d(Pr,R) < d(F,D) but instead δ(Pr,R) > δ(F,D);
one has also, with Portuguese P, d(Pr,R) < d(P,D) but instead δ(Pr,R) > δ(P,D). Note also that we are implicitly
assuming, as did Muljačić himself, that features are non-interactive (independent) and equally important: were we to
perform clustering on larger real-world data we would have to resort to methods which bioinformatics has nowadays
made popular, bootstrapping, say. Even if linguists might object to the use of outdated material, we append the
UPGMA tree of distances. Unsurprisingly, given the sparse use of fuzziness, the tree for distinguishabilities is virtually
the same.

Evolution. We move to the relation between decoding, distances and distinguishabilities in language evolution.
Assume we have k possible ancestor languages A1, . . . , Ak for language L: which is the correct ancestor? A basic
principle of decoding, in its generalized form as given in1,2,3, tells that decoding by minimum distance, i.e. selecting
a language Au which minimizes in j the distance d∗(Aj, L), is certainly successful whenever the distinguishabilities
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δ∗(Av, Aw) are sufficiently high: more precisely, if one assumes that the “corruption” due to time evolution cannot be
> w, i.e. that the distance between the ancestor language and the “output language” L is ≤ w, one is safe when the dis-
tinguishabilities between possible ancestors are all > w. In case of ties, one either guesses (hard decoding) or declares
a detected error (soft decoding); in the latter case the reliability criterion is accordingly modified1; alternatively, one
may resort to list decoding and rather provide the whole list of minimizing languages5,13.
In language evolution one has to resort to a new tool, namely distinguishability: we stress once more that, unlike what
happens with most metric string distances of practical use, Muljačić distinguishabilities are not trivial and are explicitly
needed, cf. above Section 2. Let us ask the (politically incorrect and linguistically untenable) question: is Dalmatic a
dialect of Italian or of Romanian? A minimum-distance decoder points to Romanian, d(R,D) = 11.5 < d(I,D) = 13,
an unreliable verdict since the distinguishability between Italian and Romanian is only δ(R, I) = 9.5. With even less
political correctness, let us ask whether Provençal is a dialect of French or of Italian, taking for granted that it must
be a dialect of the two: the verdict is French, d(F, Pr) = 10.5 < d(I, Pr) = 16.5, and now the distinguishability is
high enough, δ(F, I) = 11. Notice that we are ignoring the effect of possible homoplasies, unavoidably so in lack
of a well-established evolutionary model comparable to those of bioinformatics. We are confident that the notion of
distinguishability as opposed to distance may prove useful to build such models also in a linguistic context.

4. Conclusions

The results of this paper support use of Muljačić distance and Muljačić distinguishability as based on the standard
logical operators of fuzzy logic. We did not present new material of direct linguistic interest, but rather put to work
old and new tools for linguistic classification and linguistic evolution on the basis of historical data, in the hope
that Muljačić’ ideas might be successfully revived, extended and applied to up-to-date material. In10 the first author
is employing four variants of fuzzy distances to classify linguistic data, while the purport of distinguishabilities on
linguistic evolution has still to be assessed4. The notion of fuzzy distinguishability has been already applied9 to
coding theory (error-correction and error-detection), unsurprisingly so because it is precisely in coding theory that
string distinguishabilities first arose17; actually, the subtle difference between distance and distinguishability might
prove useful also in bioinformatics, where one deals with long DNA strings, with possibly some fuzziness, rather than
comparatively short strings of ill defined linguistic features.

Acknowledgements

The second author thanks FRA 2014 on Learning Specification, Trieste University, for partial support.

Appendix A. T-norms

T-norms x�y are “abstract” logical conjunctions and are ruled by the axioms:

(i) x�y = y�x, x�(y�z) = (x�y)�z (commutativity and associativity)
(ii) u ≤ x, v ≤ y implies u�v ≤ x�y (monotony)
(iii) x�1 = x, x�0 = 0 (neuter element and nullific)

Actually these axioms are slightly redundant, because x�0 = 0 can be derived from the rest. T-conorms x⊥y are
“abstract” logical conjunctions, c.f. e.g.7, and are ruled by the same axioms, only replacing (iii) by (iii bis) x⊥1 = 1,
x⊥0 = x (nullific and neuter element). Once a T-norm is given its dual T-conorm is obtained by De Morgan’s rule:
x⊥y=̇x ∧ y. Remarkable examples of T-norms are:

minimum, non-interactivity: x�y = x ∧ y
Łukasievicz: x�y = 0 ∨ (1 − x − y)
probabilistic, product: x�y = xy
nilpotent minimum: x�y = 0 if x + y < 1, else x�y = x ∧ y
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drastic: x�y = 0 on the open unit square

The corresponding dual T-conorms are, respectively: x⊥y = x ∨ y; x⊥y = 1 ∧ (x + y); x⊥y = x + y − xy; x⊥y = 1
if x + y > 1, else x ∨ y; x⊥y = 1 on the open unit square. In fuzzy arithmetic for fuzzy quantities non-interactivity
is considered to be an adequate anolog of probabilistic independence12 for random variables. Other examples are
given in the body of the paper. Non-interactivity gives the largest T-norm and the smallest T-conorm, while drasticity
gives the smallest T-norm and the largest T-conorm: so, whatever the T-norm and T-conorm one has x�y ≤ x ∧ y,
x⊥y ≥ x ∨ y.

Appendix B. Fuzzy metric distances

The axioms for fuzzy metric distances d(x, y) are:

(i) 0 ≤ d(x, x) ≤ d(x, y),
(ii) d(x, y) = d(y, x) (symmetry)
(iii) d(x, z) + d(z, y) ≥ d(x, y) (triangular inequality)

Crisp objects x are those for which the self-distance d(x, x) is zero, else they are (strictly) fuzzy. In our case Muljačić
distance and Muljačić distinguishability are both fuzzy metrics, and the opposition crisp/fuzzy is the usual one. Note
that a fuzzy metric can be “defuzzified” by simply imposing that self-distances should be all zero and by “gluing
together” languages at distance 0: the approach taken in Section 3 above, however, is subtler and more respectful
of fuzziness. Note also that fuzzy metric spaces as found usually in the literature are somehow at variance with our
choice, which is however quite simple and quite “natural” in the present context.
To stress why the notion of distinguishability is not trivial take the “artificial” but meaningful example:

d(x, y) a b c d e

a 1 1 1 1/2
b 1/4 1/2 1
c 1/4 3/4
d 1/2
e

which is soon checked to be a crisp metric distance on x, y ∈ {a, b, c, d, e}; in particular d(x, z) + d(z, y) ≥ d(x, y)
(here and below the all-0 secondary diagonal and the triangle below it have been left blank only to facilitate reading).
Distinguishabilities can be computed by an exhaustive search:

d(x, y) a b c d e

a 1 3/4 1/2 1/2
b 1/4 1/4 1/2
c 1/4 1/2
d 1/2
e

The triangular inequality falls: δ(a, d) + δ(d, b) = 3
4 < δ(a, b) = 1. As for the bounds (4), interval couples which

achieve the lower bound are: (a, d), (b, d), (b, e), the upper bound: (a, b), (a, e), (b, c), (c, d), (d, e), while (c, e) and
(a, c) give the intermediate values δ(c, e) = 2

3 d(c, e) and δ(a, c) = 3
4 d(a, c).
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5. Csiszár, I., Kőrner,J.: Information Theory. Coding Theorems for Discrete Memoryless Systems. Cambridge Univeristy Press (2011)
6. Deza, M. M., Deza, E.: Dictionary of Distances. Elsevier B. V. (2006)
7. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publishers (2000)
8. Franzoi, L.: (Ir)relevance in incomplete fuzzy arithmetic. SYNASC, pp. 287–291, (2016)
9. Franzoi, L., Sgarro, A.: Fuzzy Hamming distinguishability. FUZZ-IEEE (2017) - in press IEEE
10. Franzoi, L.: Jaccard-like fuzzy distances for computational linguistics. Submitted to SYNASC 2017
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