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Abstract  

The nonlocal strain gradient theory of elasticity is the focus of numerous studies in literature. 

Eringen’s nonlocal integral convolution and Lam’s strain gradient model are unified by a 

variational methodology which leads to well-posed structural problems of technical interest. 

The proposed nonlocal Lam strain gradient approach is presented for functionally graded 

(FG) beams under torsion. Static and dynamic responses are shown to be significantly 

affected by size effects that are assessed in terms of nonlocal and gradient length parameters. 

Analytical elastic rotations and natural frequencies are established by making recourse to a 

simple solution procedure which is based on equivalence between integral convolutions and 

differential equations supplemented with variationally consistent (but non-standard) nonlocal 

boundary conditions. Effects of Eringen’s nonlocal parameter and stretch and rotation 

gradient parameters on the torsional behavior of FG nano-beams are examined and compared 

with outcomes in literature. The illustrated methodology is able to efficiently model both 

stiffening and softening torsional responses of modern composite nano-structures by suitably 

tuning the small-scale parameters. 
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1. Introduction 

Recent advances in nano-engineering have led to rapid development of smaller and smaller 

devices in Nanotechnology. Nano-Electro-Mechanical Systems (NEMS) have indeed found a 

variety of applications in modern nano-systems such as, scanning mirror resonators [1], 

torsional accelerometer [2], torsional resonator [3], torsional nano-varactor [4], torsional 

magnetometer [5] and piezoelectric actuators [6]. Mechanical responses of torsional elements 

of nanoscopic structures should be modelled to achieve optimum design and functionality. 

However, the well-established approaches of local continuum mechanics are not able to 

capture size-effects at nano-scales. Nowadays, a variety of higher-order continuum theories, 

comprising scale parameters, are exploited to model the size-dependency of nano-structures. 

Characterization and assessment of mechanical responses of nano-structures have attracted 

enormous attention in the current literature, see e.g. [7-29] and review contributions [30, 31]. 

In the nonlocal theory of elasticity, nonlocal fields are defined by integral convolutions 

involving elastic source fields and appropriately selected averaging kernels. Based on the 

choice of source fields, two basic nonlocal formulations of strain- and stress-driven nonlocal 

elasticity are considered in literature. The resulted integro-differential equations of the strain-

driven Eringen nonlocal integral theory [32] may be replaced with equivalent differential 

conditions on unbounded domains under the condition of vanishing stress field at infinity. 

Eringen nonlocal integral model leads to ill-posed structural problems of applicative interest, 

which are defined in bounded domains, due to incompatibility between constitutive and 

equilibrium requirements [33-35]. The stress-driven nonlocal formulation, recently conceived 

in [36], leads instead to well-posed structural problems in nano-engineering. The consistent 

pure and two-phase stress-driven nonlocal elasticity were successfully exploited to analyze 

size-dependent elastostatic [37-44] and elastodynamic [45-49] responses of nano-structures.  
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The strain gradient elasticity theory amounts to a gradient-type material reactive to strain 

gradients, and consequently, the material behavior of a continuum not only depends on the 

strain field but also on the gradients of the strain field. The general strain gradient elastic 

theory was conceived by Mindlin [50] to examine size-dependent responses of elastic 

materials with micro-structural effects. Advantageously, simplified and modified strain 

gradient models of elasticity were proposed by Aifantis [51] and Lam et al. [52]. The strain 

gradient elasticity can be employed to analyze nano-continuu problems, although it is well-

known to merely exhibit stiffening structural behaviors. 

The nonlocal strain gradient theory of elasticity was introduced by Aifantis [53, 54] as a 

unified gradient elasticity theory demonstrating the effects of both strain and stress gradients 

on the constitutive response of elastic materials. The higher-order nonlocal strain gradient 

theory was then established by Lim et al. [55] by combining the Eringen nonlocal theory and 

the simplified strain gradient formulation by making recourse to a thermodynamic approach. 

In nonlocal strain gradient theory, the elasticity form of the stationary Reissner variational 

principle was proposed [56] and exploited to establish the corresponding beam model [57]. 

The second-order integro-differential elasticity theory within the thermodynamic framework 

was also established in [58] introducing the nonlocal effects of higher-order strain gradients. 

While higher-order boundary conditions associated with the nonlocal strain gradient integral 

law are not required to be introduced in the analysis of rapidly vanishing fields at infinity, 

appropriate constitutive boundary conditions should be adopted to close nonlocal strain 

gradient problems in bounded domains. This objective has been achieved in [59] by detecting 

appropriate higher-order boundary conditions of constitutive type generating thus the 

consistent modified nonlocal strain gradient formulation of elasticity. The methodology has 

been recently utilized to effectively assess size-dependent elasto-static and -dynamic 

behaviors of structures for nano-engineering applications [60-62]. 
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Structural elements of modern NEMS can often experience torsional deformations, and 

accordingly, a variety of nonlocal models have been exploited to examine scale phenomena. 

Instances are as follows: Eringen nonlocal differential model [63-66], Eringen nonlocal 

viscoelastic model [67, 68], enhanced Eringen nonlocal model [69], strain gradient theory 

[70-72], stress-driven nonlocal theory [73], mixture stress-driven integral model [74], mixture 

strain-driven integral model [75] and nonlocal strain gradient theories of elasticity  [76, 77]. 

In the present study, the torsion behavior of functionally graded (FG) elastic nano-beams is 

analyzed in the novel framework of nonlocal Lam strain gradient elasticity. The proposed 

formulation can efficiently capture effects of nonlocality of the nano-structure stretch and 

rotation gradients. Easto-static and -dynamic torsional responses of FG elastic beams are 

analytically investigated. The outcomes are then compared with the numerical results 

obtained by the modified nonlocal strain gradient theory. New benchmark examples for 

nonlocal strain gradient continuum mechanics are also detected that can be advantageously 

employed for design and optimization of torsional parts of new-generation NEMS. 

2. Variational elasticity for nonlocal Lam strain gradient FG beams under torsion 

Let us consider a straight elastic beam of length L b a  , having an annular circular cross-

section with inner and outer radii ir  and or  occupying a domain , as schematically depicted 

in Fig. 1. The abscissa x is selected along the beam axis and the axes  ,y z  represent 

cartesian components of the position vector r  of a cross-sectional point with respect to the 

centroid. The FG nano-beam is considered to be made of two different elastically 

homogeneous materials with densities ,i o   and shear moduli ,i oG G , respectively at the 

inner and outer surfaces. Thus, the effective material properties of the FG nano-beam 

continuously vary along the radial direction r  in the beam cross-section plane.  
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Shear modulus and material density are therefore assumed to vary along the radial direction 

according to the general form  

   ,                     G G   r r  (1) 

To examine the size-dependent behaviour of FG elastic nano-beams with continuous radial 

variation of material properties, it is convenient to introduce the effective local elastic shear 

stiffness GA  and effective torsional stiffness 
GJ  as 

    ,                     G GA G dA J G dA
 

  r r r r  (2) 

with the dot into the integrals standing for inner product between vectors. Likewise, the 

effective mass polar moment of inertia J   , to be employed in the elasto-dynamic torsional 

analysis of FG nano-beam, is introduced as 

  J dA 


  r r r  (3) 

A detailed discussion on elastic properties of FG cross-sections in the torsion analysis is 

provided in Ref. [67]. 

 

 

Fig. 1. Coordinate system and configuration of a FG beam under torsion 
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Cartesian components of the displacement field of the beam under torsion, up to an 

inessential additional rigid body motion, take the form 

   0,                     ,                     x y zu u x z u x y      (4) 

with  : ,a b   standing for torsional rotation. 

The non-vanishing kinematically compatible shear strain field is accordingly provided by 

   , ,xx t x t   γ Rr Rr  (5) 

where  : ,x a b     is the geometric torsional curvature along with the shear strain 

vector γ , shear stress vector τ , position vector r  and rotation tensor R expressed by 

0 1
,                     ,                     ,                     

1 0

yx yx

zx zx

y

z

 

 

       
          

      
γ τ r R  (6) 

The vector Rr  provides the / 2  counterclockwise rotation of position vector r . 

The beam is assumed to be subjected to distributed torsional couples per unit-length 

 : ,tq a b   and concentrated couples at the end cross-sections
aT and

bT . Standardly, the 

differential and boundary conditions of equilibrium write as 

    0

x t tt

a b
x a x b

T q J

T T T T

 

 
 

   

   
 (7) 

where the twisting resultant moment is denoted by T and provided by  

 T dA


  Rr τ  (8) 

The total potential energy U, consistent with modified strain gradient theory of Lam et al. 

[52], depends on the torsional curvature   2 , ;C a b    and may be shown to be [70] 
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     
22 2 2 2

2 1 2

1 8 1
: 3

2 15 4

b

G G G x
a

U J A J dx  
  

      
  

  (9) 

where 1 and 2  correspondingly designate the gradient characteristic parameters associated 

with the nano-structural stretch and rotation gradients. The effective local elastic shear 

stiffness GA  and effective torsional stiffness 
GJ  are also given by Eq. (2). 

Motivated by the milestone approach of Eringen [32], the nonlocal Lam strain gradient model 

of torsion problem can be formulated by including nonlocal integral convolution in Eq. (9). 

The total elastic strain energy of nonlocal Lam strain gradient FG nano-beams under torsion 

  is  

       2 2 2

2 1 2

1 8 1
: 3

2 15 4

b

G G G x x
a

J A J dx       
  

        
  

  (10) 

where the integral convolution of a scalar field f with a smoothing kernel   is defined by 

      :
b

a
f x x x f x dx      (11) 

The smoothing kernel   is well-established to fulfil the positivity and parity, symmetry, 

normalization and limit impulsivity properties [33-35]. 

The twisting moment in the nonlocal Lam strain gradient model   1 , ;T C a b  is 

established via a mathematically well-posed variational constitutive condition as follows 

     , : ,
b

a
T T x x dx d       (12) 

for any virtual torsional curvature field   1

0 , ;C a b    having compact support in  ,a b . 

The directional derivative of the elastic strain energy along a virtual torsional curvature can 

be determined via introducing the expression of   as Eq. (10) based on integration by parts 



8 

 

        

    

 

2 2 2

2 1 2

2 2 2

2 1 2

2 2

1 2

8 1
, 3

15 4

8 1
                     3

15 4

8 1
                     

15 4

b

G G G x x
a

b

G G G x x
a

G x xx b

d J A J dx

J A J dx

J

 

 

 

       

    

   


  
        

  

  
       

  

 
 



   
 



 

 





  
x a

 


 (13) 

The test fields   1

0 , ;C a b   in the variational condition Eq. (12) have compact supports, 

so that 0
x a x b

 
 
  , and thus the boundary terms in Eq. (13) are disappearing. 

A standard localization procedure provides the nonlocal strain gradient twisting moment T in 

terms of the torsional curvature field  while imposing the variational condition Eq. (12) 

        2 2 2

2 1 2

8 1
3

15 4
G G G x xT x J A x J x    

 
     

 
   (14) 

The equivalent differential constitutive problem with the corresponding constitutive boundary 

conditions associated with the nonlocal Lam strain gradient model (NLSG) are determined 

following the mathematically well-posed approach by Barretta and Marotti de Sciarra [59]. 

The smoothing kernel   in the nonlocal integral convolution Eq. (14) is assumed to be the 

Helmholtz bi-exponential function considered in Eringen nonlocal theory 

 
1

: exp
2 c c

x
x

L L


 
  

 
 (15) 

where the nonlocal characteristic length cL L describes long-range interactions. 

Proposition. The nonlocal strain gradient constitutive law Eq. (14), endowed with the 

Helmholtz bi-exponential kernel Eq. (15), is equivalent to the differential constitutive law 

         2 2 2 2

2 1 2

8 1
3

15 4
c xx G G G xxT x L T x J A x J x 

 
       

 
 (16) 

equipped with the constitutive boundary conditions (CBC) 
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     

     

2 2

1 22

2 2

1 22

1 1 8 1

15 4

1 1 8 1

15 4

x G x

c c

x G x

c c

T a T a J a
L L

T b T b J b
L L





 
     

 

 
     

 

 (17) 

The introduced non-standard boundary conditions Eq. (17) are of constitutive type, naturally 

associated with the nonlocal Lam strain gradient law Eq. (16) for twisted FG elastic nano-

beams. Noteworthy, the constitutive boundary conditions do not contradict equilibrium 

requirements and thus result in mathematically well-posed size-dependent problems. 

As the nonlocal characteristic length tends to zero, the Lam strain gradient model of straight 

beams under torsion can be recovered as a particular limiting case of the nonlocal Lam strain 

gradient law. Due to the limit impulsivity property of kernel  , nonlocal strain gradient 

constitutive law Eq. (14) can be simplified to the Lam strain gradient differential equation 

       2 2 2

2 1 2

8 1
3

15 4
G G G xxT x J A x J x 

 
     

 
 (18) 

equipped with higher-order boundary conditions determined via simplifying NLSG CBC Eq. 

(17) on beam ends  ,a b  as 

 

 

2 2

1 2

2 2

1 2

8 1
0

15 4

8 1
0

15 4

G x

G x

J a

J b





 
   

 

 
   

 

 (19) 

The gradient constitutive law Eq. (18) and the associated non-standard boundary conditions 

Eq. (19) can be also detected by a formal application of Hamilton’s principle [70]. 

Nonlocal strain gradient model suffers from prescribing un-motivated higher-order boundary 

conditions of strain gradient theory. On the contrary, the consistent form of constitutive 

boundary conditions suitably associated with the nonlocal strain gradient constitutive law is 

recently introduced in the framework of modified nonlocal strain gradient model [59]. 
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Modified nonlocal strain gradient model (MNSG) leads to well-posed problems, and thus, it 

is selected here for comparison sake. The formulation of MNSG is briefly recalled as follows.  

MNSG model of FG elastic beam under torsion is formulated by expressing the twisting 

resultant moment T in terms of two integral convolutions guided by elastic torsional 

curvature   and by its gradient along the beam axis x  as 

       2

G G s x xT x J x J x         (20) 

where gradient characteristic length 
s
 is introduced in the MNSG to make dimensionally 

homogeneous the convolutions in Eq. (20). Following the seminal contribution by Barretta 

and Marotti de Sciarra [59], it may be shown that the nonlocal strain gradient constitutive law 

Eq. (20) equipped with the Helmholtz bi-exponential kernel Eq. (15) is equivalent to the 

differential constitutive relation 

       2 2

c xx G G s xxT x L T x J x J x       (21) 

equipped with the constitutive boundary conditions at the beam ends  ,a b   

     

     

2

2

2

2

1

1

s
x G x

c c

s
x G x

c c

T a T a J a
L L

T b T b J b
L L





   

   

 (22) 

Notwithstanding that the constitutive boundary conditions are naturally associated with the 

nonlocal strain gradient constitutive law, higher-order boundary conditions of strain gradient 

theory as Eq. (19) are improperly adopted in the literature [76, 77]. 
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3. Elastostatic torsion  

Differences in the elastostatic torsional behavior of FG nano-beams are demonstrated 

adopting the nonlocal Lam strain gradient theory and the modified nonlocal strain gradient 

model to doubly clamped and cantilever nano-beams subjected to a uniformly distributed 

couples tq . To appropriately compare the size-dependent behavior of twisted FG elastic 

nano-beams, the effects corresponding to each gradient characteristic parameter in the NLSG 

are independently examined and compared with the counterpart results of MNSG. The non-

dimensional parameters: axial abscissa x , nonlocal characteristic parameter , gradient 

characteristic parameter  , torsional rotation   as well as the radius of gyration r are 

defined by 

    2

1
,              ,              ,              ,              c G G

t G

L J Jx
x x x r

L L L q L L A
         (23) 

In the elastostatic analysis, the inertia term in the differential condition of equilibrium Eq. 

(7)1 vanishes and the equilibrated twisting moment T has thus the expression 

    1

x

t
a

T x q d      (24) 

up to the integration constant 1  . The torsional curvature   is detected as a result of solving 

the constitutive differential equation of NLSG Eq. (16) or MNSG Eq. (21) in terms of 

integration constants 2 3,    

 

    

    

2 3

2

2

exp exp

1
        exp exp

2

1
        exp exp

2

x

c
a

x

c
a

x x x

x T L T d

x T L T d





 


 

 
   

 

 
   

 

   
         

   

   
         

   

   
         

   







 (25) 
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where ,  for NLSG and MNSG are defined as  

2

2NLSG MNSG

2 2 2

1 2NLSG MNSG

3 ,                                   

8 1
,                         

15 4

G G G

G G s

J A J

J J

 

 

  

 
   

 

 (26) 

The differential condition of kinematic compatibility x    has to be subsequently 

integrated to detect the torsional rotation   up to the integration constant 4    

    4

x

a
x d       (27) 

The integration constants  1..4k k  can be evaluated by imposing two standard kinematic 

and static boundary conditions (BC) as well as the corresponding two CBCs associated with 

NLSG or MNSG. The proposed solution technique leads to exact analytical solutions by 

integrating differential equations of lower order. The acronyms LOC, NLSG and MNSG 

stand for local beam model, nonlocal Lam strain gradient model and modified nonlocal strain 

gradient model, respectively. 

3.1. Cantilever twisted FG nano-beam subjected to uniform couples 

The classical BC for a cantilever FG elastic nano-beam subjected to uniform couples write as 

   0,                           0a T b    (28) 

The non-dimensional torsional rotation of the cantilever beam is determined by applying the 

proposed solution technique while imposing the classical BCs and the corresponding CBCs. 

It may be shown that the maximum value of the torsional rotation of NLSG and MNSG is  

2
NLSG

max 2 2

2

MNSG

max

1

2 3

1

2

r

r
 



 

 
  

 

 

 (29) 
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which means that the torsional rotation of the FG elastic nano-beam at the free end is 

independent of the gradient characteristic parameters 1 and s for NLSG and MNSG, 

respectively. Accordingly, the value of the torsional rotation at the mid-span of the cantilever 

FG elastic beam is examined to analyze the effects of nonlocal and gradient characteristic 

parameters 

 


 
     

 

2
NLSG 2 2 2 2 2 2 2 2 2 2
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2 2

2
2

2 2

22 2 2 2 2 2 2

2 2 1 22 2

1 2
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15 31
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32 15

1
3 8 1 8 4 2 2
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x

s sx

r
r r r r

r

r
r r r

r

       



     

 

      





      


 
      
  

  

       2 1
sech

2 s

  
   

  

 (30) 

3.2. Doubly clamped FG nano-beam subjected to uniform couples 

For a FG elastic nano-beam subjected to uniform couples with doubly clamped ends, the 

kinematic BCs are given by 

   0,                           0a b    (31) 

The non-dimensional torsional rotation can be detected exploiting the proposed solution 

methodology and prescribing the kinematic BCs and the CBCs. For numerical illustrations, 

the maximum non-dimensional torsional rotation is determined as 

 


 
     

 

2
NLSG 2 2 2 2 2 2 2 2 2 2

max 1 2 2 22
2 2

2

2 2

22 2 2 2 2 2 2

2 2 1 22 2

1 2

MNSG 2 2 2 2

max

15 60 120 64 45 180 360
120 3

15 31
              30 2sech 30 1 2 3 32 15

32 15

1
1 4 8 8 4 2 2 se

8
s s

r
r r r r

r

r
r r r

r

       



     

 

      

      


 
      
  

  

      
1

ch
2 s

  
   

  

 (32) 

3.3. Numerical results of elastostatic torsion 
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The normalized torsional rotations at the mid-span of the FG elastic nano-beams associated 

with the nonlocal Lam strain gradient model are illustrated in Figs. 2-5 for cantilever and 

doubly clamped beams subjected to uniformly distributed couples. The effects of stretch and 

rotation gradient parameters in the framework of nonlocal Lam strain gradient model are 

separately examined and the results consistent with the NLSG with 1 0  are compared with 

the counterpart results of the modified nonlocal strain gradient model. The demonstrated 

torsional rotation  is normalized with respect to the corresponding torsional rotation of the 

local beam model
LOC . In Figs. 2-3 where 2D comparison is made between the torsional 

response of NLSG (with 1 0 ) and MNSG beams, the nonlocal characteristic parameter is 

ranging in the interval  0,1 . The stretch gradient parameter of NLSG 1  and gradient 

characteristic parameter of MNSG s  are ranging in the set of 0.1,0.3,0.5,0.7,1.0  while the 

rotation gradient parameter of NLSG 2  is assumed to vanish. Figs. 4 and 5 demonstrate the 

3D variations of normalized torsional rotation at the mid-span of the FG elastic nano-beam 

versus the nonlocal characteristic parameters where the effects of stretch and rotation gradient 

parameters are independently investigated. All the characteristic parameters in Figs. 4 and 5 

are ranging in the interval  0,1 . Furthermore, in all of the illustrated results associated with 

NLSG, the non-dimensional radius of gyration is assumed as 1/10 2r  . 

It is noticeably deduced from Figs. 2-5 that the adopted size-dependent NLSG and MNSG 

models exhibit a softening behavior in terms of the nonlocal characteristic parameter  , that 

is a larger involves a larger torsional rotation for a given gradient characteristic parameter. 

The torsional rotation of FG elastic nano-beam also decreases as the gradient parameters 

increase, and accordingly, both nonlocal strain gradient theories demonstrate  a stiffening 

behavior in terms of the gradient parameters for a given value of  . Notably, the torsional 
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response of nano-beams associated with both NLSG and MNSG models are in full agreement 

as the gradient characteristic parameters tend to zero. While the torsional response of nano-

beam associated with the MNSG underestimates the counterpart torsional rotation of NLSG 

beam with non-vanishing stretch gradient parameter 1 , it is strictly higher than the torsional 

rotation of NLSG beam with non-vanishing rotation gradient parameter 2 . This is clearly 

due to the dominant stiffening effects of rotation gradient parameter 2  in comparison to 

stretch gradient parameter 1 in NLSG. As expected, the size-dependent elastic torsional 

rotation of nano-beams in accordance with either of the nonlocal strain gradient models 

coincides with the local response for vanishing nonlocal and gradient parameters. 

 The numerical values of normalized maximum and mid-span torsional rotation of doubly 

clamped and cantilever FG elastic nano-beams examined in the framework of NLSG and 

MNSG are, respectively, collected in Tables 1-2 and 3-4. 

 

 

Fig. 2. Cantilever FG nano-beams under uniform couples: normalized mid-span torsional 

rotation  1/2x



 versus nonlocal and gradient parameters by NLSG  1 0  and MNSG 
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Fig. 3. Doubly clamped FG nano-beams under uniform couples: normalized maximum 

torsional rotation max  versus nonlocal and gradient parameters by NLSG  1 0  and 

MNSG 
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Fig. 4. Uniformly loaded cantilever FG nano-beams: effects of ,  on normalized 
 1/2x




by 

NLSG  1 0 , NLSG  2 0 and MNSG 

 

Fig. 5. Uniformly loaded doubly clamped FG nano-beams: effects of ,  on normalized 

max by NLSG  1 0 , NLSG  2 0 and MNSG 

4. Torsional elastic vibrations 

4.1. Free vibration analysis 

To examine the torsional free vibrations of FG elastic nano-beams, applied distributed 

torsional couples are assumed to vanish in the differential condition of equilibrium. The 

twisting moment T is detected by applying the differential condition of equilibrium Eq. (7)1 

to the constitutive differential law of NLSG Eq. (16) as 

 2 2 2 2

2 1 2

8 1
3

15 4
c xtt G G G xxT J L J A J   

 
       

 
 (33) 
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Employing the kinematic compatibility x   , the differential condition of dynamic 

equilibrium governing the torsional vibrations is consequently given by 

 2 2 2 2

2 1 2

8 1
3

15 4
tt c xxtt G G xx G xxxxJ J L J A J    

 
         

 
 (34) 

equipped with the classical boundary conditions Eq. (7)2 and corresponding constitutive 

boundary conditions of NLSG Eq. (17). A well-established procedure of separating spatial 

and time variables is then utilized to analyze the relevant vibrational problem 

     , expx t x i t   (35) 

where 1i   ,  and   are the torsional mode shapes and natural frequency of vibrations. 

The governing equation of the torsional coordinate function   can be obtained by enforcing 

the separation of variables Eq. (35) to the differential condition of dynamic equilibrium Eq. 

(34) 

  
4 2

2 2 2 2 2 2

1 2 24 2

8 1
3 0

15 4
G c G G

d d
J J L J A J

dx dx
  

  
       

 
 (36) 

The torsional coordinate function can be analytically detected as 

  1 1 2 1 3 2 4 2sin cos sinh coshx x x x x          (37) 

where the unknown constants  1..4k k  are determined by prescribing suitable classical 

and constitutive boundary conditions, along with 

   

   

2
2 2 2 2 2

2

1

2
2 2 2 2 2

2

2

4

2

4

2

c c

c c

J L J L J

J L J L J

  

  

     




     




   


    


 (38) 

with ,   introduced for NLSG and MNSG as Eq. (26). 



19 

 

To illustrate the solution procedure for detecting the torsional natural frequency of FG elastic 

nano-beam, let us consider a cantilever FG nano-beam in the nonlocal Lam strain gradient 

theory. A homogeneous fourth-order algebraic system in terms of the unknown constants 

 1..4k k  is formulated by prescribing the classical BC Eq. (28) along with the CBC Eq. 

(17) in the torsional coordinate function Eq. (37). Similarly, homogeneous fourth-order 

algebraic systems can be detected for nano-beams associated with either of nonlocal strain 

gradient models of NLSG or MNSG. To detect the non-trivial solution of torsional free 

vibrations, the system of algebraic equations has to be singular, that is the determinant of the 

coefficients of the homogeneous system has to vanish. For cantilever and doubly clamped FG 

elastic beams consistent with either of the nonlocal strain gradient models, a highly nonlinear 

characteristic equation in terms of torsional natural frequencies is found that is numerically 

solved. 

4.2. Numerical results of torsional free vibrations 

Torsional natural frequency of cantilever and doubly clamped FG elastic nano-beams in the 

framework of nonlocal Lam strain gradient theory and modified nonlocal strain gradient 

model are numerically evaluated here. The effects of stretch and rotation gradient parameters 

associated with NLSG are separately examined and the results consistent with NLSG with

1 0  are compared with the counterpart results of the MNSG. For consistency, the non-

dimensional torsional fundamental frequency   is introduced in the illustrations as 

2

2 2

2

G

L J

J


 



 
   
 

 (39) 

The illustrated torsional fundamental frequencies are furthermore normalized employing their 

corresponding local counterparts LOC .  
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The effects of characteristic parameters on the normalized fundamental frequency of the 

nonlocal Lam strain gradient model with non-vanishing stretch gradient parameters 1 0  in 

comparison with the counterpart results of the modified nonlocal strain gradient model are 

exhibited in Figs. 6 and 7 for cantilever and doubly clamped FG nano-beams. The variations 

of the normalized torsional frequencies associated with the nonlocal Lam strain gradient 

model with non-vanishing rotation gradient parameters 2 0  are depicted in Figs. 8 and 9. 

The nonlocal and gradient characteristic parameters in Figs. 6 and 7 are considered to range 

in the same set as the elastostatic torsional response illustrated in Figs. 2-3. Also in the results 

consistent with NLSG with 2 0 , as illustrated in Fig. 8 and 9, the rotation gradient 

parameter
2 is ranging in the set of 0.01,0.1,0.3,0.5,0.7,1.0 , the nonlocal parameter  is 

ranging in the interval  0,1 and the stretch gradient parameter 1  is assumed to vanish. It is 

inferred from the outcomes in Figs. 6-9 that the torsional fundamental frequencies in 

accordance with both the NLSG and MNSG models decrease as the nonlocal characteristic 

parameters  increases, and thus, exhibits a softening behavior in terms of the nonlocal 

characteristic parameter for a given value of  . The gradient parameters  have the effect of 

increasing the fundamental torsional frequencies that is a larger  involves a larger 

fundamental frequency for a given value of . Therefore, the fundamental frequencies 

associated with both the NLSG and MNSG models exhibit a stiffening behavior in terms of 

the gradient parameters  . Remarkably, while the torsional fundamental frequencies of nano-

beam associated with the MNSG overestimates the counterpart natural frequencies of NLSG 

beam with non-vanishing stretch gradient parameter 1 , it is strictly lower than the torsional 

frequencies of NLSG beam with non-vanishing rotation gradient parameter 2 . This is 

noticeably occurred as a result of dominant stiffening effects of the rotation gradient 

parameter 2  compared with the stretch gradient parameter 1 in the framework of NLSG.  
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As predictable, the torsional fundamental frequency of local elastic beam model is recovered 

for vanishing nonlocal and gradient parameters.  

Numerical values of normalized torsional fundamental frequencies detected in the framework 

of the nonlocal Lam strain gradient theory and modified nonlocal strain gradient model for 

doubly clamped and cantilever FG elastic beams are correspondingly reported in Tables 5-6 

and 7-8. 

 

 

Fig. 6. Normalized torsional fundamental frequency of cantilever FG nano-beams by NLSG

 1 0  and MNSG 
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Fig. 7. Normalized torsional fundamental frequency of doubly clamped FG nano-beams by 

NLSG  1 0  and MNSG 

 

 

Fig. 8. Effects of characteristic parameters on the normalized torsional frequency of 

cantilever FG nano-beams by NLSG  2 0   
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Fig. 9. Effects of characteristic parameters on the normalized torsional frequency of doubly 

clamped FG nano-beams by NLSG  2 0   

5. Conclusions 

As a result of unifying Eringen’s nonlocal integral theory and modified strain gradient theory, 

the nonlocal Lam strain gradient model has been formulated in the present study to examine 

elasto-static and –dynamic torsional behaviors of FG elastic nano-beams. Three characteristic 

parameters including two gradient parameters associated with the nano-structure stretch and 

rotation gradients as well as one nonlocal characteristic parameter, reflecting long-range 

nonlocal interactions, have been introduced in the nonlocal Lam strain gradient theory. 

A variationally consistent constitutive formulation has been conceived, proving thus well-

posed torsional problems of FG elastic nano-beams. The nonlocal Lam strain gradient model 

has been shown to be governed by integral convolutions, conveniently revertible to 

differential equations equipped with non-classical constitutive boundary conditions. It has 

been demonstrated that for vanishing nonlocal parameter, the gradient law and non-standard 

boundary conditions of the modified strain gradient theory are recovered.  
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Torsional elastostatic rotations and natural frequencies of FG elastic nano-beams have been 

evaluated utilizing an efficient analytical approach and new numerical benchmarks have been 

detected. Both softening and stiffening torsional responses can be effectively described in the 

innovative framework of the novel nonlocal Lam strain gradient model which provides thus 

an effective approach for design and optimization of structural elements of modern NEMS. 

The presented nonlocal Lam strain gradient methodology has been tested by comparing the 

elasto-static and –dynamic torsional responses of FG elastic nano-beams with the results 

obtained by the modified nonlocal strain gradient theory.  

The main outcomes can be enumerated as follows. 

 Elastostatic rotations and torsional natural frequencies of FG elastic nano-beams 

associated with the nonlocal Lam strain gradient elasticity theory expose softening and 

stiffening torsional behaviors in terms of the nonlocal and gradient parameters, 

respectively. 

 The torsional response of FG elastic nano-beams consistent with the nonlocal Lam strain 

gradient model is coincident with the counterpart results associated with the modified 

nonlocal strain gradient model as the gradient characteristic parameters tend to zero. 

 The elastostatic torsional response of FG elastic nano-beams associated with the modified 

nonlocal strain gradient model underestimates the counterpart results consistent with the 

nonlocal Lam strain gradient theory with non-vanishing stretch gradient parameter. 

Torsional elastic rotations of nonlocal Lam strain gradient beams with non-vanishing 

rotation gradient parameter are instead overestimated. 

 The torsional fundamental frequency of FG elastic nano-beam associated with the 

modified nonlocal strain gradient model is strictly higher than the counterpart natural 

frequency obtained by nonlocal Lam strain gradient theory with non-vanishing stretch 
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gradient parameter. It is strictly lower than the torsional frequency of nonlocal Lam strain 

gradient beam with non-vanishing rotation gradient parameter. 

 In nonlocal Lam strain gradient elasticity, the stiffening effect of the rotation gradient 

parameter is more noticeable in comparison with the stretch gradient parameter. 

 Torsional elastostatic rotations and fundamental frequencies of local FG elastic beam are 

recovered as the nonlocal and gradient characteristic parameters tend to zero. 
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Table 1. Normalized maximum torsional rotation of doubly clamped FG nano-beam: NLSG

 1 0  vs. MSNG 

  

max

LOC

max



  

 

NLSG  1 0  MNSG 

  1 0.1   1 0.3   1 0.5   1 0.7   1 1.0   0.1s   0.3s   0.5s   0.7s   1.0s   

0
+
 0.95743 0.69358 0.44286 0.28687 0.16403 0.92108 0.54261 0.29611 0.17604 0.094552 

0.2 2.07504 1.58731 1.02786 0.668904 0.38347 2.02599 1.2541 0.690288 0.411456 0.221314 

0.4 3.8313 2.99176 1.94714 1.26924 0.728309 3.76227 2.37216 1.30971 0.781398 0.420513 

0.6 6.2262 4.90691 3.20071 2.08789 1.19854 6.12993 3.89679 2.15438 1.28586 0.692147 

0.8 9.25973 7.33278 4.78856 3.12483 1.79417 9.12896 5.82798 3.2243 1.92486 1.03622 

1.0 12.9319 10.2693 6.7107 4.38009 2.5152 12.7594 8.16574 4.51946 2.69837 1.45272 
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Table 2. Normalized maximum torsional rotation of doubly clamped FG nano-beam: NLSG

 2 0   

  

max

LOC

max



  

 

NLSG  2 0  

  2 0.01   2 0.1   2 0.3   2 0.5   2 0.7   2 1.0   

0
+
 0.94322 0.14245 0.018122 0.0066006 0.0033786 0.0016584 

0.2 1.99982 0.302449 0.038486 0.014018 0.007175 0.003522 

0.4 3.6602 0.553878 0.070486 0.025673 0.013141 0.00645 

0.6 5.92435 0.896735 0.114122 0.041568 0.021277 0.010444 

0.8 8.79227 1.33102 0.169395 0.0617 0.031582 0.015502 

1.0 12.264 1.85673 0.236304 0.086071 0.044057 0.021625 
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Table 3. Normalized mid-span torsional rotation of cantilever FG nano-beam: NLSG  1 0  

vs. MSNG 

 

1/2

LOC

1/2

x

x







 

 

NLSG  1 0  MNSG 

  1 0.1   1 0.3   1 0.5   1 0.7   1 1.0   0.1s   0.3s   0.5s   0.7s   1.0s   

0
+
 0.98581 0.89786 0.81429 0.76229 0.72134 0.97370 0.84754 0.76537 0.72535 0.69819 

0.2 1.62501 1.46244 1.27595 1.1563 1.06116 1.60866 1.35137 1.16343 1.07049 1.0071 

0.4 2.4771 2.19725 1.84905 1.62308 1.44277 2.45409 1.99072 1.63657 1.46047 1.34017 

0.6 3.54207 3.1023 2.53357 2.16263 1.86618 3.50998 2.7656 2.18479 1.89529 1.69738 

0.8 4.81991 4.17759 3.32952 2.77494 2.33139 4.77632 3.67599 2.8081 2.37495 2.07874 

1.0 6.31064 5.42312 4.2369 3.46003 2.8384 6.25312 4.72191 3.50649 2.89946 2.48424 
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Table 4. Normalized mid-span torsional rotation of cantilever FG nano-beam: NLSG

 2 0    

 

1/2

LOC

1/2

x

x







 

 

NLSG  2 0  

  2 0.01   2 0.1   2 0.3   2 0.5   2 0.7   2 1.0   

0
+
 0.94334 0.14272 0.018162 0.0066152 0.0033861 0.0016621 

0.2 1.54711 0.23415 0.029798 0.010854 0.005556 0.002727 

0.4 2.35214 0.356054 0.045314 0.016505 0.008448 0.004147 

0.6 3.35843 0.508435 0.064707 0.023569 0.012064 0.005922 

0.8 4.56598 0.691293 0.08798 0.032046 0.016403 0.008051 

1.0 5.97478 0.904626 0.115132 0.041935 0.021465 0.010536 
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Table 5. Normalized torsional fundamental frequencies of doubly clamped FG nano-beam: 

NLSG  1 0  vs. MSNG 

 

LOC



  

 

NLSG  1 0  MNSG 

  1 0.1   1 0.3   1 0.5   1 0.7   1 1.0   0.1s   0.3s   0.5s   0.7s   1.0s   

0
+
 1.02393 1.21155 1.51878 1.88811 2.49775 1.04609 1.37139 1.85837 2.41097 3.29032 

0.2 0.686622 0.817239 1.02552 1.27531 1.68738 0.702992 0.92573 1.2552 1.62873 2.22298 

0.4 0.496445 0.591996 0.743019 0.924042 1.22265 0.508701 0.670681 0.909472 1.18015 1.61076 

0.6 0.385248 0.459185 0.576228 0.716575 0.948107 0.394737 0.520155 0.705278 0.915153 1.24905 

0.8 0.313716 0.373568 0.468695 0.582814 0.771099 0.321349 0.42311 0.573627 0.7443 1.01584 

1.0 0.264189 0.314298 0.394267 0.490239 0.648599 0.27053 0.355938 0.482513 0.626059 0.854447 
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Table 6. Normalized torsional fundamental frequencies of doubly clamped FG nano-beam: 

NLSG  2 0   

 

LOC



  

 

NLSG  2 0  

  2 0.01   2 0.1   2 0.3   2 0.5   2 0.7   2 1.0   

0
+
 1.02762 2.64511 7.41629 12.2886 17.1763 24.5164 

0.2 0.681796 1.76013 4.93627 8.1795 11.4329 16.3186 

0.4 0.490241 1.26775 3.55592 5.8923 8.23596 11.7556 

0.6 0.379948 0.983072 2.75753 4.56935 6.38682 9.11623 

0.8 0.309473 0.800805 2.24628 3.72219 5.2027 7.42606 

1.0 0.260812 0.67484 1.89292 3.13666 4.38427 6.25788 
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Table 7. Normalized torsional fundamental frequencies of cantilever FG nano-beam: NLSG

 1 0  vs. MSNG 

 

LOC



  

 

NLSG  1 0  MNSG 

  1 0.1   1 0.3   1 0.5   1 0.7   1 1.0   0.1s   0.3s   0.5s   0.7s   1.0s   

0
+
 1.0046 1.0324 1.05739 1.07297 1.08529 1.00881 1.04746 1.07204 1.08408 1.09229 

0.2 0.819725 0.858452 0.895339 0.919611 0.939497 0.825677 0.880371 0.91814 0.93752 0.951042 

0.4 0.676587 0.724273 0.771502 0.804129 0.831834 0.68401 0.752015 0.802117 0.829042 0.848321 

0.6 0.570779 0.621903 0.675341 0.714186 0.748477 0.57862 0.652907 0.711743 0.744967 0.769457 

0.8 0.491435 0.542649 0.599054 0.642062 0.681525 0.499123 0.575002 0.639306 0.677421 0.706371 

1.0 0.430438 0.480102 0.537358 0.582915 0.626286 0.437734 0.512614 0.579944 0.621704 0.654384 
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Table 8. Normalized torsional fundamental frequencies of cantilever FG nano-beam: NLSG

 2 0   

 

LOC



  

 

NLSG  2 0  

  2 0.01   2 0.1   2 0.3   2 0.5   2 0.7   2 1.0   

0
+
 1.02856 2.64423 7.41237 12.2819 17.1668 24.5028 

0.2 0.833317 2.14541 6.01489 9.9665 13.9305 19.8836 

0.4 0.681752 1.75839 4.93068 8.17012 11.4197 16.2998 

0.6 0.571601 1.4761 4.13962 6.8594 9.58769 13.6849 

0.8 0.490219 1.2669 3.55318 5.88771 8.22953 11.7464 

1.0 0.42833 1.10746 3.10614 5.14697 7.19416 10.2686 

 

 

 


