
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 18 pages

Techniques for Security Checking:
Non-Interference vs Control Flow Analysis 1

Chiara Bodei a, Pierpaolo Degano a, Riccardo Focardi b

Roberto Gorrieri c, Fabio Martinelli d,

a Dipartimento di Informatica, Università di Pisa, Italy
b Dipartimento di Informatica, Università Ca’ Foscari Venezia, Italy

c Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
d Istituto per le Applicazioni Telematiche, C.N.R. Pisa, Italy

Abstract

We model, in a process algebra framework, a variant of the well known Wide
Mouthed Frog security protocol. Its relevant security properties are addressed both
from a dynamic and static point of view, having operational semantics as a com-
mon starting point. In one case, we exploit techniques based on Non-Interference,
while in the other one we rely on Control Flow Analysis. We then compare these
techniques.

1 Introduction

Security has become an essential requirement for many applications, especially
in the last decade, due to the widespread diffusion of distributed systems and
networks. This notion appears to be fairly obvious, but elusively refuses to
assume a precise meaning in our field. The scientific community cannot help
trying to catch this notion in thousands of slightly different properties. For-
mal methods and techniques can offer a way of generalizing and comparing
these different formulations, driving this delicate translation of intuitive no-
tions into formal specifications, essential for a careful design and analysis of
secure computer systems. Below, we limit ourselves to consider security of
network protocols, expressed in a process algebra framework. Their study can
consequently exploit all the results and the analysis tools developed in the
concurrency community.

In the last years, encouraging results have been obtained by the use of static
techniques exploiting notions of information flow to establish various forms of

1 Research partially supported by MURST Progetto Cofinanziato TOSCA.

c©2002 Published by Elsevier Science B. V.Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Bodei et al.

secrecy and of integrity of data. In this approach, systems or protocols are
specified as expressions of some (possibly idealized) programming language,
like the spi-calculus [3,1]. Security properties are checked through static tests,
that, if passed, guarantee that there is no violation of the property under
consideration, at run-time. We use here a specific static technique: Control
Flow Analysis (CFA), based on Flow Logic.

It is built around the more “classical” approaches to static analysis and at
the same time, it offers a way to exploit the quite advanced state-of-the-art
in static analysis also for the analysis of security, as shown in some recent
proposals [6,5,7,20]. In particular, CFA offers static techniques for predicting
safe and computable approximations to the set of values that the objects of a
program may assume during its execution.

Information flow is, in general, a key issue in security. Its analysis is
mainly carried out through dynamic techniques. A classic approach used to
study information flow in multilevel [4] computer systems is Non-Interference
(NI).

Roughly, NI requires that a set H of users, devised as high-level principals,
is not able to interfere with a set L of low-level users in a certain system S.
Thus, the low-level view of the system S should always be the same regardless
of the high-level activities. The check whether a protocol is secure can be
rephrased as an information flow one. Indeed, consider the high-level prin-
cipals as attackers on a network protocol. Furthermore, assume that honest
participants emit “control” actions, depending on a specific security property
A, that denote their beliefs about the current execution of the protocol.

These actions are considered as the low-level view of the protocol. Then,
the protocol satisfies the security property A if its low-level, observable be-
haviour cannot be “significantly” altered when executed in parallel with any
attacker. In other words, an attack is revealed as an interference to the normal
(or intended) behaviour of honest participants. This way of studying security
properties [13,16,15] is a direct generalization of Non-deducibility on compo-
sition (NDC) proposed in [14] for studying NI in a process algebra setting.
Interestingly enough, NI can help bridging the gap between the analyzes of
two different aspects like information flow and network protocols. Therefore
NI offers a uniform framework for studying both aspects, that usually require
rather different techniques.

The purpose of this note is to compare the static CFA with the dynamic
NI. As a benchmark for our techniques, we use a simplified version of the
Wide Mouthed Frog protocol [8]. The notion of security we shall exploit is
based on the so-called secrecy à la Dolev-Yao [11]. This model postulates
the existence of an intruder, or enemy, who has full control on the network.
Initially, the intruder has some knowledge about some values, that can be
increased by eavesdropping. Also, the enemy can start attacking a protocol,
by sending messages resulting from suitable combination of pieces of her/his
current knowledge. E.g., the intruder can pair values or encrypt/decrypt them

2

Bodei et al.

with compromised or initially known keys. Of course, the enemy’s goal is to
discover secret information or to induce an honest participant to a protocol to
misbehave. Both our approaches formalize the above and show whether given
specifications of the WMF are resistant to attacks of the intruder or not.

Our working example is intentionally very simple, so that we can focus on
the basic features of both approaches and start understanding their differences
and their interplay. On this basis, we can try to single out some of the pro
and cons of both. We shall discuss them in more detail in the concluding
remarks; here we concisely mention the most relevant. On the one hand,
CFA offers approximated, yet sound, answers, i.e. it may “err on the safe
side”. This approximation permits to have more efficient analysis tools. On
the other hand, NI is precise and thus much less efficient in general; actually,
it is complete for a class of (finite) systems.

As they share a large commonalty of goals, we hope that the comparison
of two so different techniques can further a cross-fertilization between them,
and can also give some useful insights on the security properties themselves.

Our Case-study: the Wide Mouthed Frog protocol

We recall a version of the WMF protocol (Protocol 1), simplified in that
the two first messages do not contain time-stamps. This makes the protocol
sensitive to replay attacks. The WMF is intended to establish a session key
for A and B with the help of a server S. In the first message A sends to S
its name, and then a fresh key KAB and the name of the intended receiver B,
encrypted under the key KAS, shared between A and S. In the second one, S
forwards the key and the sender name A to B, encrypted under the key KBS,
shared between B and S. Finally, A sends B the message M encrypted under
KAB.

In fact, we shall mainly focus on a slightly modified version (Protocol 2),
where in the first message the name of the receiver is not included in the
encryption. As we will show, this little modification leads to new and subtle
attacks: the first one on secrecy (Attack 1) and the other two on authentication
(Attacks 2 and 3), as reported in [12].

Protocol 1 Wide Mouthed Frog Protocol (without time-stamps)

Message 1 A → S : A, {B, KAB}KAS

Message 2 S → B : {A, KAB}KBS

Message 3 A → B : {M}KAB

Protocol 2 Wide Mouthed Frog Protocol modified

Message 1 A → S : A, B, {KAB}KAS

Message 2 S → B : {A, KAB}KBS

Message 3 A → B : {M}KAB

We show now the main attacks to Protocol 2. Note that we discard the

3

Bodei et al.

reported parallel session attacks in [12], since we disallow A to commit with
herself.

Attack 1 Secrecy Attack

Message 1 A → E(S) : A, B, {KAB}KAS

Message 1′ E(A)→ S : A, E, {KAB}KAS

Message 2′ S → E : {A, KAB}KES

Message 3 A → E(B) : {M}KAB

Here the first message 〈A, B, {KAB}KAS
〉 is intercepted by E. Since B is passed

in clear on the net, E can manipulate it in order to obtain 〈A, E, {KAB}KAS
〉.

As a result, the secret message M for B arrives to E. This attack is not
possible in Protocol 1, where B is inside the encryption and therefore the
misleading message cannot be forged.

Attack 2 Authentication Attack

Message 1 A → E(S) : A, E, {KAE}KAS

Message 1′ E(A)→ S : A, B, {KAE}KAS

Message 2′ S → B : {A, KAE}KBS

Message 3 A → E : {M ′}KAE

Message 3′ E(A)→ B : {M ′}KAE

Similarly, here the first message 〈A, E, {KAE}KAS
〉 received by E is manip-

ulated in order to obtain 〈A, B, {KAE}KAS
〉. As a result, B is at the end

convinced it is communicating with A, while A is instead communicating with
E. Moreover, the message M ′ for E arrives to B.

Attack 3 Replay Attack

Message 1 A → S : A, B, {KAB}KAS

Message 2 S → B : {A, KAB}KBS
E eavesdrops and replays it

Message 2′ E(S)→ B : {A, KAB}KBS

Message 3 A → B : {M}KAB
E eavesdrops and replays it

Message 3′ E(A)→ B : {M}KAB

Here, E is able to replay the first session getting B to commit twice on the
same message. Note that this attack is only possible because we assume B
to play the role of responder in two parallel sessions. The preceding attacks,
instead, occur already in single sessions, where the principals play their role
only once.

4

Bodei et al.

2 The Calculus

Our main goal here is to compare the CFA static approach and the NI dy-
namic approach. Originally the two have been defined on two different process
algebras, yet related: the spi-calculus [1] and Crypto-SPA [16]. So we need
to tailor a common subset, that of course includes primitives for constructing
messages, in particular encryption and decryption, and primitives for sending
and receiving messages. Below, we intuitively introduce it, following to some
extent the spi-calculus [3,1] notation, of which our calculus can be seen as a
fragment. This calculus is enough for describing the cryptographic protocols
usually reported in the literature, e.g., the case study discussed in this paper.

The terms can be names or variables and can also be structured as encryp-
tions {M1, . . . , Ml}N . An encryption {M1, . . . , Ml}N represents the ciphertext
obtained by encrypting M1, . . . , Ml under the key N (a variable x to be in-
stantiated by a key K or a key itself), using a shared-key cryptosystem.

The processes are built as in earlier calculi: there are operators for input
and output, parallel composition, restriction and matching.

Terms and processes are defined according to the following grammars.

L,M,N ::= terms

a, b, c,K,m, n names

x, y, z, w variables

{M1, . . . ,Ml}N encryption

P,Q,R ::= processes

0 nil

c〈N1, . . . , Nl〉.P output

c(x1, . . . , xl).P input

(νm)P restriction

P |P parallel composition

[M = N]P matching

case L of {x1, . . . , xl}K in P decryption

• The null process 0 does nothing.

• The process c〈N1, . . . , Nl〉.P sends the terms N1, . . . , Nl on channel c, then
it behaves like P .

• The process c(x1, . . . , xl).P is ready to receive an input N1, . . . , Nl on chan-
nel c and to behave like P{N1/x1, . . . , Nl/xl}, where each term Ni is bound
to the variable xi. Note that, unlike the spi-calculus, we do not allow to use
received names as channels, as variables cannot be used as channel names.

• The operator (νm)P acts as a static declaration (i.e. a binder for) the name

5

Bodei et al.

m in the process P that it prefixes, so stating that m is local to P . The
agent (νm)P behaves as P except that actions on m are prohibited.

• The operator | describes parallel composition of processes. The components
of P |Q may act independently; also, an output action of P (resp. Q) at any
output port c may synchronize with an input action of Q (resp. P) at c. In
this case, a non observable action τ results.

• Matching [M = N]P is an if-then operator: the process P is activated
only if M = N .

• The process case L of {x1, . . . , xl}K in P tries to decrypt L with the
key K. If L has the form {M1, . . . , Ml}K , then the process behaves as
P{M1/x1, . . . , Ml/xl}, otherwise the process is stuck.
We omit here the formal definition of the semantics of our calculus. It can

be defined in the standard way, and could be either a reduction semantics or
an SOS one. We also omit the definition of what is observable, assuming the
standard notions, upon which suitable, standard equivalences are to be built,
e.g., trace equivalence or bisimulation.

Note that in our calculus, neither the input nor the output capabilities
can be transmitted, because our prefixes have the form c(x1, . . . , xl) and
c〈N1, . . . , Nl〉 and c is a name and not a variable. Actually a variable x can
be instantiated by a channel name, but it cannot occur as a channel on which
communication takes place.

In order to facilitate the definition of our CFA, we assume that names are
“stable”, i.e. that each name a is the canonical representative for its class of
α-convertible names 2 . As a consequence of assuming stable names, we are
allowed to partition them all into two sets S and P of secret and public names,
respectively.

3 Control Flow Analysis approach

For lack of space, we only intuitively introduce the Control Flow Analysis for
our calculus. It refines the analysis in [7] that considers the full spi-calculus.
Our analysis essentially focus on the use of channels, of values and of terms.
Roughly, a result, or estimate (ρ, κ, ζ, φ) of our CFA establishes a super-set
of the set of (abstract) values to which variables can be bound (ρ), of the set
of values that can flow over given channels (κ) and of the set of the possible
actual values for a given term (ζ).

Additionally, an estimate establishes a super-set of all the values the envi-
ronment can send and receive on public channels (for simplicity, we consider
all the channels as public, but this is by no means a restriction). We are
interested in analyzing the behaviour of a process P plugged in any hostile

2 Technically this amounts to having a partition of names, each with a leader (see [7] for
further details).

6

Bodei et al.

environment E, modeled as done by Dolev and Yao [11,2], that initially has
some knowledge about public values, only. Then, E may increase its knowl-
edge by communicating with P , directly or intercepting messages from or to
P . Note that E can know all the values computable from its current knowl-
edge (e.g. knowing K and {M}K , E can compute M). In our new analysis,
we want to directly analyze only the process P ; at the same time, we need to
take care of E; the last component φ is in charge for it. This fourth component
refines the analysis in [7] and can easily carried over the full spi-calculus.

The formulation of the CFA is facilitated by making a few assumptions.
Mainly, we slightly extend the standard syntax by mechanically assigning
“labels” l to the occurrences of terms and “labels” π to particular program
points; these are nothing but explicit notations for the analysis (they do not
affect the dynamic semantics). Recall that our names are “stable”. In details,
the components are:
• ρ is the abstract environment . It associates variables with the values that
they can be bound to; more precisely, ρ(π)(x) must include the set of values
that x could assume at run-time from the program point π on.

• κ is the abstract channel environment. It associates names with the values
that can be communicated over them; more precisely, κ(n) must include the
set of values that can be communicated over the channel n.

• ζ is the abstract cache. It associates labels with the values that can arise
there; more precisely ζ(l) must include the set of the possible actual values
of the term labeled l.

• φ is the enemy environment, and it is not present in [7]. This component
approximates the enemy knowledge and therefore it includes all the values
that can flow on the channels and all the values computable from them.
For instance, if a key K is in φ, then also M is in φ if {M}K flows on the
network.

To define the acceptability of a proposed estimate (ρ, κ, ζ, φ) we state a set of
clauses operating upon flow logic judgments on the forms (ρ, κ, ζ, φ) |=π M
and (ρ, κ, ζ, φ) |=π P . To have a look on how terms are validated, consider
only the case for a variable:

(ρ, κ, ζ, φ) |=π xl iff ρ(π)(x) ⊆ ζ(l)

It says that all the values that the variable x can assume, at point π, should
be collected in ζ(l).

To give the flavor of the other clauses, we just give an abstraction of the
output and of the input ones, (for simplicity, we refer to monadic I/O actions).

(ρ, κ, ζ, φ) |=π cl〈N l′〉.P iff (ρ, κ, ζ, φ) |=π cl ∧ (ρ, κ, ζ, φ) |=π N l′ ∧
(ρ, κ, ζ, φ) |=π P ∧ ζ(l′) ⊆ κ(c) ∧ κ(c) ⊆ φ

It says that the estimate is valid for cl〈N l′〉.P if it is valid for c, N and for P
and if the set of values associated with the message N can be passed on the
channel c. More intuitively, whenever a value a is output on c, as in c〈a〉, it

7

Bodei et al.

must be duly recorded in the κ and φ components, by ensuring that a ∈ κ(c)
and a ∈ φ. The last inclusion amounts to saying that the enemy can acquire
all the values that flow on the channel c.

(ρ, κ, ζ, φ) |=π cl(x).P iff (ρ, κ, ζ, φ) |=π cl ∧ (ρ, κ, ζ, φ) |=π P ∧
κ(c) ⊆ ρ(π)(x) ∧ φ ⊆ κ(c)

Similarly, each value passing along c must be contained in the set of possible
values of x. Whenever a variable x inputs a value on c, as in c(x), this must
also be duly recorded in ρ, intuitively by ensuring that a ∈ ρ(π)(x) for all
a ∈ κ(c) (the program point π indexes the satisfiability relation). Moreover,
φ ⊆ κ(c), i.e. on c can flow all the values the enemy knows and can send.

From these clauses, it is possible to grasp how the component φ can model
any hostile environment within the Dolev-Yao model, and consequently also
the most powerful intruder.

We have seen that a CFA is formulated as a specification of the correctness
of a candidate estimate. It is possible to show that least estimates always exist
and to establish their semantic correctness with respect to the operational
semantics, in the form of a subject reduction result (for a similar result see
e.g. [6]).

Remarkably, there is also a constructive procedure for obtaining the least
estimate. Essentially, establishing (ρ, κ, ζ, φ) |=π P amounts to checking a
number of individual constraints.

The procedure that generates estimates explicitly extracts these constraints,
proceeding by induction on the syntactic structure of processes. For instance,
in case of output cl〈N l′〉.P , we add the constraint {ζ(l′) ⊆ κ(c)} to the con-
straints already obtained for P . We argue that this procedure operates in
low polynomial time with respect to the size of the process under analysis.
Actually, we are confident that the time complexity is cubic, as a recent result
for the spi-calculus [19] shows.

Static security properties

Applications of our analysis include establishing two simple security prop-
erties of processes.

We first recall the extension with respect to the new CFA of the static
property of confinement, studied in [6,7]. It guarantees the dynamic property
of secrecy put forward by Dolev and Yao, where intuitively a process P does
not reveal its secrets if no secret is output on clear, or nothing that can help
in computing it is output as well. The first notion depends on a partition of
names in secret S and public P (recall that our names are “stable”).

More precisely, we postulate as public everything built from P , in particular
any value, be it public or secret, when encrypted under a secret shared key
(our cryptography is assumed to be perfect), as well as a public value when
encrypted with a public key (there is nothing to protect). Instead, a secret
value encrypted with a public key is vulnerable to attacks, and so we consider

8

Bodei et al.

the whole encryption as public. Note that if a name happens to denote a key
K, saying that K is “public” means that it is widely known, i.e. it is not
secret. 3 In what follows, let ValP be the set of public values.

Definition 3.1 The process P is confined (w.r.t. S) if

(a) (ρ, κ, ζ, φ) |= P and (b) P ⊆ φ ⊆ ValP.

Note that, on least solutions, the condition (b) implies the condition
(b′) ∀c : κ(c) ⊆ ValP. The latter is in the style of [6], where the focus is
on what flows on channels. Also, the intruder is passive, as it cannot build
and send any messages on the network, but can only eavesdrop. On the con-
trary, here the focus is on what the enemy knows, intercepts and can deduce,
allowing him/her to actively interact with the other principals.

The second property extends that of authorship introduced in [5]. It is
a form of message authentication: it states when a message, or a part of it,
is composed of names generated (i.e. declared via a restriction) by a given
process P . In this way, the message is authentic from P .

Definition 3.2 The variable x (occurring at program point π) is booked for
a sub-process P = (νn1, . . . , nl)P

′ of a given process Q if and only if there
exists an estimate (ρ, κ, ζ, φ) such that

(1) (ρ, κ, ζ, φ) |= Q and (2) ID(ρ(π)(x)) ⊆ {n1, . . . , nl},
where ID(I) returns the names occurring in the values of the set I.

The static notion requires that all the values that can be bound to x are
composed only with names of P . We can use this property to guarantee that
in x is possible to receive, dynamically, only messages authenticated by P .

CFA on WMF

We now apply our approach to the WMF protocol. We will give here two
specifications: Sys1 for Protocol 1 and Sys2 for Protocol 2 and we will check
whether they enjoy or not the confinement and being booked properties de-
fined above. In Sys1, both properties do hold (Sys1 passes the corresponding
static tests), while in Sys2 does not. These failures show attacks 1 and 2, on
Protocol 2. Remarkably, the same analysis is used to check either confinement
or authorship: only the test changes.

This feature shows the generality of the CFA approach.

For the sake of simplicity, here we assume that only A can play the role
of sender (each instance oriented to a different receiver) and that only B (the
honest principal) and E (the enemy) can play the role of receivers. The server
S is unique. In Sys1 the first message is 〈A, {B, KAB}KAS

〉, while in Sys2 it
is 〈A, B, {KAB}KAS

)〉. Since A is the only sender, we omit to send its name
in the first message in both cases.

3 Here, a public key is not the encryption key in an asymmetric or public-key cryptosystem.

9

Bodei et al.

Sys1=(νKAS)(νKBS)(AB1|AE1|S1|B)
AB1 =(νKAB)(νM)(cAS〈{B, KAB}KAS

〉.cAB〈{M}KAB
〉)

AE1 =(νKAE)(νM ′)(cAS〈{E, KAE}KAS
〉.cAE〈{M ′}KAE

〉)
S1= cAS(ycipher).case ycipher of {yrec, ykey}KAS

in
π([yrec = B] πBcB〈{ykey}KBS

〉 | [yrec = E] πEcE〈{ykey}KES
〉)

B= cBS(wcipher).case wcipher of {wkey}KBS
in

π′
cAB(zcipher)case zcipher of {zmsg}wkey

in π′′
0

Sys2=(νKAS)(νKBS)(AB2|AE2|S2|B)
AB2 =(νKAB)(νM)(cAS〈B, {KAB}KAS

〉.cAB〈{M}KAB
〉)

AE2 =(νKAE)(νM ′)(cAS〈E, {KAE}KAS
〉.cAE〈{M ′}KAE

〉)
S2= cAS(yrec, ycipher).case ycipher of {ykey}KAS

in
π([yrec = B] πBcBS〈{ykey}KBS

〉 | [yrec = E] πEcE〈{ykey}KES
〉)

B= cBS(wcipher).case wcipher of {wkey}KBS
in

π′
cAB(zcipher)case zcipher of {zmsg}wkey

in π′′
0

Here, the server S should sort out session keys to B or to E, depending on the
receiver name included in the previous message, i.e., in terms of our calculus,
depending on a match. Note that E can act in a legitimate way as B can,
using KAE and M ′.

Moreover, we restrict M and M ′, because we want to use them for the
authorship property.

Just to give the flavor of how the estimates look like, we write down parts
of them.

Sys1 κ(cAS) �� (E, {KAB}KAS
), (B, {KAE}KAS

)
κ(cAB), ρ(π′)(zcipher) �� {M ′}KAE

κ(cAE) �� {M}KAB

κ(cBS) �� {KAE}KBS

κ(cES) �� {KAB}KBS

ρ(π′′)(zmsg) �� M ′

Sys2 κ(cAS) � (B, {KAB}KAS
), (E, {KAE}KAS

), (E, {KAB}KAS
), (B, {KAE}KAS

)
κ(cAB), ρ(π′)(zcipher) � {M}KAB

, {M ′}KAE

κ(cAE) � {M ′}KAE
, {M}KAB

κ(cBS) � {KAB}KBS
, {KAE}KBS

κ(cES) � {KAB}KES
, {KAE}KES

ρ(π′′)(zmsg) � M,M ′

Secrecy Property

Let S be {KAS, KBS , KAB, M} and P include all the other names, from
which the public values in ValP can be built. In particular, P includes also the
“private” names of the enemy, such as {KES, KAE, M ′}, i.e. those names s/he
could use in a legitimate way, if A wants her/him as a receiver. In other words,
we are only interested in preserving the secrets of honest parties, i.e. the terms

10

Bodei et al.

built from the names that intruders do not initially know and that should not
acquire. Recall that a term encrypted with a secret key is considered public
and can be sent in clear, while a secret term encrypted with a public key is
considered secret. Our second specification of the WMF Sys2 is not confined,
because obviously KES ∈ φ, and {KAB}KES

∈ φ, thanks to the condition
κ(n) ⊆ φ for output. Therefore, KAB ∈ φ, as well, and everything encrypted
with KAB, such as M , belongs to φ. Such a secrecy leak depends on the fact
that the server S2 can also receive the forged message (E, {KAB}KAS

) on cAS.
On the current version of the WMF the condition (b′): κ(c) ⊆ ValP does
not hold, either. Indeed, KES is public and thus κ(cES) includes {KAB}KES

,
which in turn is public, according to the assumptions discussed above. So our
estimate shows that a secret value may pass “in clear” on the network, for
instance {M}KAB

.

Instead, the specification Sys1 is confined. Actually, the intruder cannot
decrypt the message {B, KAB}KAS

, as KAS is kept secret. Therefore s/he
cannot forge the misleading message {E, KAB}KAS

(that a fortiori cannot flow
on cAS).

An Authentication Property

Our second specification of the WMF Sys2 does not guarantee authorship.
In fact, zmsg is not booked for AB, since ρ(π′′)(zmsg) includes M ′, that is a
name restricted in AE1 . In our first specification Sys1, the name zmsg is booked
for AB, instead, because M ′ /∈ ρ(π′′)(zmsg).

4 NI based approach

Recall that NI essentially says that, given two groups of high-level users H,
and of low-level users L, there is no information flow from H to L if and only
if there is no way for H to modify the behaviour of L. Alternatively, we may
think of L as the set of the honest participants to a protocol and of H as the
external environment hosting a number of possible intruders. Following the
analogy, no information flow from high- to low-level means that the intruders
have no way to change the behaviour of the honest principals.

To set up this correspondence more precisely, we single out the high-level
and the low-level actions. As done before, we assume that an intruder has
complete control of the network, and so it is sensible to assume that the high-
level actions are those occurring on public channels. As a protocol specification
is usually completely given by message exchanges on public channels, it may
be unclear what are the low-level actions. In our approach, these actions
are ad hoc, observable control actions that are included into the protocol
specification. The choice of these extra actions depends on the property to be
analyzed. For instance, we shall use a pair of special start/commit actions to
be performed by all the honest participants, in order to study some form of
authentication, as in [17].

11

Bodei et al.

As mentioned above, what is in this section has been developed for a
different calculus, namely Crypto-SPA [16]. Essentially, this is a value-passing
CCS enriched with a set of constructs that can be parameterized to handle
specific data manipulation, notably the cryptographic ones. The restriction
operator of Crypto-SPA binds channels but not names. So, when we need to
analyze a protocol (νn)P , where n should denote a secret value of P , against
every possible enemy, we actually check P against possible enemies which does
not know n.

Now, the set of all possible intruders EP
C can be formally characterized,

following [16,15] 4 . This set is parameterized by two sets. The first is C and
contains public channel names; it is used to take care of the restricted names
of processes for the reason discussed above. The second set is P and, as above,
it contains the initial knowledge of the intruders in EP

C . More formally, we
have the following:

EP
C = {E | sort(E) ⊆ C and ID(E) ⊆ D(P)}

where sort(E) and ID(E) are the set of channels used by the process E and
the set of names occurring in E, respectively. As the set of data constructors
is parametric, also the way messages are computed from P is parametric.
Above, this set is referred to D(P). The additional flexibility is implemented
through the function D, that depends on the specific operations allowed on
data, in particular on the specific crypto-systems used.

We are ready to express NI as a property of processes, that is usually called
NDC [14,16]. Its simplified formulation for the sub-calculus we consider here
follows. Let ≈ be a trace equivalence between processes, then

P enjoys NDCP
C iff ∀E ∈ EP

C : (νC)(P |E) ≈ (νC)P

We briefly comment on the above. Recall first that the only observables
of processes are the extra “control” actions that are to be included to reflect
a specific property; additionally, these control actions are not performed on
communication channels in C. Now, (νC)P represents the protocol P in-
tended to run in isolation on perfectly secure channels. Hence, its observable
behaviour exhibits the security property of interest, as no attack is possible. If
(νC)P is trace equivalent (on the observables!) to (νC)(P |E), where E is any
possible enemy, then clearly E has no way to alter the observable execution
of P . Thus, the security property implicitly holds.

As a matter of fact, one can use a slightly more general scheme, namely
the Generalized NDC (GNDC). It results from replacing trace equivalence
≈ with any pre-order ✁ between processes and by replacing (νC)P with a
function on P , α(P). This function is related to a specific security property
A and specifies which are the behaviour of P that respect A. Different in-
stances of ✁ and of the function α give uniform definitions of different security

4 There, in the original notation, P was actually Φ.

12

Bodei et al.

properties. Therefore, GNDC makes it easier to compare different properties.
Also, NDC happens to be the strongest property one can define within the
GNDC scheme under the assumption that the protocol in isolation satisfies
the security requirements, i.e. (νC)P ✁ α(P). Consequently, one can put in
the specification of the protocol under analysis all the control actions charac-
terizing the properties of interest: a single successful NDC check implies that
all the properties are satisfied.

Interestingly enough, NDC can be characterized in a simpler way than
made above. A canonical, most general enemy exists, that intuitively can
eavesdrop/intercept any message, adding the intercepted information to the
current knowledge set, as well as produce new messages with pieces of informa-
tion the enemy knows. Its formulation follows, that uses indexed summation
and recursion:

TopP =
∑

c∈C;m∈D(P)

c〈m〉.T opP +
∑

c∈C

c(m).T opP∪{m}

Then, the universal quantification over the enemies E ∈ EP
C can be dropped,

and the NDC check can be made by exploiting TopP , only.

Below, we analyze the WMF protocol within the NI approach, and check
a secrecy and an authentication property. For the sake of clarity, we separately
discuss the analysis of the two properties, instead of checking both at the same
time.

Secrecy Property

As done in the previous section, we wish to check whether the specifications
given in the Introduction do indeed keep secret the message M of A, according
to the Dolev-Yao’s notion of secrecy.

We start by inserting the needed control actions within the specification
Sys2, from which we removed all the labels π. First, we choose a distin-
guished channel, say clearnt, not occurring in the resulting process (still de-
noted by Sys2 below). Then build the set C as consisting of the just in-
troduced name and of all the channel names that occur in Sys2, i.e. C =
{clearnt, cAB, cAS, cBS}. Also, define the initial knowledge P to be such that
P ∩ {M, KAS, KAB, KBS} = ∅. Note that in particular M /∈ P. On the con-
trary, the channel clearnt must be included in P , as well as the key KAE, shared
between the server and a whatsoever enemy E chosen from the set EP

C . Now,
we can define the process that we actually analyse:

Sys′2 = Sys2 |(clearnt(x).[x = M]learnt〈M〉)

Consider the system Sys′2 |E. Since Sys2 cannot output on channel clearnt,
by construction Sys′2 can only input on that channel. Thus, a communica-
tion on clearnt is possible only if E outputs a message on it. As a conse-
quence, if Sys′2 |E emits learnt〈M〉 then the intruder discovered M . Note

13

Bodei et al.

that (νC)Sys′2, is trace equivalent to 0 and learnt〈M〉 is the sole observ-
able. So, we have that M remains a secret of honest participants in Sys2

if and only if Sys′2 enjoys the property NDCP
C . Also, note that Sys′2 |TopP

emits learnt〈M〉 because TopP can perform the following sequence of actions,
showing the secrecy attack 1:

cAS(B, {KAB}KAS
).cAS〈E, {KAB}KAS

〉.
cAS({KAB}KES

).cAB({M}KAB
).clearnt〈M〉

Authentication Property

We check now a form of entity authentication, called agreement in [17].
Essentially, it says that whenever a principal B ends a session with a partner
A, then it was A who started that section with B.

As done before, we decorate the system Sys2 with control actions specific
to this property. The action start〈A, M, B〉 (resp. commit〈B, M, A〉) means
that the agent A (resp. B) starts (resp. ends) a run with B (resp. A) for
delivering (resp. receiving) the message M . We obtain the following:

Sys′′2 =(A
′′
B2
|S2|B′′)

A′′
B2
=(start〈A, M, B〉.cAS〈B, {KAB}KAS

〉.cAB〈{M}KAB
〉)

A′′
E2
=(start〈A, M ′, E〉.cAS〈E, {KAE}KAS

〉.cAE〈{M ′}KAE
〉)

S2= cAS(yrec, ycipher).case ycipher of {ykey}KAS
in

([yrec = B] cBS〈{ykey}KBS
〉 | [yrec = E] cE〈{ykey}KES

〉)
B′′= cBS(wcipher).case wcipher of {wkey}KBS

in

cAB(zcipher).case zcipher of {zmsg}wkey
in commit〈B, zmsg, A〉.0

The agreement property is satisfied by a computation, if, whenever an action
commit〈B, M, A〉 is emitted, then an action start〈A, M, B〉 appeared previ-
ously. Note that the unique possible start/commit sequence allowed in the
system in isolation (νC)Sys′′2 is

start〈A, M, B〉.commit〈B, M, A〉
Thus, if we require that Sys′′2 is NDC, i.e. (νC)(Sys′′2 |E) ≈ (νC)Sys′′2, for
all intruders E, we have that Sys′′2 enjoys the authentication property. We
illustrate the role of the most powerful intruder, to which in this example
we assign an empty initial knowledge. Even if perfectly blind, this intruder
can significantly interfere with the protocol, because (νC)(Sys′′2 |Top∅) can
perform the following sequence of observable actions:

start〈A, M ′, E〉.commit〈B, M ′, A〉
which shows an instance of the attack 2. Indeed, commit〈B, M ′, A〉 says that
B just ended a run with A, who never started any! Actually, start〈A, M ′, E〉
denotes that A instead initiated the session with E.

14

Bodei et al.

If we add a further receiver B′′ to the specification Sys′′2, obtaining a new
specification Sys′′′2 , we also discover the attack 3, with the same Top∅ process.
Indeed, in this case we find that Sys′′′2 can perform the following sequence of
observable actions:

start〈A, M, B〉.commit〈B, M, A〉.commit〈B, M, A〉

showing that the enemy convinced B that A started two sessions with him.

Note that also the CFA described in the previous section gives an estimate
for Sys′′′2 that shows this attack. Presently, neither technique is able to deal
with protocols with an unbounded number of principals, unless replication is
somehow constrained.

Finally, note also that the protocol 1 is not vulnerable to any of the attacks
seen so far, except for the replay attack 3. This is possible to be modelled
only if we add a further receiver B′′, as done above to obtain the specification
Sys′′′2 .

5 Conclusions

We briefly surveyed two different techniques for analyzing security properties
of cryptographic protocols, and applied them to a simple example, the Wide
Mouthed Frog protocol.

The first approach, called CFA, is static and it based on Flow Logic. This
technique collects, once and for all estimates, i.e. information about the ob-
jects occurring in the specification of a protocol, typically an approximation of
the values that variables can assume at run time. Estimates are then checked,
typically to test whether certain values may be bound to a specific variable.
Different tests ensure that the protocol enjoys different static properties, that
are proved to ensure their corresponding dynamic properties.

The second approach, called NI, is dynamic and it is based on equivalence
checks. The main idea underlying NI is that proving most security properties
can be seen as checking whether a protocol enjoys the Non Interference prop-
erty: high-level users, the intruders, cannot change the behaviour of low-level,
honest principals. Also here, a single check on the protocol under analysis
is sufficient to detect possible flows, if any, or to guarantee that the protocol
does indeed enjoy the various security properties of interest.

Our main goal here was to compare these two approaches. For making
it possible, we tailored our presentation to stress their similarities and their
differences. We refer the interested reader to the literature cited, to fill the gaps
of our description, to clarify and to make precise some definitions and technical
properties, only given here intuitively, mainly because of space limitations.
Crucial has been the selection of the common subset of the process calculi
on which the two techniques have originally been defined, the spi-calculus for
CFA and Crypto-SPA for NI.

15

Bodei et al.

On the specific example, both techniques are able to reveal some delicate
secrecy and authentication flaws. The main difference between them is that
NI, being dynamic, can be and indeed is precise, while CFA, being static,
gives approximate, yet sound answers, i.e. it may have false positives. Ad-
ditionally, some attacks have an intrinsic dynamic nature and are quite hard
and reluctant to be characterized within a static property.

A token in favor of CFA is that estimates are computable in low polynomial
time in the size of the protocol under analysis, often in cubic time. Like other
static analysis, CFA provides a repertoire of efficient automatic and decidable
methods and tools for analyzing properties of systems. The NI approach
requires instead exponential time, because the generation of the transition
system, on which the equivalence checks are made, suffers from state explosion.
Moreover, the NI tools (see, e.g. [12]) are also able to return the descriptions
of successful attacks, on the form of sequences of observables. Instead, the
CFA estimates 5 of a flawed protocol can only implicitly give an idea of which
are the possible attacks the protocol seems to be prone to. It would be quite
interesting to combine the static and the dynamic tools, so to use on need
the cheapest or the most friendly or the most accurate tool within the two
families.

The dynamic approach offers some decidability results for mostly common
security properties, like secrecy and authentication when analyzing finite sys-
tems (roughly, systems with a bounded number of runs and parties). So far,
about 40 protocols from [9] have been analyzed on which all the previously
known attacks are detected, as well as new ones. Our experience with CFA is
still limited, and so is the number of the security properties dealt with.

Both approaches can be further extended to deal with infinite systems.
Some results in [21] show how one can deduce the correctness of certain classes
of unbounded security protocols, from the analysis of bounded ones. See [18]
for a CFA that defines estimates of infinite systems accurate enough — recall
that the approximated nature of the CFA may help circumventing the undecid-
ability issues generally arising in security, mainly concerned with replication.

In this note, we only considered a shared-key encryption schema, but other
schemata can be used as well; similarly for different data and/or different
manipulation operators. As a matter of fact, in its general formulation, the
NDC property includes a parametric manner of computing the knowledge of
intruders, namely via the function D(P); its use may seem irrelevant using
our current sub-calculus, but it finds full justification in Crypto-SPA. Also
the clauses defining our CFA do not require any changes when considering the
public-key encryption. Indeed, these clauses follow a common pattern, and
so we are confident that also different encryption schemata or different data
manipulations can be easily accommodated in our approach. Some results in

5 The reader may play with the on-line systems reachable at the page
http://www.daimi.au.dk/∼fn/FlowLogic.html

16

Bodei et al.

applying the CFA approach to other calculi can be found in [18,10].

We conclude this quick comparison by noting again that the NI approach is
in a sense more explicit than the CFA one. As shown in the previous section,
the most general enemy can be written as the process TopP , with the help of
indexed summation. Instead, in the CFA approach the most general intruder is
hidden in the way estimates are characterized, in particular in the definition
of ValP and in the reverse inclusions between the κ and φ components of
estimates, that are required for input and output clauses.

Acknowledgments.

We wish to thank Flemming Nielson and Hanne Riis Nielson for joint work
on the CFA topics, and Antonio Durante for joint work on NI topics. The
referees’ comments have been extremely useful in reshaping our presentation.

References

[1] M. Abadi. Secrecy by Typing In Security protocols. Journal of the ACM,
5(46):18–36, Sept. 1999.

[2] M. Abadi. Security Protocols and Specifications. In Proc. of FoSSaCS’99,
LNCS 1578, Springer, 1999.

[3] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. Information and Computation 148(1):1–70, Jan. 1999.

[4] D.E. Bell and L.J. LaPadula. Secure Computer Systems: Unified Exposition
and Multics Interpretation. Technical Report ESD-TR-75-306, Mitre C., 1976.

[5] C. Bodei. Security Issues in Process Calculi. PhD thesis, Dipartimento di
Informatica, Università di Pisa. TD-2/00, March, 2000.

[6] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static Analysis for the
π-calculus with their Application to Security. Information and Computation
165: 68-92, 2001.

[7] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static Analysis for Secrecy
and Non Interference in Network of Processes. In Proc. of PaCT’01, LNCS
2127, pp. 27-41, Springer, 2001.

[8] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM
Transactions on Computer Systems, 1(8): 18–36, Feb. 1990.

[9] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature.
Unpublished, 1997.

[10] P. Degano, and F. Levi and C. Bodei. Control Flow Analysis for Mobile Safe
Ambients. In Proc. of ASIAN’00, LNCS 1961, pp. 199-214, Springer, 2000.

[11] D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, IT-29(12):198–208, March 1983.

[12] A. Durante, R. Focardi and R. Gorrieri. A Compiler for Analysing
Cryptographic Protocols using Non-Interference. ACM Transactions on
Software Engineering and Methodology, 9(4): 488-528, Oct. 2000.

[13] R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties. IEEE Transactions
on Software Engineering 27: 550–571, 1997.

17

Bodei et al.

[14] R. Focardi and R. Gorrieri. A Classification of Security Properties. Journal of
Computer Security 1(3): 5–33,1995.

[15] R. Focardi, R. Gorrieri, and F. Martinelli. Non Interference for the Analysis of
Cryptographic Protocols. In Proc. of ICALP’00, LNCS 1853, Springer, 2000.

[16] R. Focardi and F. Martinelli. A Uniform Approach for the Definition of Security
Properties. In Proc. of World Congress on Formal Methods in the Development
of Computing Systems, LNCS 1708, pp. 794–813, Springer-Verlag, 1999.

[17] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-key Protocol
using FDR. In Proc. of TACAS’96, LNCS 1055, pp. 146–166, Springer, 1996.

[18] H. R. Nielson and F. Nielson. Shape Analysis for Mobile Ambients. In Proc.
of POPL’00, pp.142–154, ACM Press, 2000.

[19] F. Nielson, H. Nielson and H. Seidl. Cryptographic Analysis in Cubic Time.
This volume.

[20] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating Firewalls
in Mobile Ambients. In Proc. of CONCUR’99, LNCS 1664, pp. 463–477, 1999.

[21] S. Stoller. A Reduction for Automated Verification of Authentication Protocols.
In Workshop on Formal Methods and Security Protocols (FMSP’99), Trento,
Italy, 1999.

18

