
Electronic Notes in Theoretical Computer Science 71(2003)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 20 pages

Tiling Transactions in Rewriting Logic ?

Roberto Bruni a,1, José Meseguer b,2, and Ugo Montanari a,1

a Computer Science Department, University of Pisa, Italy.
b CS Department, University of Illinois at Urbana-Champaign, USA.

Abstract

We propose a modular high-level approach to the specification of transactions in rewrit-
ing logic, where the operational and the abstract views are related by suitable adjunctions
between categories of tile theories and of rewrite theories.

Key words: tile logic, rewriting logic, category theory, transactions,
zero-safe nets, Petri nets.

1 Introduction

The enormous growth of the World Wide Web has increased the demand for global
computing applications, where the “orchestration” of the flow of data and of mo-
bile processes is a key issue. While synchronous communication on the web is
unrealistic, and thus asynchronous formal models are preferred, many applications
often require a coordination layer between distributed components that are designed
and implemented separately (e.g. in e-commerce or on-line auction systems). For
this purpose, platforms like BizTalk and Javaspaces exploit a centralized trans-
action manager (TM) to guarantee the so-called ACID—Atomicity, Consistency,
Isolation, and Durability—properties (e.g. if a transaction aborts then a consistent
configuration must be restored). Nevertheless, TM’s are not a panacea, since their
presence raises several questions that involve both theoretical aspects and pragmat-
ics (perhaps even ethics). For example: (1) the lack of a formal abstract model; (2)
the heavy task overload on the servers running TM’s; and (3) when two or more
organizations are involved in a transaction, which TM should take control?

? Research supported by IST-2001-32747 Project agile, by the Italian MIUR Project cometa,
and by ONR Grant N00014-02-1-0715. The first author is also supported by an Italian cnr fel-
lowship for research on Information Sciences and Technologies, and by the CS Department of the
University of Illinois at Urbana-Champaign.
1 Email: {bruni,ugo}@di.unipi.it
2 Email: meseguer@cs.uiuc.edu

c©2003 Published by Elsevier Science B. V.

90

Open access under CC BY-NC-ND license.

http://www.elsevier.nl/locate/entcs/volume71.html
mailto:bruni@di.unipi.it,ugo@di.unipi.it
mailto:meseguer@cs.uiuc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/

Bruni, Meseguer, and Montanari

µ.P
µ

−→ P
(actµ)

P
µ

−→ P′

P | Q
µ

−→ P′ | Q
(lparµ)

P
µ

−→ P′

Q | P
µ

−→ Q | P′
(rparµ)

P
λ

−→ P′ Q
λ̄

−→ Q′

P | Q
τ

−→ P′ | Q′
(comλ)

structural congruence

(ass) P | (Q | R) ≡ (P | Q) | R

(sym) P | Q ≡ Q | P

(id) P | 0 ≡ P

rewrite rules

(syncλ) λ.P | λ̄.Q ⇒ P | Q

Figure 1. LTS vs reduction semantics illustrated.

In this paper, we propose a high-level specification formalism for distributed
transactions together with a meta-theoretic approach, where two views are kept
distinct, but are formally related: (i) an abstract view, where transactions are seen as
atomic activities that can take place independently from the rest of the system; and
(ii) a refined view, where the coordination layer is made explicit. These two views
reflect the two principal ways for defining the dynamics of many calculi: (a) by
defining a rewriting (or “reduction”) semantics over terms up to a suitable structural
congruence (in the style of the CHAM [1] or, more generally, rewriting logic [13]);
and (b) by means of labeled transition systems (LTS) specified in the SOS style [17],
where transition labels are the means for coordinating system components.

A typical example that illustrates the different flavor of (a) and (b) is given by
the elementary CCS-like calculus with inactive process 0, action prefix µ. (with
actions µ ∈ A] Ā]{τ}) and parallel composition | , whose two semantics are
compared in Figure 1 (actually, reductions under action prefix must be forbidden).
Suppose that a process P in the calculus above is used to model a network through
which the users Q1 and Q2 are willing to communicate on a certain channel a.
Then the SOS rules of the LTS semantics specify how the communication must be
propagated through the network, while the rewriting semantics just assumes that the
network can be rearranged in such a way that Q1 and Q2 can locally “shake-hands.”

Thanks to their generality as specification and logical frameworks, we choose
rewriting logic and tile logic as suitable candidates for the formal modeling of the
views (i) and (ii) above, respectively.

Rewriting logic (RL) [13] not only supports the reduction paradigm, but also
exploits proof terms of rewrites as first class citizens, endowing the system with an
algebra of computations that can be further abstracted to characterize behavioural
equivalences. Furthermore, proof terms precisely characterize concurrent computa-
tions. These features make RL an expressive semantic framework for concurrency,
parallelism and interaction, and for representing other logics.

Tile logic (TL) [10] is an extension of RL that links the most interesting features
of LTS and reduction semantics. Tile logic exploits a three-dimensional view of
concurrent systems: the horizontal dimension (space) is devoted to the modeling
of states and components; the vertical dimension (time) models labeled steps; and
the third dimension (concurrency) accounts for the distribution of activities and re-

9191

Bruni, Meseguer, and Montanari

sources. This separation of concerns makes it possible to select different flavors
of TL simply by fine tuning the algebraic structure of the elements in space and
time and by fixing their interplay. Recent applications of TL concern an interac-
tive view of Logic Programming [7] and a meta-theory of concurrent semantics
centered around causal and spatial aspects [6]. This paper proposes a further appli-
cation area, namely the semantics of distributed transactions.

There are two more reasons motivating our choice. The first motivation is
that, under reasonable circumstances, TL specifications can be translated to exe-
cutable RL specifications, by exploiting reflection and meta-strategies [8] to control
rewrites (see e.g. [15,4,2]). Since transactions are essentially “selected” computa-
tion patterns, they can be directly translated in meta-strategies that bridge the gap
between the refined and the abstract level. The second reason is that the simplest
class of tile theories (called zero-safe nets), where both configurations and observa-
tions are multisets of basic elements, has already been shown to extend ordinary P/T
Petri nets (that are just a special case of rewrite theories) with the notion of concur-
rent transaction. Hence a generalization of this net-based account of transactions
to arbitrary tile and rewrite theories yields a high-level and expressive specifica-
tion formalism that is amenable to a large field of applications for which the net
modeling would not fit adequately or would require complex encodings.

The main reference for zero-safe nets is [5]. Besides ordinary places, called sta-
ble, zero-safe nets come equipped with zero places, which are empty in any stable
marking; a transaction is a concurrent computation which may use zero tokens as
triggers, but defines an evolution between stable markings only. The abstract view
of a zero-safe net N is an ordinary P/T Petri net whose places are the stable places
of N, and whose transitions are the basic transactions of N. The relation between
zero-safe nets and their abstract counterparts is expressed by a categorical coreflec-
tion. The paper [3] presents a distributed implementation of zero-safe nets, where
centralized TM’s are replaced by a fully distributed commit algorithm. Note that
it is the interpreter’s task to guarantee that transactions are executed correctly (or
aborted if they cannot be completed). The ideas proposed in this paper can be used
as a basis for more general distributed transaction algorithms. In fact, we generalize
the relationship between zero-safe nets and P/T Petri nets to tile theories (system
design level) and rewrite theories (abstract level) to define a general framework for
transactions, where: (1) the low-level view of the system is given by a tile machine
running under the ACID properties of transactions; (2) the high-level view of the
system is an ordinary rewrite theory generated by the (refined) tile theories, such
that there is one rewrite rule for each concurrent transaction of the tile machine.

Our main result is the definition of a coreflection between the category of
rewrite theories and the category of tile theories with suitable refinement mor-
phisms. This leads to a conceptual clarification of how TL and RL are related and
gives a faithful description of the effective communication mechanism needed in
rewrite rules to model coordination. As an example, we give a formal justification
for the claim that in passing from the LTS to the reduction semantics in Figure 1
there is a loss of information about the way in which synchronization is achieved.

9292

Bruni, Meseguer, and Montanari

Structure of the paper. In § 2, we fix the categorical presentation of rewrite the-
ories (§ 2.1) and of tile theories (§ 2.2). In § 3, we recall the theory of zero-safe
nets and the algebraic constructions carried out in [5]. In § 4, we extend the zero-
safe approach to tiles, studying the algebraic constructions for computational and
abstract models. It is worth noting that the construction for zero-safe nets now be-
comes just a special case of the more general theory developed in this paper. Our
technique is illustrated by a simple example in § 5. Conclusions are drawn in § 6.
Appendices A and B recall some preliminary notion about double categories and
adjunctions, respectively. Moreover, two tables by the end Appendix B summarizes
all the categories and all the constructions discussed in the paper.

2 Computads and categories of computations

2.1 Rewriting logic and 2-computads

The main ingredients of RL are the signature of configurations Σ, the set of struc-
tural axioms E, and the set of rewrite rules R over the congruence classes [t]E (of
Σ-terms t modulo the axioms in E). Then, proof terms form a cartesian 2-category
generated by the rewrites in R via simple inference rules (see e.g. [12,13]).

Here, we give a more abstract presentation of rewriting logic by taking config-
urations in a (strict) monoidal category C. We assume that the reader has some
familiarity with category theory. An arrow f with domain d(f) = a and codomain
c(f) = b is written f :a → b. We denote each identity by the object name itself, ar-
row composition (in diagrammatic order) by ; , the monoidal tensor product by
⊗ and its unit element by e. Since we always consider strict monoidal categories

and functors, in the following we shall omit the word “strict.”
The standard case follows by taking as C the Lawvere theory LΣ,E associated

with the equational theory (Σ,E) [11]. Roughly, the cartesian category LΣ,E has
underlined natural numbers as objects (n represents a set with n ordered variables
for which we use standard names x1, ...,xn), and the tuples of (equivalence classes
of) terms [t]E as arrows (f :n → m is an m-tuple of terms over x1, ...,xn), with com-
position given by term substitution. The cartesian product of LΣ,E gives the ten-
sor product ⊗ on configurations. We use the terminology 2-computads, borrowed
from [18,19], for this abstract flavor of rewrite theories.

Definition 2.1 A 2-computad is a 4-tuple C = (C,R, l,r), where C is the monoidal
category of configurations, R is a set of rule names, and l,r:R → C are the source
and target functions denoting the lefthand side and the righthand side of each rule
r ∈ R, with the constraints that: (1) d(l(r)) = d(r(r)), and (2) c(l(r)) = c(r(r)).

Note that if C has only one object (the unit e), then sequential composition
coincides with the tensor product (by monoidality and functoriality of ⊗), and the
constraints (1–2) of Definition 2.1 are trivially satisfied.

From the computational point of view, the arrows in C are the configurations of
the system, which can be composed in parallel (⊗) and sequentially (;). Domains

9393

Bruni, Meseguer, and Montanari

f :a → b ∈ C
f : f ⇒ f

(id)

r ∈ R
r: l(r) ⇒ r(r)

(gen)

α1: f1 ⇒ g1, α2: f2 ⇒ g2

α1 ⊗α2: f1 ⊗ f2 ⇒ g1 ⊗g2
(par)

αi: fi ⇒ gi, i = 1,2, c(f1) = d(f2)

α1 ∗α2: f1; f2 ⇒ g1;g2
(hseq)

α: f ⇒ g, β:g ⇒ h

α ·β: f ⇒ h
(vseq)

(a) Inference rules.

α ·g = f ·α = α

α∗b = a∗α = α

f ;g = f ∗g

α⊗ e = e⊗α = α

(α1 ∗α2) · (β1 ∗β2) = (α1 ·β1)∗ (α2 ·β2)

(α1 ∗α2)⊗ (β1 ∗β2) = (α1 ⊗β1)∗ (α2 ⊗β2)

(α1 ·α2)⊗ (β1 ·β2) = (α1 ⊗β1) · (α2 ⊗β2)

(b) Equations.

Figure 2. The cells in rw(C).

and codomains model, respectively, the input and output interfaces of components.
A rule r ∈ R models a basic reduction from the configuration l(r) to r(r). Each re-
duction r can take place independently from the context where l(r) resides, thus any
configuration f ; l(r);g can be rewritten to f ;r(r);g by applying r. Moreover, given
two rules r1,r2 ∈ R and the configurations l(r1); l(r2) and l(r1)⊗ l(r2), then concur-
rent reductions are possible that lead to r(r1);r(r2) and r(r1)⊗ r(r2), respectively.
This yields a 2-category whose cells are concurrent computations.

Definition 2.2 Given a 2-computad C =(C,R, l,r), the monoidal 2-category rw(C)
has the same objects and arrows as C, and cells defined by the inference rules in
Figure 2(a) modulo the laws of monoidal 2-categories in Figure 2(b) (valid when-
ever both sides of the equations are correctly defined cells).

Compositions ∗ and · are called horizontal and vertical, respectively, according
to the graphical convention of composing configurations horizontally from left to
right and computations vertically from top to bottom. For example, the rewrite r,
with arguments f and inside the context g is denoted by the proof term f ∗ r ∗g:

a f
// d(l(r))

l(r)
##

⇓r

r(r)

;;
c(l(r)) g

// b

Definition 2.3 A 2-computad morphism between (C1,R1, l1,r1) and (C2,R2, l2,r2)
is a pair (C ,R) where C :C1 →C2 is a monoidal functor, and R:R1 →R2 is a func-
tion such that for any r ∈R1: (1) C (l1(r)) = l2(R(r)) and (2) C (r1(r)) = r2(R(r)).
We let 2Comp be the category whose objects are 2-computads and whose arrows
are 2-computad morphisms (with obvious identities and pairwise composition).
Moreover, we denote by 2Compc the full subcategory of 2Comp whose objects are
2-computads with a commutative monoidal category of configurations (i.e., where
the tensor product ⊗ is commutative).

2-computads C are related to their computations rw(C) via an adjunction.

9494

Bruni, Meseguer, and Montanari

◦ s //

u
²²

α
initial input interface ◦

v
²²

initial output interface

◦ t
//final input interface ◦ final output interface

Figure 3. The tile α:s
u

−→
v

t.

Proposition 2.4 Let 2MCat be the category of monoidal 2-categories (as objects)
and monoidal 2-functors (as arrows). The obvious forgetful functor U2:2MCat →
2Comp has a left adjoint F2:2Comp → 2MCat with F2(C) ' rw(C).

2.2 Tile logic and D-computads

Tiles extend ordinary rewrite rules with the possibility of changing the input and
output interfaces during system evolution. The way in which they are changed is ex-
pressed by arrows in a vertical category. More generally, vertical arrows model the
information passed between interfaces. Graphically, this amounts to representing
rules as rectangles, whence the name tile. The tile in Figure 3 is written α:s

u
−→

v
t,

and states that the initial configuration s can evolve to the final configuration t, pro-
ducing the effect v when the trigger u is provided by the components connected to
the input interface of s. The arrows s, u, v and t form the border of α and are con-
ventionally denoted by the initials of the four main compass points (e.g. n(α) = s).

Definition 2.5 A D-computad is a 7-tuple D = (H,V,T,n,s,w,e), where H is the
monoidal category of configurations, V is the monoidal category of observations, T
is a set of tile names, n,s:T → H, and w,e:T → V are the (bidimensional) source
and target functions denoting, respectively, the initial and final configurations, the
trigger, and the effect of each tile r ∈ T , with the constraints that:

(i) the categories H and V have the same objects;

(ii) d(n(r)) = d(w(r)), for any r ∈ T ;

(iii) c(n(r)) = d(e(r)), for any r ∈ T ;

(iv) d(s(r)) = c(w(r)), for any r ∈ T ;

(v) c(s(r)) = c(e(r)), for any r ∈ T .

It is immediate that any 2-computad is just a particular D-computad whose ver-
tical category V of observations is the discrete category of objects in the horizontal
category H (by taking C = H and l = n and r = s). Note that tile rewrites cannot
be applied in arbitrary contexts. For example, the tile r can be applied to f ;n(r);g
only if its trigger w(r) can be coordinated with f , and its effect e(r) with g:

a f //

²²

d(n(r)) n(r) //

⇓rw(r)
²²

c(n(r)) g //

e(r)
²²

b

²²

? // d(s(r)) s(r) // c(s(r)) // ?

Like rewrite rules, tiles can be composed horizontally, vertically, and in parallel
to generate larger steps. The three compositions are illustrated in Figure 4. Due to

9595

Bruni, Meseguer, and Montanari

◦ //

²²
α

◦ //

²²
β

◦
²²

◦ // ◦ // ◦

◦ //

²²

◦
²²◦ //

²²

◦
²²

β
◦ // ◦

◦ //α ◦

◦ //

²²
α

◦
²²

◦ //

²²
β

◦
²²

◦ // ◦

Figure 4. Horizontal, parallel and vertical tile compositions.

t:a → b ∈ H

t: t
a

−→
b t

(hid)
α1:s1

u
−→

w t1, α2:s2
w

−→
v t2

α1 ∗α2:s1;s2
u

−→
v t1; t2

(hseq)

u:a → b ∈ V

u:a
u

−→
u b

(vid)
α1:s

u1−→
v1

q, α2:q
u2−→
v2

t

α1 ·α2:s
u1;u2−→
v1;v2

t
(vseq)

r ∈ T

r:n(r)
w(r)
−→
e(r) s(r)

(gen)
α1:s1

u1−→
v1

t1, α2:s2
u2−→
v2

t2

α1 ⊗α2:s1 ⊗ s2
u1⊗u2−→
v1⊗v2

t1 ⊗ t2

(par)

Figure 5. The cells in tl(D).

space limitation, we refer to [9,15,2] for the theory of ordinary and monoidal double
categories. For the reader’s convenience, some basics are recalled in Appendix A.
Roughly, the elements of monoidal double categories are cells analogous to the
rectangle in Figure 3 and have two sequential compositions (horizontal and vertical)
and a tensor product, all the operations being mutually functorial.

Definition 2.6 Given a D-computad D = (H,V,T,n,s,w,e), the monoidal double
category tl(D) has horizontal 1-category H, vertical 1-category V, and (double)
cells defined by the inference rules in Figure 5, modulo the laws of monoidal double
categories (cf. [2,15] for details).

Definition 2.7 A D-computad morphism between D1 and D2 is a triple (H ,V ,T)
such that H :H1 → H2 and V :V1 → V2 are monoidal functors, and T :T1 → T2 is
a function such that:

(i) the functors H and V coincide on objects;

(ii) H (n1(r)) = n2(T (r)), for any r ∈ T1;

(iii) H (s1(r)) = s2(T (r)), for any r ∈ T1;

(iv) V (w1(r)) = w2(T (r)), for any r ∈ T1;

(v) V (e1(r)) = e2(T (r)), for any r ∈ T1.

We let DComp denote the category whose objects are D-computads and whose
arrows are D-computad morphisms. Moreover, we denote by DCompc the full
subcategory of DComp consisting of D-computads whose configurations and ob-
servations are commutative monoidal categories.

A D-computad D is related to the monoidal double category tl(D) of its com-

9696

Bruni, Meseguer, and Montanari

putations via an adjunction.

Proposition 2.8 Let DMCat be the category of monoidal double categories (as
objects) and monoidal double functors (as arrows). The obvious forgetful functor
Ud:DMCat → DComp has a left adjoint Fd with Fd(D) ' tl(D).

3 Review of the zero-safe approach

P/T Petri nets are graphs whose set of nodes is the free commutative monoid S⊕

over the places S, and whose arcs are called transitions. A Petri net morphism is a
graph morphism that in addition preserves the monoidal structure of markings (i.e.
a graph morphism whose node component is a monoid morphism). The category
Petri has Petri nets as objects and Petri net morphisms as arrows.

Since S⊕ can be regarded as a monoidal category having a unique object (the
unit e), the elements of S⊕ as arrows, and composition given by m;m′ = m⊕m′,
then P/T Petri nets can be regarded as 2-computads by a direct translation of tran-
sitions into rewrite rules. In fact, each m ∈ S⊕ exactly defines a multiset of places
(marking) and any transition t with pre-set m and post-set m′ can be seen as a rewrite
t:m → m′. Note that rewrites can be applied (concurrently) inside any larger multi-
set (see [16] for the RL specification of several kinds of nets).

Proposition 3.1 The category Petri is isomorphic to the full subcategory of 2Compc

(and hence of 2Comp) whose objects are 2-computads of the form (S⊕,T, l,r).

A zero-safe net [5] is a P/T Petri net whose set of places S is partitioned into
two disjoint subsets of stable places L and zero places Z, and whose transitions in
a transactional way, as we explain below.

The key idea is that transitions can be fired only as part of transactions that
lead from stable markings (i.e. elements of L⊕) to stable markings. Starting from a
stable marking, the net computes by firing transitions that can fetch tokens of both
kinds. After each firing, only the zero tokens in the post-set are made available
for the successive firings: the stable tokens in the post-set will be made available
to the system only at commit time, when no zero token involved in the transaction
is left. This assumption introduces a coordination mechanism between transitions
that can be implemented in distributed languages [3]. While zero tokens are useful
at the specification level for modeling coordination, at the abstract level the system
can be viewed as an ordinary P/T Petri net, whose places are the stable places of
the system and whose transitions are the basic transactions. The advantage is that
the zero-safe specification is in general simpler and more natural than its abstract
view (finite specifications can yield infinitely many transactions). Furthermore, the
abstract view can be defined via a categorical adjunction as recalled below from [5].

For example, let us consider the zero-safe net with two stable places a and b, a
zero place z and two transitions t1:a → z⊕b and t2:b⊕ z → a. Then, if the initial
marking is a, no transaction can be performed, as the token in b produced by a
firing of t1 would not be available immediately, and thus t2 would not be enabled.

9797

Bruni, Meseguer, and Montanari

Instead, if the initial marking is a⊕ b then t1 can be fired first and then the token
initially present in b can be used together with the token in z produced by t1 to
enable t2 and close the transaction (whose commit releases fresh tokens in a and b).

Let ZPetri be the category of zero-safe nets and the obvious graph homomor-
phisms between them (preserving place partitioning to stable and zero), with the
additional condition that distinct zero places have disjoint multisets as images.

The first step is to define a category HCatZPetri of zero-safe nets whose set
of transitions has a (commutative) monoidal operation ⊗, a horizontal sequential
operation ∗ (that concatenates on zero places only and behaves as the parallel com-
position on stable pre- and post-sets), and identities, quotiented out by suitable
axioms. The morphisms of HCatZPetri are zero-safe net morphisms preserving
all the additional structure. Horizontal composition allows building transactions
that exploit the flow of zero tokens. There is an adjunction between ZPetri and
HCatZPetri. We let Z :ZPetri → HCatZPetri denote the free functor.

The second step is the characterization of basic transactions: given a transition
α of a net in HCatZPetri, we say that α:m → m′ with m and m′ stable is prime
if it cannot be decomposed as the concurrent execution of two other non-trivial
transitions. Formally, α is prime if α 6= e and if whenever α = β1 ⊗β2 then β1 =
e∨β2 = e. Given a zero-safe net N, prime arrows in Z (N) are shown to exactly
model the (basic) transactions of N, defining an implementation of the abstract net.
Hence, a refinement morphism R:N1 → N2 is a zero-safe net morphism R̂:N1 →
Z (N2) that maps transitions either to prime arrows or to transitions of N2.

In the example discussed above, we have t1 ⊗ t2:a⊕ b⊕ z → b⊕ z⊕ a, while
t1 ∗ t2:a⊕b → b⊕a (the token in z produced by t1 is consumed by t2). Moreover,
t1 ∗ t2 is a prime arrow (the only one), while e.g. (t1⊗ t1)∗ (t2⊗ t2):a⊕b⊕a⊕b →
b⊕a⊕b⊕a is not a prime arrow because it can be decomposed as (t1∗t2)⊗(t1∗t2).
Hence the abstract net has two places (a and b) and one transition t:a⊕b → b⊕a
which can be mapped by a refinement morphism to the prime arrow t1 ∗ t2. (We
refer to [5] for more detailed examples.)

The third step is the definition of the category ZSN of zero-safe nets (as ob-
jects) and refinement morphisms (as arrows). In fact, refinement morphisms can be
composed via a lifting that preserves primality. The category Petri is a coreflective
subcategory of ZSN. Moreover, the right adjoint Az:ZSN → Petri maps zero-safe
nets to their abstract counterparts, and the counit of the adjunction maps transitions
of the abstract net to the transactions they represent. The properties of adjunctions
show that Z and Az are the “best” feasible constructions (up to isomorphism).

4 Zero-safe rewrite theories

We first explain in detail the analogy between zero-safe nets and tiles, and then
generalize the constructions in [5] to tiles and rewrite theories.

9898

Bruni, Meseguer, and Montanari

4.1 Zero-safe nets as tiles

As noticed at the begininning of Section 3, the free commutative monoid S⊕ over
the places S can be seen as a category with a unique object e. Moreover, if L is
the set of stable places and Z is the set of zero places of a zero-safe net, it is easy
to see that (L] Z)⊕ ' L⊕× Z⊕. We already noticed that P/T Petri nets are just
2-computads of the form (L⊕,T, l,r), for l and r the pre- and post-set functions,
and that the notion of net morphism coincides with that of 2-computad morphism
(Proposition 3.1). Analogously, a zero-safe net can be regarded as the D-computad
(L⊕,Z⊕,T,n,s,w,e) where: (i) the pre-set of t ∈ T is n(t)⊕w(t); and (ii) the post-
set of t ∈ T is s(t)⊕e(t). Then, it can be easily verified that the additional algebraic
structure of transitions in the objects of HCatZPetri is just given by the ordinary
identity, parallel and horizontal composition of tiles (but note that here the parallel
composition is commutative). For example, if ai,bi are stable places, z is a zero
place, t1:a1

e
−→

z
b1 is a transition from a1 to b1 ⊕ z and t2:a2

z
−→

e
b2 is a transition

from a2 ⊕ z to b2, then their horizontal composition t1 ∗ t2:a1;a2
e

−→
e

b1;b2 forms a

transaction from a1 ⊕a2 = a1;a2 to b1 ⊕b2 = b1;b2.
However, at the morphism level, DComp is more permissive than ZPetri, be-

cause the images of two distinct vertical arrows (e.g. zero places) are not neces-
sarily disjoint multisets. This property is central to the lifting of refinement mor-
phisms used in ZSN for arrow composition. Thus ZPetri is strictly included in
the full subcategory of DComp whose objects are all the D-computads of the form
(L⊕,Z⊕,T,n,s,w,e). To make the correspondence more precise, we can restrict D-
computad morphisms to satisfy an extended notion of the disjoint image property.

Definition 4.1 A D-computad morphism (H ,V ,T) from D1 to D2 is disjoint if
the functor V is injective on objects and faithful on arrows. We call ZComp the
category of D-computads as objects and disjoint D-computad morphisms as ar-
rows, and we let ZCompc denote the full subcategory of ZComp whose objects
are D-computads over commutative monoidal categories of configurations and ob-
servations.

Proposition 4.2 The category ZPetri is naturally isomorphic to the full subcate-
gory of ZCompc whose objects are D-computads of the form (L⊕,Z⊕,T,n,s,w,e).

As exemplified by the construction tl(D), D-computads have standard hori-
zontal and parallel compositions, hence we can define the category HCatZComp,
where: (1) the objects are D-computads whose set of tiles possesses a monoidal op-
eration ⊗ and horizontal composition ∗ with horizontal identities for observations
(but neither the vertical composition · nor the vertical identities for configurations
are considered); and (2) the arrows are disjoint D-computad morphisms preserv-
ing all the additional structure. We let HCatZCompc be the full subcategory of
HCatZComp whose D-computads have a commutative parallel composition ⊗.

Proposition 4.3 The category HCatZPetri is isomorphic to the full subcategory of
HCatZCompc whose objects are D-computads of the form (L⊕,Z⊕,T,n,s,w,e).

9999

Bruni, Meseguer, and Montanari

Proposition 4.4 There is an obvious adjunction between ZComp and HCatZComp
that builds the horizontal computations of tiles. We let D denote the free functor.
Analogously, there is an adjunction between ZCompc and HCatZCompc and we
let Dc denote the corresponding free functor. Then, the diagram of functors and
obvious embeddings

ZPetri Z //

'
Ä _

²²

HCatZPetri
Ä _

²²

ZCompc
Dc

// HCatZCompc

commutes (up to natural isomorphism).

In Section 4.2 we show how to generalize the notion of refinement morphism
in such a way that the coreflection between Petri (abstract view) and ZSN (specifi-
cation view) can be properly extended to rewrite and tile theories.

4.2 From tiles to transactional rewrite rules

The idea is that, starting from a given configuration, double computads can begin
rewriting it, producing observations that must be coordinated in the continuation
of the transaction. Enabled rewrites can be executed concurrently. A transaction
is completed when all actions have been coordinated (the global trigger and effect
must be identities, as the transaction can be executed in isolation). At the abstract
level, each transaction is thus an ordinary rewrite rule. The bidimensional repre-
sentation of tiles marks a clear distinction between system configurations and the
structure involved in the coordination of rewrites. Conceptually, this resembles the
zero-safe approach, and the abstract view can be defined by generalizing the alge-
braic construction based on refinement morphisms. The first step is to generalize
the notion of primality, so as to characterize the basic transactions.

Definition 4.5 Given a tile α of a D-computad in HCatZComp, we say that α is
prime if it cannot be decomposed as the concurrent execution of two other non-
trivial tiles. Formally, α:s

a
−→

b
t, α 6= e is prime if a and b are identities and

α = β1 ⊗β2 =⇒ β1 = e∨β2 = e.

Unfortunately the above constraint is not strong enough for guaranteeing that
prime arrows represent atomic activities. In fact, suppose that α = β1 ∗β2 with β1

and β2 prime, such that the trigger of β2 (and hence the effect of β1, which must be
equal) is an identity arrow, then it would not be correct to assume that β1 and β2

are interacting in the same transactions (unless β1 or β2 are object identities). The
difference w.r.t. the case of zero-safe nets is due to the fact that in HCatZPetri, if
α = β1 ∗β2 and the trigger of β2 is e (the only possible identity), then α = β1 ⊗β2

and the normal constraint can be applied. To guarantee atomicity, we must avoid
any possible embedding between basic transactions.

100100

Bruni, Meseguer, and Montanari

Definition 4.6 A prime tile α1:s1
a1−→
b1

t1 is elementary if

α1 = β1 ∗ (u1 ⊗α2 ⊗u2)∗β2 with α2:s2
a2−→
b2

t2 =⇒ α1 = α2 ∨α2 = a2.

Since ∗ and ⊗ are the only operations for composing tiles in HCatZPetri, the
context β1 ∗ (u1 ⊗ ⊗ u2) ∗β2, where u1 and u2 are suitable horizontal identities,
models the more general situation for embedding a transaction inside another. Of
course, identities of objects like a2 are not considered as transactions and can be
used in elementary tiles.

Definition 4.7 A computad refinement morphism M :D1 → D2 is a disjoint D-
computad morphism M̂ :D1 → D [D2] sending tiles either to tiles of D2 or to ele-
mentary elements of D [D2].

Lemma 4.8 Given a computad refinement morphism M :D1 → D2, let us denote
by M̃ :D [D1] → D [D2] its unique extension in HCatZComp by means of the ad-
junction D . Then, M̃ preserves elementary tiles.

Proof (Sketch) We must show that, if α is elementary in D [D1], then M̃ (α) is
also elementary. We fix a representation of α as the horizontal composition of n
tiles of the form ui ⊗αi ⊗ vi for i = 1..n, where the αi’s are basic tiles in D1 and
then we proceed by contradiction by showing that if

M̃ (α) =
(
M (u1)⊗M (α1)⊗M (v1)

)
∗ ...∗

(
M (un)⊗M (αn)⊗M (vn)

)

is not elementary, then, by exploiting the faithfulness of disjoint D-computad mor-
phisms, α also can be shown to be non-elementary, contradicting the hypothesis.
(The key fact is that each M (αi) must be a basic tile of D2, by elementarity of α.)

Thanks to Lemma 4.8, the composition of two computad refinement morphisms
M1:D1 → D2 and M2:D2 → D3 is defined as the morphism M1;M̃2, and it is
again a computad refinement morphism. Thus, together with the obvious identities,
computad refinement morphisms form a category.

Definition 4.9 The category RComp has D-computads as objects and computad
refinement morphisms as arrows.

The analogy between nets and computads can now be fully exploited, leading
to the main result of the paper.

Theorem 4.10 The category 2Comp is a coreflective subcategory of RComp.

Proof (Sketch) First we show that the obvious inclusion I of 2Comp into RComp
is full and faithful. If D is a 2-computad, then the elementary arrows of D [D] are
just the rewrite rules of D . This means that, given any 2-computads D1 and D2,
any computad refinement morphism is just a 2-computad morphism. On the other
hand, it is obvious that any 2-computad morphism is also a computad refinement
morphism, because it maps transitions into transitions. Next, we must show that
I has a right adjoint Ad. Given a D-computad D = (H,V,T,n,s,w,e), let Ad[D]

101101

Bruni, Meseguer, and Montanari

actµ:µ.x1
1

−→
µ x1 lparµ:x1 | x2

µ⊗1
−→

µ x1 | x2 rparµ:x1 | x2
1⊗µ
−→

µ x1 | x2 comλ:x1 | x2

λ⊗λ̄
−→

1 x1 | x2

Figure 6. Tiles for the SOS rules in Figure 1

be the D-computad having the same horizontal 1-category of D , the discrete ver-
tical 1-category given by the objects of V, and as tiles all the elementary tiles of
D [D] (with obvious borders). Since the vertical 1-category of Ad[D] is discrete,
it is obvious that its tiles are ordinary rewrite rules, and therefore Ad[D] is just a
2-computad. The mapping Ad can be extended to a functor by mapping each com-
putad refinement morphism M :D1 → D2 into its lifted version, with domain re-
stricted to the tiles in Ad[D1]. The definition is correct, because the lifting preserves
the “elementary” property. The proof of adjunction follows from the definition of
computad refinement morphism.

The right adjoint Ad characterizes the abstract behaviours of D-computads by
associating with a D-computad D = (H,V,T,n,s,w,e), a 2-computad Ad[D] hav-
ing the same horizontal 1-category of D and as rewrite rules all the elementary
tiles of D [D] (the counit maps rewrite rules of Ad[D] to the tile transactions they
represent).

An analogous construction is possible also when a commutative tensor prod-
uct of tiles is considered, yielding the category RCompc of which 2Compc is a
coreflective subcategory. We denote by A c

d the corresponding right adjoint.
Finally, the coreflection of Petri in ZSN becomes just a special case of the more

general coreflection between 2Compc and RCompc.

Proposition 4.11 The diagram of functors and straightforward embeddings

ZSN
Az //

'
Ä _

²²

Petri
Ä _

²²

RCompc
A c

d

// 2Compc

commutes (up to natural isomorphism).

5 Example

To illustrate our construction, let us consider again the simple process calculus
defined in the Introduction (see Figure 1). The D-computad CCS corresponding
to the LTS can be easily defined by a straightforward translation of the SOS rules
(see examples in [2,15]). We take the free cartesian category (Lawvere theory)
Proc generated by the process signature as the category of configurations. The
vertical category is obtained by taking the free monoidal category over the actions
µ (regarded as arrows from 1 to 1). The tiles are illustrated in Figure 6.

Let us assume that a transaction should be given by the synchronization of two
processes. In this case, after the synchronization, the τ action should not be prop-
agated further, as the rest of the system can evolve independently. For this reason,

102102

Bruni, Meseguer, and Montanari

elementary transactions (where 1 ≤ i < j ≤ n)

Ci, j−i
n [x1, ...,λ.xi, ..., λ̄.x j, ...,xn] ⇒ Ci, j−i

n [x1, ...,xn]

synchronization contexts (where l,k ≥ 0 and i,r ≥ 1)

Ci,l+r
i+l+r+k ::= (Li

l | R
r
i+l,k)

L1
0 ::= [1] R1

n,0 ::= [n+1]

Li
l+1 ::= (Li

l | [i+l+1]) Rr
n,k+1 ::= (Rr

n,k | [n+r+k+1])

Li+1
l ::= ([1] | Ri

1,l) Rr+1
n,k ::= ([n+1] | Rr

n+1,k)

Figure 7. CCS abstract transactions.

in the rule com we define the effect of a synchronization to be just an identity. Note
that this solution can introduce reductions under action prefixes, in the same way
as the rule sync in Figure 1. To prevent such reductions the standard solution is
to introduce a “top” operator and enforce rewriting at the top (or use order-sorted
theories that distinguish between sequential and concurrent processes). Here, for
the sake of simplicity, we assume that action prefix is declared as a frozen operator,
so that the rewrite engine (e.g. the Maude interpreter) cannot rewrite under action
prefixes.

By applying the construction Ad to CCS we obtain a 2-computad Ad[CCS] that
models the atomic reductions available at the abstract level of the system. The
rewrite rules in Ad[CCS] are the elementary tiles of D [CCS]. A generic (stable)
state is an arbitrary parallel composition of sequential processes (i.e., either 0 or
processes guarded by action prefix). Since reductions cannot be performed under
action prefixes, the relevant part of the state can be depicted as a binary tree (internal
nodes are labeled by parallel composition as in the ordinary view of terms as trees)
whose leaves are labeled by sequential processes.

A generic transaction requires the occurrence of two complementary tiles, say
actλ and actλ̄, in two leaves of the tree, the subsequent propagation of their obser-
vations λ and λ̄ toward the top of the tree (via lparλ, rparλ, lparλ̄, and rparλ̄),
until their first common ancestor (i.e. the node associated with the least parallel
composition enclosing both sequential processes) receives the two triggers and can
coordinate them via comλ. All the other nodes in the tree do not actively participate
in the transaction.

Each transaction has the form C[x1, ...,λ.xi, ..., λ̄.x j, ...,xn] ⇒ C[x1, ...,xn] for a
suitable context C with n holes, built using only parallel composition, which defines
the binary synchronization tree going from the two interacting components λ.xi and
λ̄.x j to the first common parallel operator enclosing them. It is worth noting that
each elementary transaction is uniquely determined by its left-hand side.

Formally, the interesting contexts for elementary transactions are defined by the
grammar in Figure 7. As sketched in Figure 8, a context Ci,m

n defines a synchro-
nization tree with n leaves (the holes of the context), whose ith and jth leaves want
to interact (with j = i + m). Since the root is the first common parallel operator
enclosing the above leaves, it follows that it can be divided into two subtrees: Li

l

103103

Bruni, Meseguer, and Montanari

Ci, j−i
n |

ssssssssssssssssss

JJJJJJJJJJJJJJJJJ

Li
l

Rr
i+l,k

[1] i [i] l
[i+l] r [j] k

[n]

Figure 8. Synchronization contexts, graphically (where j = i+ l + r and n = j + k).

containing the first i + l leaves; and Rr
i+l,k containing the remaining r + k leaves,

with l + r = m. The two subtrees are characterized by the fact that at every branch-
ing one child is a hole, while the other child is the subtree containing one of the
two interacting positions. For example, we have the derivations below:

C2,3
5 →L2

1 | R2
3,0 → ([1] | R1

1,1) | R2
3,0 → ([1] | (R1

1,0 | [3])) | R2
3,0 →

([1] | ([2] | [3])) | R2
3,0 → ([1] | ([2] | [3])) | ([4] | R1

4,0) →

([1] | ([2] | [3])) | ([4] | [5])

C2,3
5 →L2

0 | R3
2,0 →

∗ ([1] | [2]) | R3
2,0 →

∗ ([1] | [2]) | ([3] | ([4] | [5]))

On the other hand, the context ([1] | [2]) | (([3] | [4]) | [5]) cannot be generated
from C2,3

5 , because the subterm [3] | [4] is inessential to the transaction between
the second (i = 2) and fifth (j = i+3) holes.

Thus, the abstract view of the D-computad is a 2-computad with infinitely many
rewrite rules, one for each possible (binary) synchronization tree connecting two
complementary action prefixes.

For example the transaction α =
(
actλ ⊗1⊗actλ̄

)
∗
(
lparλ ⊗ λ̄

)
∗comλ de-

fines a reduction (λ.x1 | x2) | λ̄.x3 ⇒ (x1 | x2) | x3 (obtained by taking C1,2
3 →

L1
1 | R1

2,0), while β =
(
actλ ⊗ 1⊗ actλ̄

)
∗

(
λ⊗ rparλ̄

)
∗ comλ defines a reduc-

tion λ.x1 | (x2 | λ̄.x3) ⇒ x1 | (x2 | x3) (obtained by taking C1,2
3 → L1

0 | R2
1,0).

Note that concurrent transactions can take place under parallel composition (but
not under prefixes, which are frozen). This is because, once an elementary trans-
action α has been closed by the tile comλ, the context where it is embedded does
not take part in that transaction (by α being elementary) but can participate in other
transactions disjoint from α.

If we take configurations in Proc/≡ (i.e. processes modulo associativity, com-
mutativity and identity of parallel composition), then the abstract 2-computad has
still infinitely many rewrite rules (the same as before), but now many of them have
the same lefthand and righthand sides. For example, the transactions α and β above
are now two distinct ways of performing the reduction λ.x1 | x2 | λ̄.x3 ⇒ x1 | x2 | x3.

Finally, the relationship between Ad[CCS/≡] and the reduction system in Fig-
ure 1 can be expressed by the 2-computad morphism that sends the rule syncλ (i.e.
obtained as an instance of C1,1

2) in Figure 1 to the transaction (actλ⊗actλ̄)∗comλ,
showing that this is just a possible way of synchronizing two processes.

104104

Bruni, Meseguer, and Montanari

6 Conclusion

We have extended the zero-safe approach of [5] to the more general framework of
tile and rewrite theories. The coreflection between the abstract and the specification
view relates the two principal operational models based on LTS and reductions and
provides a systematic general approach to the definition of transactions. In fact, the
universal property of coreflections guarantees that the abstract system is the best
possible representation (among rewrite theories) of the concurrent transactions of
its corresponding tile theory. It is worth noting that the representation results for
zero-safe nets presented in [5] now follow from the more general constructions de-
fined here. Let us finally mention that the horizontal composition of D-computads
has some analogies with conditional rewriting logic, but we leave the study of the
precise correspondence between these two specification options for future work.

Acknowledgment. We warmfully thank Narciso Martı́-Oliet for his many comments
on a preliminary draft of the paper, which have been very helpful in improving the
quality of our submission. We also thank the anonymous referees for their useful
suggestions.

References

[1] G. Berry, and G. Boudol. The chemical abstract machine, Theoret. Comput. Sci. 96
(1992), pp. 217–248.

[2] R. Bruni. “Tile Logic for Synchronized Rewriting of Concurrent Systems,” Ph.D.
thesis, Computer Science Department, University of Pisa (1999).

[3] R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join calculus, in
Proc. CONCUR 2002, Lect. Notes in Comput. Sci. (2002), to appear.

[4] R. Bruni, J. Meseguer, and U. Montanari. Process and term tile logic, Technical Report
SRI-CSL-98-06, SRI International (1998).

[5] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual
token approaches, Inform. and Comput. 156 (2000), pp. 46–89.

[6] R. Bruni and U. Montanari. Dynamic connectors for concurrency, Theoret. Comput.
Sci. 281(1-2) (2002), pp. 131–176.

[7] R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming,
Theory and Practice of Logic Programming. 1 (2001), pp. 647–690.

[8] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic, in Proc.
WRLA’96, Elect. Notes in Th. Comput. Sci. 4 (1996).

[9] E. Ehresmann. Catégories structurèes: I–II, Annales École Normal Superieur 80
(1963), pp. 349–426.

[10] F. Gadducci and U. Montanari. The tile model, in Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, 2000. pp. 133–166.

105105

Bruni, Meseguer, and Montanari

[11] F. W. Lawvere. Functorial semantics of algebraic theories, Proc. National Academy
of Sciences 50 (1963), pp. 869–872.

[12] J. Meseguer. Rewriting as a unified model of concurrency, Technical Report SRI-CSL-
90-02R, SRI International (1990).

[13] J. Meseguer. Conditional rewriting logic as a unified model of concurrency, Theoret.
Comput. Sci. 96 (1992), pp. 73–155.

[14] J. Meseguer and U. Montanari. Petri nets are monoids, Inform. and Comput. 88(2)
(1990), pp. 105–155.

[15] J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic, in Proc.
WADT’97, Lect. Notes in Comput. Sci. 1376 (1998), pp. 62–91.

[16] J. Meseguer, P. Ölveczky, and M.-O. Stehr. Rewriting logic as a unifying framework
for Petri nets, in Advances in Petri Nets: Unifying Petri Nets, Lect. Notes in Comput.
Sci. 2128, Springer Verlag, 2001. pp. 250–303.

[17] G. Plotkin. A structural approach to operational semantics, Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department (1981).

[18] R. Street. Higher categories, strings, cubes and simplex equations, Applied
Categorical Structures 3 (1995), pp. 29–77.

[19] R. Street. Categorical structures, in: M. Hazewinkel, editor, Handbook of Algebra,
Elsevier Science, 1996. pp. 529–577.

A Monoidal Double Categories

A double category is an internal category in Cat, the category of categories (as
objects) and functors (as arrows). More naı̈vely, they can be defined as below:

Definition A.1 A double category consists of a collection a,b,c, ... of objects, a
collection h,g, f , ... of horizontal arrows, a collection v,u,w, ... of vertical arrows
and a collection α,β,γ, ... of cells.

Objects and horizontal arrows form the horizontal 1-category with identity a
for each object a, and composition ; . Similarly, objects and vertical arrows form
the vertical 1-category, with identity a for each object a, and composition ; .

Cells are assigned horizontal source and target (which are vertical arrows) and
vertical source and target (which are horizontal arrows); furthermore sources and
targets must be compatible, in the sense that they must form a square-shaped dia-
gram like the one below, for which we use the notation α:h

v
−→

u
g.

a h //

αv
²²

b
u
²²

c g
// d

106106

Bruni, Meseguer, and Montanari

Cells can be composed both horizontally (∗) and vertically (·) as follows: if
α:h

v
−→

u
g, β: f

u
−→

w
k, and γ:g

z
−→

x
p, then α ∗β:h; f

v
−→

w
g;k, and α · γ:h

v;z
−→
u;x

p.

Moreover, given a fourth cell δ:k
x

−→
y

q, the following exchange law holds:

(α · γ)∗ (β ·δ) = (α∗β) · (γ∗δ)

Under these rules, cells form both a horizontal category and a vertical category, with

identities 1v : a
v

−→
v

c and 1h : h
a

−→
b

h, respectively. Given 1h : h
a

−→
b

h and 1g : g
b

−→
c

g, the equation 1h ∗ 1g = 1h;g must hold (and similarly for vertical composition of
horizontal identities).

Furthermore, horizontal and vertical identities of identities coincide, i.e., 1a =
1a and are denoted just by a (analogously, 1h and 1v are just denoted by h and v).

A double functor G :D1 → D2 is a 4-tuple of functions (one for objects, one for
horizontal arrows, one for vertical arrows, and one for cells), preserving identities
and compositions of all kinds. We let DCat be the category of double categories
(as objects) and double functors (as arrows).

Definition A.2 A monoidal double category is a double category D equipped with
a double functor ⊗:D×D → D (the tensor product) and with an object e (the unit)
such that: (1) (⊗×1D);⊗ = (1D ×⊗);⊗, and (2) (e×1D);⊗ = (1D × e);⊗ = 1D.

A monoidal double category can be equivalently defined either as an internal
category in MCat, the category of monoidal categories (as objects) and monoidal
functors (as arrows), or as an internal monoid in DCat (see [15]).

A monoidal double functor is a double functor that (strictly) preserves tensor
product and unit. The category of monoidal double categories (as objects) and
monoidal double functors (as arrows) is called DMCat.

B Categories and Constructions

For the reader’s convenience, in this Appendix we summarize in two tables the
relevant categories and constructions between them that are discussed in the paper.

We recall that the notion of adjunction is an elegant categorical tool for estab-
lishing a correspondence between categories. There are several equivalent defini-
tions of adjunction. Probably, the more “constructive” presentation consists of the
scenario with two categories A and B and a functor F :A → B. Then, given an
object b ∈ B we would like to find the object a ∈ A that “better approximates” b
via F , where:

• approximation means the existence of a morphism f from F (a) to b in B;
• best approximation means that any other approximation f ′:F (a′) → b via an

object a′ ∈ A can be expressed in terms of f and (the image of) a uniquely de-
termined morphism from a′ to a (the so-called universal property, as formalized
below).

107107

Bruni, Meseguer, and Montanari

A Gb

a

ĝ

OO
F (Gb)

εb // b B

F (a)

F (ĝ)

OO

g

<<yyyyyyyyy

Figure B.1. The left adjoint F .

When best approximations exist for all objects of B, then they can be used to rep-
resent the relevant structure of B inside A itself (from the point of view of F).

Definition B.1 Let A and B be two categories and let F :A → B be a functor. We
say that F is a left adjoint if for each object b ∈ B there exist an object Gb ∈ A
and an arrow εb:F (Gb) → b ∈ B, such that for any object a ∈ A and for any arrow
g:F (a) → b ∈ B, there is a unique arrow ĝ:a → Gb ∈ A, such that g = F (ĝ);εb

(see Figure B.1).

A consequence of this fact is the existence of a backward functor G :B → A
that maps each object b into its best approximation Gb. To see this point, note that
given an arrow h:b→ b′ ∈B, then the composite arrow εb;h:F (Gb)→ b′ factorizes
through εb′ via the image of a unique arrow f :Gb → Gb′ ∈ A (by definition of
adjoint f = ε̂b;h). Hence the functor G can be defined by letting G (h) = f .

The functor G is called the right adjoint of F , and we write F a G . The
collection ε = {εb}b∈B is called the counit of the adjunction and defines a natu-
ral transformation from G ;F to 1B. Dually, it is possible to define a collection
of “least upper” approximations η = {ηa:a → G (F (a))}a∈A, where ηa = îdF (a),
which defines a natural transformation from 1A to F ;G (called unit).

An important property of adjunctions is the preservation of universal construc-
tions: left adjoints preserve colimits, and right adjoints preserve limits. Since
(co)limits can be seen as the categorical way of expressing operations, adjunctions
guarantee to some extent a “compositional” interpretation for such operations.

The typical situation involves a category B that has more structure than A, and
a forgetful functor G that projects B to A, deleting the extra structure. If G has left
adjoint F , then F defines the best way of adding that extra structure to A.

Reflection and coreflection are two particularly kinds of adjunction, where, re-
spectively, the counit and the unit define natural isomorphisms, yielding optimal
approximations. When the unit is a natural isomorphism, then A can be seen just as
subcategory of B, with the left adjoint F being the inclusion functor. Thus, core-
flection is the ideal situation from the semantics point of view. In fact, the typical
situation involves a category of operational models B that contains a subcategory
of abstract models A, with G (b) being the abstraction of b. Then, the universal
property of coreflections means that there is a natural isomorphisms between the
observations of any concrete model b and of its abstract counterpart G (b), i.e. that
b is the same as G (b) when observed from the abstract point of view defined by A.

108108

Bruni, Meseguer, and Montanari

Category Objects Arrows

Cat categories functors

MCat strict monoidal categories strict monoidal functors

2MCat strict monoidal 2-categories strict monoidal 2-functors

DCat double categories double functors

DMCat strict monoidal double categories strict monoidal double functors

Petri P/T Petri nets Petri net morphisms

ZPetri zero-safe nets (disjoint) zero-safe net morphisms

HCatZPetri zero-safe nets with (disjoint) net homomorphisms

enriched transitions (∗,⊗, id)

ZSN zero-safe nets refinement morphisms

2Comp, 2Compc 2-computads 2-computad morphisms

DComp, DCompc D-computads D-computad morphisms

ZComp, ZCompc D-computads disjoint D-computad morphisms

HCatZComp, D-computads with disjoint D-computad homomorphisms

HCatZCompc enriched tiles (∗,⊗, id)

RComp, RCompc D-computads computad refinement morphisms

Construction Description Original to this contribution?

2Comp
F2 //
⊥ 2MCat
U2

oo Adjunction No (see [15])

DComp
Fd //
⊥ DMCat
Ud

oo Adjunction No (see [15])

ZPetri
Z //
⊥ HCatZPetrioo Adjunction No (see [5])

Petri
Â Ä //

⊥ ZSN
Az

oo Coreflection No (see [5])

ZPetri
Â Ä // ZCompc Â Ä // ZComp Full and faithful inclusions Yes (Proposition 4.2)

HCatZPetri
Â Ä // HCatZCompc Full and faithful inclusion Yes (Proposition 4.3)

ZComp
D //
⊥ HCatZCompoo Adjunction Yes (Proposition 4.4)

ZCompc
D

c
//

⊥ HCatZCompc
oo Adjunction Yes (Proposition 4.4)

ZSN
Â Ä // RCompc Â Ä // RComp Full and faithful inclusions Yes (Proposition 4.11)

Petri
Â Ä // 2Compc Â Ä // 2Comp Full and faithful inclusions No (see [14])

2Comp
Â Ä I //

⊥ RComp
Ad

oo Coreflection Yes (Theorem 4.10)

2Compc
Â Ä I

c
//

⊥ RCompc

A
c
d

oo Coreflection Yes (Proposition 4.11)

109109

