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ABSTRACT In this study, an improved deep learning model is proposed to explore the complex interactions
between the road environment and driver’s behaviour throughout the generation of a graphical representation.
The proposed model consists of an unsupervised Denoising Stacked Autoencoder (SDAE) able to provide
output layers in RGB colors. The dataset comes from an experimental driving test where kinematic measures
were tracked with an in-vehicle GPS device. The graphical outcomes reveal the method ability to efficiently
detect patterns of simple driving behaviors, as well as the road environment complexity and some events
encountered along the path.

INDEX TERMS Deep learning, driver behavior, event detection, road safety, workload.

I. INTRODUCTION
Road safety is today one of the most actual and challenging
field of research, as road fatalities continue to increase year
after year with dramatic social and economic impacts [1].
Because of the factors associated to fatal road accidents, most
studies are addressed to human factors who aspire to ana-
lyze the driver behaviour. The entire process of observation,
modelling, visualization and prediction of driving behaviour
unavoidably presuppose the development of experimental
tests who produce large amount of data. Both simulated and
semi- or naturalistic tests are provided with different types
of sensors aiming to record all possible information from the
driver and from the vehicle, together with their interactions.

As deep learning methods may help in the processing
of high-dimensional data, their application in transportation
field has been increasing recently. Applications are mainly
related to traffic flow forecasting, crashes prediction and
driver behaviour analyses.

Studies focusing on driver behavior analysis presuppose
that the design and selection of the features is based on
researchers experience and finding an appropriate method
for their representation is often difficult, especially for
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driving behaviors that are obtained from a driver–vehicle–
environment system [2].

Most of the studies aiming to extract latent features from
multi-dimensional time-series data were performed by using
the Principal Component Analysis. PCA is used to decom-
pose a multivariate dataset in a set of successive orthogonal
components that explain a maximum amount of the vari-
ance [3]. Despite the several conducted studies, it is difficult
to adopt PCA for extracting time series of latent features from
driving behaviour data because vehicle dynamics and the
driver behaviour have non-linear properties, whereas PCA is
based on linear transformations. This problem can be solved
by using Kernel Principal Component Analysis (KPCA),
because it uses a non-linear kernel function that involves a
non-linear transformation for mapping the data to a high-
dimensional space. Then, KPCA employs PCA to extract
latent features in the high-dimensional space. Indeed, Zhao
successfully extracted latent features for driver mental fatigue
classification using KPCA, proving that this method is more
accurate than PCA [4]. Nevertheless, when a large amount of
driving behaviour data is used for analysis, the computational
cost of KPCA is high because the kernel method has to
compute a matrix in RN×N, where N is the total number of
frames of data.

Dong made the first attempt by adopting a deep neural
architecture, based on Convolutional Neural Network (CNN)
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and Recurrent Neural Network (RNN), for the first time in
order to extract features directly from GPS. This because
those neural networks can learn high level driving style fea-
tures from the low level feature matrices requiring less human
work than the previous methods, that rely on handcrafted
driving behaviour features [5].

A particular case of driver behaviour analysis is the one
by Dwivedi who proposed a vision based on CNN to detect
driver drowsiness. According to this, the caption of various
latent facial features and complex non-linear feature interac-
tions were possible [6].

Other studies have proved that an algorithm based on the
Back Propagation (BP) provides good results because it can
approximate any non-linear continuous function with arbi-
trary precision. Meseguer used this kind of neural network
to dynamically and automatically analyze users data in order
to identify the driving style as well as the category of road
segment profile [7]. This type of neural network results are
effective not only for vehicle dynamics and geographic data,
but also for training and testing features in order to improve
the road type recognition rate based on images [8].

The development of several applications including tasks
based on unsupervised methods for driver behaviour detec-
tion have started only a few years ago [9]. In case of large
dataset generated by non-linear transformations, unsuper-
vised learning methods are able to extract latent features of
driving behavior without using label information. In partic-
ular, recent studies involved this method to enable reliable
driving behaviour visualization output. The review of driving
behaviour can be a key practice for the improvement of
driving behaviour and safe driving promotion [10].

Considered the importance of using a denoising criterion
as a tractable unsupervised objective to guide the learning of
useful higher-level representations [11], in this study has been
chosen to exploit a Denoising Stacked-Autoencoder (SDAE)
to extract the latent features for a deep driving behavior
analysis.

It is worth noting the importance of such research, which
also aims at being able to provide real time information
and consequently safety advices for the prevention of road
crashes. Indeed, it is supposed that deep learning will be
able to accurately predict driver behaviour patterns, attracting
relevant attention for the potential role in autonomous driving
applications.

II. METHODS
The objective of this study is to use SDAE for extracting the
driving behaviour features from a dataset from a real driving
test and recorded by an in-vehicle GPS sensor. Regarding data
source, current research suggests that in-vehicle data (CAN-
BUS) can be used as an effective representation of driving
behaviour for recognizing different drivers [12]. Similarly,
other studies involveGPS receiver [13] for simple data extrac-
tion and potential usability in large scale research.

The proposed method implements a deep sparse autoen-
coder (SDAE) to extract the lowdimensional high-level

FIGURE 1. VBOX GPS/camera data logger.

representation from high-dimensional raw driving behavioral
dataset. According to the resulting low-dimensional represen-
tation, two visualization methods are suggested. The first is a
cubic representation displaying extracted three-dimensional
features. The second is a colored trajectory showing on the
path driven the color expression of the extracted features.
The color results from an RGB color space combination
corresponding to the extracted three-dimensional features.

A. EXPERIMENTAL SETUP
The data collection used the Racelogic Video V-Box Pro
device (FIGURE 1), an in-car video system installed on the
test vehicle. The reliability of this device for data analysis
have been tested several road safety studies [14], [15]. The
device combines a 10Hz GPS data logger with a two cameras
video system, with an accuracy of 0.5 meters and 0.2 km/h.
The output consisted in a .csv file with a data recording period
of 0,1s. Every recording included information on positioning
coordinates (latitude and longitude), time and several kine-
matic data. With reference to this study, the six typologies of
kinematic data considered are:

• Longitudinal speed (km/h);
• Vertical speed (km/h);
• Longitudinal Acceleration (m/s2);
• Transversal Acceleration (m/s2);
• ComboG (combination of g forces);
• Heading of the vehicle (deg);

For the scope of this research, a real driving test has been
conducted and driving behavior data of 10 participants have
been collected.

The driving tests were run within the industrial zone of
Casalecchio di Reno (Bologna – Italy) on a circuit route
of 2500 meters. The first 1000 meters, red in FIGURE 2
consisted of a complex road stretch with many entrances and
traffic while the last 1500 meters, blue in FIGURE 2, until
the starting point consisted of a road stretch with a simpler
driving complexity [16], [17].

All participants were asked to drive for two testing ses-
sions (approximatively one in the morning and one in the
afternoon). As summarized in TABLE 1, each driving session
included three laps of the circuit route: the first dedicated to
the user’ adaptation to the experimental conditions, the sec-
ond to test the driving performancewithout any external event
occurring (‘‘baseline lap’’) and the third to test the driving
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FIGURE 2. Driving route.

TABLE 1. Driving test features and variables.

performance in reaction to two workload inducing simulated
events (‘‘test lap’’) consisting of a pedestrian crossing the
road on a crosswalk (one on the ‘‘complex’’ segment and the
other on the ‘‘easy’’ segment’’). At the end of each driving
session, participants were asked to subjectively evaluate their
mental load (workload) while accomplishing the driving task
throughout the standardized NASA-TLX survey.

One dataset sheet was elaborated for each test participant,
accordingly to the scheduled data processing activities.

B. MODEL AND HYPERPARAMETERS TUNING
The developed DSAE model is able to extract time series
of latent features through an encoding process, one for each
hidden layer, minimizing the error computed with the cost
function between the input time-series data and the decoded
time-series data. According to the visualization method here
proposed, the extracted features are drawn on a roadmap
representing a colored trajectory.

In the following subparagraphs the developed model is
described together with hyperparameters tuning activity. The
goal of hyperparameters tuning is to select hyperparameters
that will give good generalization performance. Typically,
this works by estimating the generalization performance for
different choices of hyperparameters (e.g. using a validation
set), and then choosing the best.

Théano library was employed for model development of
this study.

FIGURE 3. Architecture of the SDAE.

a: ACTIVATION FUNCTION
The chosen activation function consists in a hyperbolic tan-
gent function f (·) = tanh(·) as has been evaluated that
outperforms the traditional sigmoid function.

b: ARCHITECTURE
The chosen architecture consisted in the scheme in FIG-
URE 3:

• Input: 6 data inputs x 10 data measurements over 1s =
60 inputs for a sliding window.

• Encoding hidden layers (40, 20, 10);
• Output layer: 3 RGB colors. The RGB color space
is ideal to represent driving behaviors, being a three-
dimensional space. As the range of the RGB color space
is [0, 1], the three-dimensional hidden features have
been normalized into [0, 1]. In summary, the three-
dimensional hidden features could be mapped to the
RGB space by:

rgbt,d =
h(final)t,d − h(final)mind

h(final)maxd − h
(final)
mind

(1)

where:

- rgbt,d is a d-th element of a three-dimensional vector in
the RGB space that represents the driving behaviour at
the t-th time step.

- h(final)t,d is the d-th element of the extracted three-
dimensional hidden feature’s vector at the t-th time step;

- h(final)max,d and h
(final)
min,d are theminimum andmaximumvalues

of the d-th dimension in h(final), respectively.

c: NORMALIZATION
The measured driving behavior input data are defined as Y
∈ RDY×NY, where DY is the dimensionality and NY is
the quantity of data (frames) in Y. Each dimension of Y
represents one type of feature time-series data. The t-th frame
of Y is defined as:

yt = (yt,1, yt,2, . . . , yt,DY )T ∈ RDY (2)

Considering the use of a hyperbolic tangent as activation
function, the output range of the normalization process results
is [-1,1].

To reconstruct the input data using the tanh function, each
dimension of Y is independently normalized into [-1,1] by
using the maximum and minimum values. Thus, the t-th
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frame of the normalized data is expressed as:

xt = (xt,1, xt,2, . . . , xt,DY )T ∈ RDY (3)

where it is normalized by:

xt,d = 2
(
yt,d − ydmin
ydmax − ydmin

)
− 1 (4)

ydmax = max
(
y1,d , . . . , yNY ,d

)
(5)

ydmin = min
(
y1,d , . . . , yNY ,d

)
(6)

where ydmax and ydmin are the maximum and minimum values
of the d-th dimension of Y, respectively.

d: WINDOWING
In the windowing process, the normalized data are aggregated
with a slide window that converts the data of w frames into a
vector.

Thus, the windowing time-series data in the t-th frame are
expressed as:

h(1)t =
(
xTt−w+1, x

T
t−w+2, . . . , x

T
DV

)
T ∈RDH (7)

and DH = w× DY, t ≥ w.
Finally, the obtained windowing time-series data are:

H (1)
=

{
h(i)1 ,h

(i)
2 , . . . ,h

(i)
NH

}
∈ RDHxNH (8)

when the slide window moves along the time axis frame by
frame.

Hence, NH = NY-w+1 frames of windowing time-series
data are obtained.

e: REGULARIZATION AND GENERATION OF A DRIVING
COLOR MAP
Since loss functions are a key part of any machine learning
model, we define an objective against which the performance
of the model is measured. The set of weight parameters
learned by the model is determined by minimizing a chosen
loss function. In this research, the chosen cost function to
train layer (l) is the following:

O(l) (6) =
1

2NV

NV∑
t=1

∥∥∥Wl(T )
t h(l)t − h(l)t

∥∥∥2

+
α

2

L−1∑
l=1

∥∥∥W(l)
∥∥∥2
2
+ β

D(l)
H∑

i=1

KL(ω||h̄(m)i ) (9)

where:
- L is the number of layers;
- h(l)t is the activity of hidden layer (l);
-
∑
= {W (1),· · · ,W (L-1),b (1),· · · ,b (L-1) } and the

three terms represent respectively the Reconstruction
Error Term and two Regularization Terms;

- the second term is used as a penalty to prevent over-
fitting, limiting the elements of all the weights W(l) by
the L2 norm. In addition, the parameter α controls the
strength of the penalty term.

FIGURE 4. RGB Color Space.

- the third term is a sparse term ensuring data sparsity
in the m-th layer and allows more obvious features to
be obtained. The sparse term includes Kullback–Leibler
divergence between two Bernoulli random variables
with ω and h(m)

i , where:

KL
(
ω ‖ h̄(m)i

)
= ω log

ω

h̄(m)i

+ (1− ω) log
1− ω

1− h̄(m)i
(10)

With ω as the sparsity target of the median layer and h (t,i m)
as the i-th element of h(tm). Further, β controls the strength
of the sparse term and when the sparse term is minimized,
h(m)i is close to ω.

h̄(
m)
i =

1
2

(
1+

1
NV

NV∑
t=1

h(m)t,i

)
(11)

To generate a driving color map with different colors, an aver-
age value of the hidden features has been supposed as located
in the center of the RGB color space. Therefore, a value
of 0.5 has been set for ω because the center of each axis
of the RGB color space is 0.5 (FIGURE 4). Thus, in the
visualization method–driving color map, the generated colors
do not tend to appear biased (e.g. reddish, bluish, etc.).

In order to monitor the Kullback–Leibler divergence,
the plots reported in FIGURE 5 show the latent features
moving towards the center of the RGB space, preserving
information while ω increases). Since the range of the tanh
function is [-1,1], the latent features result closer to 0, namely
the center of the space.

Similarly, the same latent features can be plotted as time-
series. In this case, the three extracted latent features are
represented as time-series of three variables, namely the Red,
Green and Blue color (FIGURE 6).

Therefore, in training the proposed model a backpropa-
gation (BP) is implemented to raise reconstruction accuracy
and, in the meantime, reduce the overfitting problem. The
BP method performs partial differentiations of the weight
matrices and biases for the objective function through chain
rule. Therefore, the weight matrix W(l) and the bias vector
b(l) between the l-th and (l+1)-th layers are updated by:

W+
(l)
← W(l)

− η(l)
∂O(

∑
)

∂W(l) , (12)

b+
(l)
← b(l) − η(l)

∂O(
∑

)
∂b(l)

, (13)

where h(l) represent the Learning Rate, equal for each hidden
layer. To prevent the weight and bias from converging to
an inaccurate local minimum, a greedy layer-wise training
method is used.
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FIGURE 5. Latent features visualization with different ω values.

FIGURE 6. Latent features time-series with different ω values.

f: TRAINING AND VALIDATION
After the setting of all the necessary hyper-parameters, train-
ing and validation have been done on representative datasets.
To evaluate the effectiveness of low-dimensional represen-
tation, the SDAE has been compared to other conventional
methods from the viewpoint of linear separability of elemen-
tal driving behaviour. As a result, our methods outperformed
other conventional methods in processing large amount of
data.

The driving color maps generated by PCA, kernel PCA and
DSAE for the 2nd and 3rd lap are shown in the FIGURE 7.
Also, the observation of the extracted colors allowed the
association with different selected ‘‘basic’’ driving behaviors,
summarized in Table 2.

It is noticeable that other methods do not permit a differ-
entiation of the same basic driving behaviors, as the gener-
ated colors are similar. For instance, more than one driving
behavior (high speed forward and change in acceleration)
correspond to a similar color (�) using the PCA. Similarly,
the kernel PCAmethod characterizedmany driving behaviors
with the same color (�) with slightly different shades.

Looking at the maps created with the PCA and kernel
PCA it is possible to notice same segments with different
colors. Obviously, this may be due to the driver behavior
itself or just to a different combination of the input, but
theoretically should not lead to different colors.

FIGURE 7. Model validation with driving color maps.

TABLE 2. Basic driving behaviors with representative colours.

The latent features of the different methods (Table 2),
as a last confimation, allow to discourage the use of PCA
and kernel PCA for non-linear dataset as driving behaviour.
Vice versa, the latent features extracted with DSAE look like
roughly placedwith the same criterion for each lap and, more-
over, may allow to distinguish the different driver behaviors
by their relative position in the latent space. That kind of result
is mainly due to the regularization techniques applied to the
neural network, that allow the DSAE to connect and arrange
the features in the same way despite the different origin of the
input feature.

III. DISCUSSION
The consequent testing of the model is discussed, as the main
scope of this research is the identification of the previously
mentioned experimental variables (TABLE 1) on the gener-
ated driving color maps. Testing has been done exploiting all
the datasets from driving tests.

Trials were performed on datasheets containing one single
lap of a driver. At a first glance, the chosen model resulted
able to work any series of input data that concerns with the
same features.

a: IDENTIFICATION OF ROAD COMPLEXITY
In order to verify the method capability to identify the type
of road scenario (as previously anticipated in TABLE 1 and
schematically reported in FIGURE 9, the route is composed
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FIGURE 8. Model validation with features extraction in the latent space.

FIGURE 9. Complex (red) and easy (blue) driving situations.

by two segments defined as hard and simple context), have
been tested the dataset of all drivers on the lap 3.

The complex contest refers the street Antonio de Curtis
and have a complex road geometry (several lanes for both
directions, intersections, roundabouts.). The simple contest
refers instead to the streets Fausto Coppi and Giovannini that
regards a residential area, with one lane for each direction of
travel, low traffic volume.

The analysis of the obtained maps for all laps of all test
participants (examples in FIGURE 10), fully confirms the
identification of both contexts, as for all the maps the two
road stretches have significantly different colors:

• The complex scenario - despite roundabouts and pedes-
trian crossings - results mainly in red or yellow/green
color;

• The easy scenario results in blue colors.

b: DRIVER’S WORKLOAD
Subjective assessments have been proposed to measure driver
effort during the driving task. The most common techniques
are scales for the subjective mental workload. Examples are
the NASA task load index, subjective workload assessment
technique (SWAT) and the rating scale mental effort (RSME).

Among them, the NASA Task Load Index (NASA-TLX) is
the most commonly used tool to rates the workload and most
studies choose the standard NASA-TLX scales to conduct
the subjective evaluations. More in detail, the tool includes

FIGURE 10. Example of Driving color maps for 4 drivers on Lap 3.

TABLE 3. NASA-TLX resulting scores.

a rating on six different subscales: Mental Demand, Physical
Demand, Temporal Demand, Performance, Effort, and Frus-
tration. They are rated for each task within a 100-points range
with 5-point steps. The ratings are combined to the task load
index by create an individual weighting of these subscales
by letting the subjects compare them pairwise based on their
perceived importance. This requires the user to choose which
measurement is more relevant to workload. The number of
times each is chosen is the weighted score. This is multiplied
by the scale score for each dimension and then divided by
15 to get a workload score from 0 to 100, the overall task
load index [18].

In this paper, the workload obtained with the NASA-TLX
Test was compared to driving color map of each driver in
order to evaluate if colors are predictive of the drivers’ cog-
nitive load.

The numerical results of NASA-TLX show a significant
difference in workload between the two driving sessions for
all the participants. In particular, the first test result is more
demanding than the second, coherently with an increasing
confidence with experimental conditions, and determining an
average difference in workload score of -14.52 between all
drivers (Table 3).

A comparison between the first and the second driving
session for each driver was carried out. Indeed, any color
difference resultedwas attributable to a variation inworkload.

The results obtained show that in the first test session the
road path followed by the users is not particularly stressful
from the point of view of mental load, considering that the
evaluation range goes from 0 to 100 and the average workload
of users is around 50 (with some exceptions such as user 6).

VOLUME 8, 2020 19643



A. Bichicchi et al.: Analysis of Road-User Interaction by Extraction of Driver Behavior Features

FIGURE 11. Pedestrians recognition between lap 2 and 3.

This indicates that drivers have been subject to an average
level of strain. Comparing test 1 with test 2, we can see that,
despite the increase in traffic during test 2, the value of the
NASA-TLX score decreases for all users. This indicates that
drivers tend to relax with respect to the initial test due to the
previous knowledge of the track, the habitual effect of the
track and the already known testing modes.

This trend is certainly caused by the habitual effect, i.e. the
fact that in general a person who normally drives a road is
subjected to a lower workload than a non-regular driver.

c: IDENTIFICATION OF EXTERNAL EVENTS
To verify the capability to graphically identify the presence of
a pedestrian on the crosswalks, the 2nd and 3rd lap maps for
each driver were compared with the expectation of a differ-
ence in the color pattern between the twomaps (FIGURE 11).
This difference results only for some drivers: color maps
without pedestrian (lap 2) maps show orange color for the
hard road context and dark blue color for the easy, while maps
with pedestrian (lap 3) show dark orange shading into grey for
the hard road context and reddish shades for the easy.

The overall precision of the method in recognizing pedes-
trians have been evaluated considering also false positive and
negatives cases (True Positive= 13; False Positive= 4; False
Negative = 3) and it resulted in a True Positive rate equal to
0,76 (TP/[TP+FP]).

IV. CONCLUSION
This study proposed an approach for extracting low-
dimensional time series of latent features from multi-
dimensional driving behaviour data using DSAE where
Hyperbolic Tangent is set as activation function, the cost
function integrated a L2 penalization term and a Kullback-
Leibler divergence term.

From a theoretical point of view, the low-dimensional time
series of latent features extracted using DSAE proved useful
for driving behaviour visualization. Feature extraction were
robust against defects and outliers. This is a direct conse-
quence of the training method used on the DSAE, namely
the back-propagation method that minimize the square error
between the input data and the reconstructed data. The
research demonstrated also that dataset with high correlated
inputs features obtained best results in term of defects repara-
bility and latent features extraction.

The obtained driving color maps represent an immediate
visualization tool considering the potential impacts on road
safety of driver behaviour recognition from large datasets.

It is possible to evaluate this first attempt as a successfully
one, as resulting in marked capability of the method to rec-
ognize road complexity and a satisfying capacity to visualize
external events (i.e. pedestrians walking on crosswalk).

For future studies is envisaged the necessity to involve
different categories of experimental variables in order to go
beyond the limit of using only one typology of data (kine-
matic data). In particular, it is expected that physiological
drivers’ measurements (i.e. oculometry, direct measure of
workload) and road conditions, if implemented, would add
significance to the graphical output.
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