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Abstract: The primary objective of the paper is to study the existence, asymptotic boundary estimates and

uniqueness of large solutions to fully nonlinear equations H(x, u, Du, D2u) = f(u) + h(x) in bounded C2

domains Ω ⊆ ℝn. Here H is a fully nonlinear uniformly elliptic differential operator, f is a non-decreasing
function that satisfies appropriate growth conditions at infinity, and h is a continuous function on Ω that

could be unbounded either from above or from below. The results contained herein provide substantial

generalizations and improvements of results known in the literature.
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1 Introduction
Let Ω ⊆ ℝn be a bounded open set with C2 boundary ∂Ω. We consider the infinite boundary value problem

{
H[u] = f(u) + h(x) in Ω

u =∞ on ∂Ω,
(1.1)

where H[u] := H(x, u, Du, D2u) is a fully nonlinear uniformly elliptic operator. For u ∈ C2(Ω), as usual, Du
stands for the gradient of u while D2u denotes the Hessian matrix of u.

Let Sn be the set of n × n real symmetric matrices. Throughout this paper, we fix constants 0 < λ ≤ Λ and

we setAλ,Λ := {A ∈ Sn : λIn ≤ A ≤ ΛIn}.
To specify our assumptions on H, we first recall the so-called Pucci extremal operators P−λ,Λ : Sn → ℝ

and P+λ,Λ : Sn → ℝ (see [8]) defined by

P+λ,Λ(X) := sup

A∈Aλ,Λ

tr(AX) and P−λ,Λ(X) := inf

A∈Aλ,Λ
tr(AX) for all X ∈ Sn .

Here tr(X) stands for the trace of X ∈ Sn.
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Given non-negative functions γ, χ ∈ C(Ω) let us set

M+(x, t, p, X) := P+λ,Λ(X) + γ(x)|p| + χ(x)t
−
, (1.2)

M−(x, t, p, X) := P−λ,Λ(X) − γ(x)|p| − χ(x)t
+

(1.3)

for (x, t, p, X) ∈ Ω ×ℝ ×ℝn × Sn, where t± = max(±t, 0).
The class of functions H : Ω ×ℝ ×ℝn × Sn → ℝ considered in this work will include

H(x, t, p, X) := P±λ,Λ(X) +K(x, p) − χ(x)t,

whereK : Ω ×ℝn → ℝ is a continuous function such that

|K(x, q) −K(x, p)| ≤ γ(x)|q − p|

for some non-negative γ, χ ∈ C(Ω).
In this paper, we will consider mappings H : Ω ×ℝ ×ℝn × Sn → ℝ such that for all x, y ∈ Ω, s, t ∈ ℝ,

p, q ∈ ℝn and X, Y ∈ Sn the following hold:
(H-1) H is continuous, H(x, 0, 0, O) = 0 and

M−(x, t − s; q − p; Y − X) ≤ H(x, t, q, Y) − H(x, s, p, X) ≤M+(x, t − s; q − p; Y − X).

(H-2) |H(x, t, p, X)−H(y, t, p, X)| ≤ K‖X‖|x−y|+ω((1+|p|)|x−y|), where K ≥ 0 is a constant andω : ℝ+ → ℝ+
such that ω(0+) = 0.

Here and throughout,ℝ+ stands for the set of positive real numbers.

We now turn to the nonlinearity f in (1.1). Throughout this paper we will assume that f : ℝ→ ℝ is

a continuous function that satisfies both of the following conditions:

(f-1) f is non-decreasing, positive inℝ+ and f(0) = 0.
(f-2) f satisfies the Keller–Osserman condition; namely

∞

∫
1

dt
√F(t)
<∞, where F(t) =

t

∫
0

f(s) ds, t ≥ 0.

Further conditions on f , as well as on h ∈ C(Ω), that will be needed in this work will be explained later.
The study of large solutions has a long history. Perhaps a systematic study of large solutions started with

the works of Keller [28] and Osserman [40]. Since then a huge amount of work has emerged focusing on

existence and uniqueness of large solutions. An exhaustive list on large solutions is impossible and we only

list [1, 5, 10, 11, 17, 18, 21, 22, 24, 30–33, 41, 42, 47] and refer the interested reader to the references

therein.Wewish to single out the papers of García-Melián [22], López-Gómez and LuisMaire [30], andMarcus

and Véron [32] on uniqueness of large solutions of ∆u = f(u) on smooth bounded domains under some gen-

eral conditions on f . However, in order to put the problemswewish to consider in this paper in perspective, let

us recall some works that are directly related to problem (1.1) with h(x) ̸≡ 0 on Ω. In [45], Verón studied the

existence and uniqueness of solutions to problem (1.1) when h ∈ C(Ω) is non-positive, H[u] = tr(A(x)D2u)
is uniformly elliptic, and f(t) = |t|κ−1t for some κ > 1. Likewise, in [15], Diaz and Letelier investigated larges
solutions of div(|Du|p−2Du) = f(u) + h(x), p > 1, in bounded C2 domains when f is a non-decreasing func-
tion that satisfies a condition of Keller–Osserman type suited for the p-Laplace operator and h ∈ C(Ω) is
non-positive. In [2], Alarcón and Quaas study existence, asymptotic boundary behavior and uniqueness of

solutions to problem (1.1). In the paper [2], the authors consider the case when H[u] depends on D2u only, f
satisfies the usual Keller–Osserman condition and h ∈ C(Ω) is non-positive. In a related work [46], one of the
authors, Amendola andGalise show thatH(Du, D2u) = c|u|p−1u + |u|q−1 + h(x) has atmost one positive large

solution on a bounded domain Ω ⊆ ℝn with “local graph property" introduced by Marcus and Verón [31].

Here c ∈ ℝ, 0 < p < q, h ≤ 0 on Ω and H is a uniformly elliptic operator that is “homogeneous” of degree

k ∈ [p, q] which satisfies appropriate structural conditions. We refer to [46] for more details on the results

and conditions imposed.
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In a recent paper, García-Melián studied existence anduniqueness of large solutions to ∆u = |u|p−1u+h(x)
in bounded C2 domains,where h ∈ C(Ω) is allowed to change sign. See also [47]. To the best of our knowledge,
this more challenging case of a sign-changing inhomogeneous term h is investigated for the first time in

the paper [23]. In [23], the author obtains existence of large solutions to the aforementioned equation for

a large class of unbounded h ∈ C(Ω) and uniqueness result is proven under the restriction that h is bounded
on Ω from above. Motivated by the work of [23], one of the authors and Porru [37] extended the work of [23]

to large solutions of Lu = f(u) + h, where L is a linear uniformly elliptic equations in non-divergence form

with possibly unbounded lower-order terms. In [37], existence and uniqueness results are obtained when

the inhomogeneous term h ∈ C(Ω) is allowed to be unbounded from above but with some restrictions, and

with bounded coefficients for the first-order and zero-order terms.

Themainobjective of thepresent paper is to extendmanyof the above results to solutions of problem (1.1)

by relaxing the conditions used in most of the aforementioned papers. In fact, the results contained herein

are new for solutions of (1.1) when h is unbounded from above, evenwhen H[u] = ∆u. Another feature of the
current work is that we obtain existence of solutions not only when h is unbounded on Ω, but also when the

coefficients of H are unbounded on Ω.

The paper is organized as follows. In Section 2, we state the main results of the paper. These results

discuss existence, asymptotic boundary estimates and uniqueness of solutions to problem (1.1). Section 3

presents some basic facts that are consequences of the assumptions made in the Introduction. We also recall

several useful results from the literature that will be used in our work. The ABPmaximum principle will play

a recurring role in our work. In Section 4 we will develop several existence results. Depending on the rate of

growth of h near the boundary, we will either relax the conditions needed on f or require more restriction.

Asymptotic boundary estimates of solutions toproblem (1.1)will bedeveloped inSection5. In the investi-

gation of such estimates, a condition on f introduced by Martin Dindoš in [16] will have a prominent role.

Uniqueness of solution to problem (1.1) will be investigated in Section 6. In its most general form, the

uniqueness resultwill use a condition on h thatmanifests through the growth of a solutionψ ofM−[ψ] = −h+.
In particular, our uniqueness result allows h ∈ Ln(Ω) ∩ C(Ω) in problem (1.1).

Finally, we have included an Appendix where some useful results on existence to boundary value prob-

lems involving H with unbounded coefficients are studied. These results are used in the main body of the

paper and are of independent interest.

2 Main results
In this sectionwe state themain results of the paper. To avoid use of technicalities, we have chosen to present

these results in less general terms than given in the main body of the paper.

We begin by considering the non-increasing function ϕ : ℝ+ → ℝ+ such that
∞

∫
ϕ(t)

ds
√2F(s)

= t, t > 0. (2.1)

Our first existence result, as well as many others, will depend on the sizes of

Θ

∗
f (h
±) := lim sup

d(x)→0

h±(x)
f(ϕ(d(x)))

, (2.2)

where d(x) is the distance of x ∈ Ω to the boundary ∂Ω of Ω. We will denote (2.2) simply as Θ

∗(h)when there
is no ambiguity concerning f .

Another important feature of our work is that we allow unbounded coefficients γ, χ ∈ C(Ω) subject to the
conditions:

(C-γ) lim

d(x)→0
γ(x)d(x) = 0,

(C-χ) lim

d(x)→0
χ(x)d2(x) = 0.
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To state our first existence result, we recall the following condition introduced by Dindoš in [16]. There

is θ > 1 such that

(f-θ) ℓ := lim inf

t→∞

f(θt)
θf(t)
> 1.

This condition, or a strengthened form thereof,will also appear in the studyof boundary asymptotic estimates

as well as in our uniqueness result. We remark that (f-θ), together with (f-1) implies (f-2). See Remark 3.6.

To obtain existence of solutions to problem (1.1) with the coefficients γ and χ allowed to be unbounded
on Ω according to (C-γ) and (C-χ), we need control on the rate of growth of f at infinity and the following

condition provides such control:

(f-3) α := lim inf

t→∞

F(t)
tf(t)
> 0.

Perhaps awordonnotational use is in order here. Ifwewish touse any condition (f-x) ona function g : ℝ→ ℝ,
we will simply quote it as condition (g-x).

Referring to Section 3 for condition (f-4) we now state our first existence result.

Theorem 2.1. Let Ω ⊆ ℝn be a smooth bounded domain. Assume that (H-1), (H-2), (C-γ), (C-χ), (f-1), (f-2),
(f-4) hold. Suppose that there is g : ℝ→ ℝ that satisfies (g-1), (g-3) and (g-θ) such that f ≤ g at infinity. Then
there exists a constant Θ > 0 such that problem (1.1) admits a maximal solution whenever h ∈ C(Ω) satisfies
h(x) = O(f(ϕ(d(x)))) as d(x)→ 0 with Θ∗(h+) < Θ. Here Θ = Θ(λ, α, θ, ℓ), where θ, ℓ, α are the parameters in
condition (g-3) and (g-θ).

We note that when f satisfies (f-3) and (f-θ), we may take f as the function g in Theorem 2.1, and if f satis-
fies (f-3), the choice g(t) = tp f(t), where p > 0 will do in Theorem 2.1.

A complementary existence result can be obtained by prescribing an indirect control on the size of h+.
This control is imposed on the growth, near the boundary, of a non-negative solution ψ of a PDE related to

the Pucci maximal operator as follows:

(D-h) The equation

M+[ψ] ≤ −h+ (2.3)

admits a non-negative solution ψ ∈ C(Ω).
We refer to Remark 4.8 for a discussion on this condition.

Based on a result of Ancona [4], see also [34], we can relax condition (C-γ), while at the same time we

need to strengthen condition (C-χ) to the following conditions, respectively:

(B-γ) sup

x∈Ω
γ(x)d(x) <∞,

(C-χη) sup

x∈Ω

d2(x)
η(d(x))

χ(x) <∞,

where η : (0, R]→ ℝ+ is a non-decreasing function for some R ≥ diam(Ω) and satisfies the Dini condition

R

∫
0

η(t)
t
dt <∞.

It will be convenient to refer to such a function as a Dini continuous function. Assuming that

h+(x) = O(d(x)−2η(d(x))) as d(x)→ 0,

one can use Lemma 4.3 to establish the existence of a maximal solution of (1.1). Moreover, this maximal

solution is positive provided that the following is sufficiently small:

hη := sup
Ω

h+(x)
d−2(x)η(d(x))

<∞. (2.4)

This allows for instance when h+(x) = O(d−2+δ(x)) as d(x)→ 0 for some δ > 0. We wish to emphasize here

that the only conditions on f needed are (f-1) and (f-2).
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Theorem 2.2. Let Ω ⊆ ℝn be a bounded smooth domain. Assume (H-1), (H-2), (B-γ), (C-χη), (f-1), (f-2). If
h ∈ C(Ω) is such that hη <∞ for some Dini continuous function η, then problem (1.1) admits a maximal
solution. Moreover, there exists a constant c > 0 such that the solution is positive whenever hη < c.

The proof relies on the existence of a positive solution ψ to problem (2.3). This approach based on condi-

tion (D-h) also proves to be useful in dealing with uniqueness for unbounded h, at least when the coeffi-

cients γ and χ are non-negative constants. The analysis on uniqueness will be carried out through boundary
asymptotic estimates of solutions of (1.1).

To obtain boundary asymptotic estimates, we need Dindoš’ condition as well as control from below on h.
In fact, we need to assume h−(x) = O(f(ϕ(d(x))) as d(x)→ 0, or equivalently Θ

∗
f (h
−) <∞. However, we need

the coefficients γ and χ be bounded, which without loss of generality, we take to be non-negative constants.

Theorem 2.3. Let Ω ⊆ ℝn be a bounded smooth domain. Assume (H-1) and (H-2) with γ and χ non-negative
constants, (f-1) and (f-θ) for some θ > 1. Let h ∈ C(Ω) be such that Θ∗(h−) <∞ and hη <∞ for some Dini
continuous function η. There exist constants 0 < A∗ ≤ A∗ <∞ such that

A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

≤ lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ A∗

for all solutions u of (1.1).

We need further assumptions on H and on f in order to get uniqueness. These are the sub-homogeneity

property: For all (σ, x, t, p, X) ∈ (1,∞) × Ω ×ℝ ×ℝn × Sn
(H-3) H(x, σt, σp, σX) ≤ σH(x, t, p, X)
and the monotonicity condition

(f-m)

f(t)
t is non-decreasing at infinity.

The following uniqueness result holds.

Theorem 2.4. Let Ω ⊂ ℝn be a bounded and smooth domain and assume (H-1)–(H-3) with γ, χ non-negative
constants. Assume that f satisfies conditions (f-1), (f-3), (f-θ) for all θ > 1 and (f-m). Suppose also that h ∈ C(Ω)
satisfies Θ∗(h−) <∞ and h+(x) = O(d−2(x)η(d(x))) as d(x)→ 0 for some Dini continuous function η. Then
problem (1.1) admits at most one solution.

We should point out that the above asymptotic estimate and uniqueness results, which are stated here

with the condition h+(x) = O(d−2(x)η(d(x))) as d(x)→ 0 for some Dini continuous function η, have been
established in this paper in a more general framework through control of the growth of the functions ψ given

in condition (D-h). To the best of our knowledge, this approach appears here for the first time (see also [35]).

The optimal growth on h+ that this method leads to remains an open problem.

3 Preliminaries
Throughout the entire paper we suppose that Ω ⊆ ℝn is a bounded open set with C2 boundary. In this work

it will be convenient to use the following notations. Given δ > 0,

Ωδ := {x ∈ Ω : d(x) < δ}

and

Ω

δ
:= {x ∈ Ω : d(x) > δ},

where d(x) denotes the distance of x ∈ Ω to the boundary ∂Ω. Since Ω is a bounded C2 domain, we note that

there is μ > 0 such that d ∈ C2(Ωμ) and |∇d(x)| = 1 on Ωμ. See [25, Lemma 14.16] for a proof. In fact, by

modifying the distance function d appropriately, we can suppose that d is a positive C2 function on Ω. For

instance one can use (1 − φ)d + φ instead of d, where φ ∈ C2c (Ω) is a cut-off function with 0 ≤ φ ≤ 1 on Ω,

φ ≡ 0 on Ωμ
0

for some 0 < μ
0
< μ and φ ≡ 1 on Ωμ. Therefore hereafter, we will always suppose that d is this

modified distance function and that d is in C2(Ω) with |Dd| ≡ 1 on Ωμ
0

.
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It is helpful to keep in mind the following alternative description of the Pucci extremal operators:

P+λ,Λ(X) = Λ tr(X+) − λ tr(X−) = Λ ∑
ei(X)>0

ei(X) + λ ∑
ei(X)<0

ei(X),

P−λ,Λ(X) = λ tr(X
+) − Λ tr(X−) = λ ∑

ei(X)>0
ei(X) + Λ ∑

ei(X)<0
ei(X),

where X+ and X− are the positive and negative parts of X, respectively, and ei(X), i = 1, . . . , n, are the eigen-
values of X, counted according multiplicity, in non-decreasing order.

The positive homogeneity, duality, sub-additive and super-additive properties of the Pucci extremal

operators (see [8]) lead to the following useful properties ofM±:

M±(x, c(t, p, X)) = cM±(x, t, p, X), (3.1)

M−(x, t, p, X) = −M+(x, −t, −p, −X), (3.2)

M+(x, t, p, X) +M−(x, s, q, Y) ≤M+(x, t + s, p + q, X + Y) ≤M+(x, t, p, X) +M+(x, s, q, Y), (3.3)

M−(x, t, p, X) +M−(x, s, q, Y) ≤M−(x, t + s, p + q, X + Y) ≤M+(x, t, p, X) +M−(x, s, q, Y) (3.4)

for all c ≥ 0 and (x, t, p, X), (x, s, q, Y) ∈ Ω ×ℝ ×ℝn × Sn.

Remark 3.1. From (H-1) it follows that H is uniformly elliptic, that is,

λ tr(Y − X) ≤ H(x, t, p, Y) − H(x, t, p, X) ≤ Λ tr(Y − X) whenever X ≤ Y.

Moreover, (H-1) implies that H is non-increasing in t:

H(x, t, p, X) − H(x, s, p, X) ≤ 0

for s ≤ t.

Given k ∈ C(Ω ×ℝ), a function u ∈ C2(Ω) is said to be a classical solution of equation H[u] = k(x, u) in Ω if

and only if

H(x, u(x), Du(x), D2u(x)) = k(x, u(x)) for all x ∈ Ω. (3.5)

However, in this paper we consider functions u ∈ C(Ω) which are solutions in the viscosity sense, according
to the following definition.

Let u ∈ USC(Ω) (upper semicontinuous in Ω), resp. u ∈ LSC(Ω) (lower semicontinuous in Ω). Then u is
said to be a viscosity subsolution (resp., supersolution) inΩ of (3.5) if andonly if for each x ∈ Ω andφ ∈ C2(Ω)
such that u − φ has a local maximum (resp. minimum) at x we have

H(x, u(x), Dφ(x), D2φ(x)) ≥ k(x, u(x)) (resp., H(x, u(x), Dφ(x), D2φ(x)) ≤ k(x, u(x))).

A function u ∈ C(Ω) that is both a viscosity subsolution and viscosity supersolution in Ω of (3.5) is called

a viscosity solution in Ω.

Remark 3.2. It is well known that a function u ∈ C2(Ω) is a classical subsolution (supersolution) of (3.5) if

and only if u is a viscosity subsolution (supersolution) of (3.5). The forward implication follows directly from

the definition. For the reverse, we refer to [8, Corollary 2.6].

We note the following consequence of condition (H-1):

M−[u] ≤ H[u] ≤M+[u] (3.6)

for any function u ∈ C2(Ω), whereM±[u] :=M±(x, u, Du, D2u).
In the sequel we will make an extensive use of a fundamental tool for pointwise estimates of viscos-

ity solutions of elliptic equations, known as the Alexandroff–Bakelman–Pucci maximum principle (see, for

instance, [3, 6, 9, 43]). For the convenience of the reader we recall below the version needed here.

For this, we first remark that if k ∈ C(Ω) and H[w] ≥ k(x) for some w ∈ C(Ω), then by (3.6) it follows

that M+[w] ≥ k(x). Note also that the latter implies that w+(x) = max(w(x), 0) satisfies M+[w+] ≥ −k−(x).
Therefore, setting

M+γ [w+] := P+λ,Λ(D
2w+) + γ|Dw+|,
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we also have

M+γ [w+] ≥ −k−(x).

Consequently, the standard Alexandroff–Bakelman–Pucci maximum principle (see [6, Proposition 2.12])

leads to the following.

Proposition 3.3 (ABP estimate). Let O ⊆ ℝn be a bounded domain with diameter R. Suppose that H satisfies
condition (H-1), assuming γ = ‖γ+‖L∞(O) <∞. For k ∈ C(O) ∩ Ln(O), let w ∈ C(O) be a viscosity subsolution of
equation H[w] = k(x) in O. There is a non-negative constant C, depending only on n, λ, Λ, and γR, such that

sup

O

w ≤ sup
∂O

w+ + CR‖k−‖Ln(O).

In particular, under the assumptions of Proposition 3.3, the following sign propagation property holds:

H[w] ≥ 0 in O, w ≤ 0 on ∂O ⇒ w ≤ 0 in O.

One then obtains a useful comparison principle by combining Proposition 3.3 and the following result

which is based on [14, Proposition 2.1]. A justification for the reformulation presented below is sketched

in [33, Lemma 2.5].

Lemma 3.4. LetO ⊆ ℝn be a bounded domain, and let a(t), b(t) be continuous functions onℝ. Suppose that H
satisfies (H-1) and (H-2). If H[u] ≥ a(u) and H[v] ≤ b(v) for some u, v ∈ C(O), then

M+[u − v] ≥ a(u) − b(v) in Õ := {x ∈ O : u(x) > v(x)}.

As mentioned in the Introduction, we will assume throughout the paper that f : ℝ→ ℝ satisfies conditions
(f-1) and (f-2). We recall some useful consequences of these assumptions.

Remark 3.5. It is well known that if f satisfies (f-1) and (f-2), then both the following limits hold:

lim

t→∞

√F(t)
f(t)
= 0, lim

t→∞

t
f(t)
= 0, t > 0.

The reader is referred to [24, 26] for a proof.

The non-increasing function ϕ : ℝ+ → ℝ+ defined in (2.1) satisfies

lim

t→0
ϕ(t) =∞,

and

ϕ(t) = −√2F(ϕ(t)), ϕ(t) = f(ϕ(t)).

Here we mention some easy, but useful consequences of the Dindoš’ condition (f-θ).

Remark 3.6. First we point out that assuming (f-1), condition (f-θ) with θ > 1 implies (f-2). More precisely,

we have

lim inf

t→∞

f(t)
tq
> 0

for some q > 1. For a proof we refer to [35, Lemma 2.2].

Remark 3.7. Note that, by iterating (f-θ), we also have, for all j ∈ ℕ,

lim inf

t→∞

f(θj t)
θj f(t)
≥ ℓj (3.7)

as well as

lim sup

t→∞

f(θ−j t)
θ−j f(t)
≤ ℓ−j .

Remark 3.8. We remark that if f satisfies (f-1) and (f-3), then 0 ≤ α ≤ 1

2

, where α is the infimum in condi-

tion (f-3). We refer to [36, Lemma 6.1] for a proof.

We also recall the following two lemmas from [36], and [39], respectively.
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Lemma 3.9. Suppose that f satisfies (f-1), (f-2) and (f-3). Then:

lim sup

t→∞

√F(t)
f(t)∫∞t F(s)− 12 ds

<∞, (i)

lim sup

t→∞

t
f(t)(∫∞t F(s)− 12 ds)2

<∞. (ii)

Remark 3.10. Lemma 3.9 (ii) leads to the following observation when f satisfies conditions (f-1), (f-2)

and (f-3). Suppose h ∈ C(Ω) such that h+(x) = O(d−2(x)ϕ(d(x))) as d(x)→ 0. Then Θ

∗(h+) <∞.

The next result, a consequence of Lemma 3.9, will prove useful in establishing the existence of solutions to

problem (1.1).

Corollary 3.11. Suppose that condition (f-1), (f-2), (f-3) are satisfied. Assuming, in addition, (C-γ), we have

lim

d→0

√F(ϕ(d))
f(ϕ(d))

γ(x) = 0. (3.8)

Assuming, in addition, (C-χ), we have

lim

d→0

ϕ(d)
f(ϕ(d))

χ(x) = 0.

Proof. To show (3.8), observe that

√F(ϕ(d(x)))
f(ϕ(d(x)))

|γ(x)| =
√F(ϕ(d(x)))
d(x)f(ϕ(d(x)))

|γ(x)| d(x) =
√F(ϕ(d(x)))

f(ϕ(d(x)))∫∞ϕ(d(x))
ds
√2F(s)

|γ(x)| d(x).

Therefore, in light of Lemma 3.9 (i) and condition (C-γ), recalling that ϕ(δ)→∞ as δ → 0, the right-hand

side tends to zero as d(x)→ 0. In a similar way, using Lemma 3.9 (ii) and condition (C-χ), we get

ϕ(d(x))
f(ϕ(d(x)))

χ(x) = ϕ(d(x))
f(ϕ(d(x)))d2(x)

χ(x) d2(x) = ϕ(d(x))
f(ϕ(d(x)))(∫∞ϕ(d(x))

ds
√2F(s)
)2
χ(x) d2(x)→ 0 as d(x)→ 0.

The next lemma will be useful in the proof of Theorem 6.2, and hence Theorem 2.4.

Lemma 3.12. Let f satisfy conditions (f-1) and (f-3). Then:
(i) Given any κ > 0, there are positive constants tκ and cκ such that f(κt) ≥ cκ f(t) for all t > tκ.
(ii) If, in addition, (f-θ) holds, then given ϱ > 1, there are constants δϱ > 0 and cϱ > 0 such that ϕ(ϱt) ≥ cϱϕ(t)

for all 0 < t < δϱ.

We should point out that the constants cκ and δκ in Lemma 3.12 (i) depend on the parameter α in con-

dition(f-3), while the constants cϱ and δϱ Lemma 3.12 (ii) also depend on θ and ℓθ in condition (f-θ).
See [35, Lemmas 2.12, 2.13 and 2.15].

The following condition which holds for any odd function f that satisfies (f-1) will be needed in one of

our existence results:

(f-4) lim

t→−∞
f(t) = −∞.

4 Existence
We start this sectionwith a result that shows the existence of supersolutions of (1.1) in balls B ⋐ Ω of suitably

small radii.

Lemma 4.1. Suppose that assumptions (H-1), (f-1), (f-2) are satisfied. Suppose also h ∈ C(Ω). If B ⋐ Ω is a ball
of sufficiently small radius, then there exists a supersolution v ∈ C(B):

{
H[v] ≤ f(v) + h(x) in B,

v =∞ on ∂B.
(4.1)
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Proof. Wemay suppose that B is centered at the origin, that is, B := {x ∈ ℝn : |x| < R} with R < dist(0, ∂Ω).
Let us start with the case h ≡ 0. We look for a solution of the form w = ϕ(ϱ) > 0 with ϱ(x) = R2 − |x|2.

By (H-1), we have

H[w] ≤M+[w]
≤ P+λ,Λ(D

2w) + γ(x)|Dw|

≤ f(w)[4Λ|x|2 +
√2F(ϕ(ϱ))
f(ϕ(ϱ))

(2nΛ + 2γ(x)|x|)]

≤ f(w)[4ΛR2 +
√2F(ϕ(ϱ))
f(ϕ(ϱ))

(2nΛ + 2γ
0
R)],

where γ
0
= maxB γ(x). Taking a smaller concentric ball B, and using Remark 3.5, we take R sufficiently small

so that 4ΛR2 < 1

2

and then

√2F(ϕ(ϱ))
f(ϕ(ϱ))

(2nΛ + 2γ
0
R) < 1

2

.

Thus w solves problem (4.1) with h ≡ 0.
Next, we consider an arbitrary h ∈ C(Ω). Suppose h(x) ≥ −h

0
and γ(x) ≤ γ

0
in B, with h

0
, γ

0
∈ ℝ+. Set

v(x) := w(x) + C(R2 − |x|2), with w(x) as considered above and C > 0 to be suitably chosen. Then

H[v] ≤M+[w] + CM+[R2 − |x|2] ≤ f(w) − 2C(λn − γ
0
R).

We now shrink R further, if necessary, to have λn − γ
0
R ≥ λn

2

and then we take C > 0 large enough in order

that Cλn > h
0
. Since f(w) ≤ f(v), we see that v solves (4.1).

Next, we show the existence of solutions of problem (1.1) when Ω is replaced by any O ⋐ Ω. To accomplish

this, we can apply, on noting that γ, χ, h ∈ C(O), the existence theorem [13, Theorem 1.1].

Theorem 4.2. Assume (H-1), (H-2), (f-1), (f-2). If O ⋐ Ω, then problem (1.1) withO instead of Ω has a solution.

Proof. For j ∈ ℕ, let uj ∈ C(O) be a solution of

{
H[u] = f(u) + h(x) in O,

u = j on ∂O.
(4.2)

(See [13, Theorem 1.1].) By Lemma 3.4, the difference w := uj − uj+1 satisfies the differential inequality

M+[w] ≥ f(uj) − f(uj+1) in Õ := O ∩ {uj > uj+1}.

Therefore, assuming that Õ is non-empty, we would have

M+[w] ≥ 0 in Õ.

By the maximum principle, Proposition 3.3, we have uj ≤ uj+1 in Õ which is a contradiction. It follows that

{uj} is a non-decreasing sequence.
Let B(z, R) ⋐ O be a ball of sufficiently small radius R, and let v be the corresponding solution of (4.1)

provided by Lemma 4.1. A further application of the maximum principle shows that uj ≤ v in B(z, R). There-
fore

C
1
≡ min

B(z, R
2

)
u
1
≤ uj(x) ≤ max

B(z, R
2

)
v ≡ C

2
in B(z, R

2

).

Hence {uj} is a sequence of locally uniformly bounded solutions of (4.2), and so via the Harnack inequality

also locally equi-Hölder continuous in B(z, R
2

) (see [7, 44]). By Ascoli–Arzelà and stability results on viscosity
solutions (see [12]), and taking into account the monotonicity of the sequence {uj}, we have that

u(x) := lim
j→∞

uj(x)

is a continuous viscosity solution of problem (1.1). See, for instance, [20, 46].
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The following lemma shows that a maximal solution can be found for problem (1.1) if a subsolution exists.

Lemma 4.3. Assume (H-1), (H-2), (f-1), (f-2) and h ∈ C(Ω). If the problem

{
H[w] ≥ f(w) + h(x) in Ω,

w =∞ on ∂Ω,
(4.3)

has a solution w, then problem (1.1) has a maximal solution u such that u ≥ w in Ω. If h+ ≡ 0, then the solution
is non-negative in Ω.

Proof. Let {Ωj} be an exhaustion of Ω by smooth domains so that Ω
1
⋐ Ω

2
⋐ ⋅ ⋅ ⋅ ⋐ Ω and ⋃j∈ℕ Ωj = Ω. For

each j ∈ ℕwe take the solution u = uj of problem (1.1) with Ωj instead of Ω (h is bounded in Ωj), provided by
Theorem 4.2. On a fixed Ωj the solutions uk, with k > j, are bounded and by the maximum principle uk ≤ uj
on Ωj. Moreover, {uk}k≥j is a non-increasing sequence on Ωj. Let us set

u(x) := lim
j→∞

uj(x) in Ω.

Using the subsolution w in Ω of the hypothesis and supersolutions on balls of sufficiently small radius as

provided by Lemma 4.1, we can show that the sequence {uj} is uniformly bounded on each domain O ⋐ Ω.
Consequently, the sequence {uj} is equi-Hölder continuous. Therefore u(x) is a continuous viscosity solution
of equationH[u] = f(u) + h(x) inΩ (see the proof of Theorem4.2). It is clear from themaximumprinciple that

uj ≥ w in Ωj for each j. Therefore u ≥ w in Ω and

lim inf

d(x)→0
u(x) ≥ lim inf

d(x)→0
w(x) =∞.

To prove the second assertion in the lemma, suppose h+ ≡ 0 in Ω. Then by conditions (H-1) and (f-1)

we note that w+ is also a solution of (4.3). Therefore, comparison with each uj as in the above shows that

maximal solution u constructed above satisfies u ≥ w+ ≥ 0 in Ω, which was to be shown.

We are ready to prove our first existence theorem for problem (1.1), where an auxiliary function g satisfying
Dindoš’ condition will be employed. As mentioned in the Introduction, we will refer to conditions (f-1)–(f-4),

(f-θ), respectively, as conditions (g-1)–(g-4), (g-θ) when we use g instead of f . Similarly, we denote by ϕg, θg,
ℓg and Θ∗g (h±), respectively, the function ϕ, the numbers θ, ℓ > 1 in (f-θ) and Remark 3.7, and the quantities

Θ

∗
g (h±) in (2.2) when we consider g instead of f .
In the statement of the theorem it will be convenient to use the following notation for any positive con-

stant θ∗ > 0:
ℓ∗(g; θ∗) := lim inf

t→∞

g(θ∗t)
θ∗g(t)

. (4.4)

We recall that for g that satisfies (g-1) and Dindoš’ condition there is θ∗ > 1 such that ℓ∗(g; θ∗) > 1.

Theorem 4.4. Assume (H-1), (H-2), (f-1), (f-2), (f-4), (C-γ), (C-χ). Suppose there exists a function g : ℝ→ ℝ
satisfying conditions (g-1), (g-3), and that there is θ∗ > 0 such that ℓ∗ := ℓ∗(g; θ∗) > 1 and

ρ := lim sup

t→∞

f(t)
g(t)
< λℓ∗. (4.5)

Then there exists a positive constant Θ = Θ(λ, ρ, θ∗, ℓ∗) such that problem (1.1) admits a maximal solution
provided h ∈ C(Ω) satisfies h+(x) = O(g(ϕg(d(x)))) as d(x)→ 0 with Θ

∗
g (h+) < Θ. In fact, we may choose

Θ = θ−1∗ (λ − ρℓ−1∗ ).

Remark 4.5. If g satisfies Dindoš’ condition with θg > 1 and ℓg > 1, then (4.5) is equivalent to

ρ := lim sup

t→∞

f(t)
g(t)
<∞. (4.6)

In fact, suppose that (4.6) holds. In Remark 3.7 we have seen that the function g satisfies (3.7) with θ = θg
and ℓ = ℓg for all j ∈ ℕ. We choose j ∈ ℕ large enough to have ρ < λℓjg, obtaining (4.5) with ℓ∗ = ℓ

j
g. We also

point out that if λ ≥ 1 and f ≤ g holds at infinity, then we can take θ∗ = ℓ∗ = 1 in the theorem.
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Proof. Let us first observe that (f-2) and (4.5) show that g satisfies the Keller–Osserman condition (g-2). For

notational simplicity, let us denote ϕg and Θ

∗
g (h+) by ϕ and Θ

∗
, respectively. According to Lemma 4.3 it is

enough to show that problem (4.3) admits a solution. To this end, we search for a solution in the form

w(x) = θ−1∗ ϕg(d(x)) − A

with the constant A > 0 to be suitably chosen.
Denoting by G the antiderivative of g vanishing at the origin, direct computation in Ωμ, where |Dd| = 1,

yields

H[w] ≥M−[w]
≥ P−λ,Λ(D

2w) − γ(x)|Dw| − χ(x)w+

≥ θ−1∗ {P−λ,Λ(ϕ
(d)Dd ⊗ Dd) + P−λ,Λ(ϕ

(d)D2d) − γ(x)ϕ(d)|Dd| − χ(x)ϕ(d)}

≥ θ−1∗ g(ϕ(d)){λ −
√2G(ϕ(d))
g(ϕ(d))

(P+λ,Λ(D
2d) + γ(x)) − ϕ(d)

g(ϕ(d))
χ(x)}. (4.7)

In (4.7), given ε > 0, we may pass to a smaller μ = μ(ε) > 0, if necessary, to ensure that

√2G(ϕ(d))
g(ϕ(d))

|P+λ,Λ(D
2d)| < λε

3

, (4.8)

√2G(ϕ(d))
g(ϕ(d))

γ(x) < λε
3

, (4.9)

ϕ(d)
g(ϕ(d))

χ(x) < λε
3

. (4.10)

In (4.8) we used Remark 3.5 and the fact that d ∈ C2(Ω). In (4.9) and (4.10) we employed Corollary 3.11.

For μ > 0 small enough, the following chain of inequalities holds in Ωμ:

H[w] ≥ λθ−1∗ g(ϕ(d))(1 − ε) from (4.7), (4.8), (4.9), and (4.10)

= (f(θ−1∗ ϕ(d)) + h+(x))
λ(1 − ε)

f(θ−1∗ ϕ(d))
θ−1∗ g(ϕ(d))

+
h+(x)

θ−1∗ g(ϕ(d(x)))

= (f(θ−1∗ ϕ(d)) + h+(x))
λ(1 − ε)

f(θ−1∗ ϕ(d))
g(θ−1∗ ϕ(d))

g(θ−1∗ ϕ(d))
θ−1∗ g(ϕ(d))

+
h+(x)

θ−1∗ g(ϕ(d(x)))

≥ (f(θ−1∗ ϕ(d)) + h+(x))
λ(1 − ε)

((ρ + ε)ℓ−1∗ + θ∗(Θ∗ + ε))(1 + ε)
. (4.11)

To get (4.11), we used (2.2), (4.4), and (4.5). Now, if Θ

∗ < θ−1∗ (λ − ρℓ−1∗ ), taking ε ∈ (0, 1) small enough, by

(4.5) we have

H[w] ≥ f(θ−1∗ ϕ(d)) + h(x), x ∈ Ωμ .

Since f(θ−1∗ ϕ(d)) ≥ f(θ−1∗ ϕ(d) − A) = f(w), it follows that w is a subsolution in Ωμ.

To finish the proof, we will choose A > 0 large enough so that w is a subsolution also in Ω

μ
2 . For this, let

m = min

Ω

μ
2

H[θ−1∗ ϕ(d(x))], Mh = max

Ω

μ
2

h(x).

By (f-4) we can choose A such that

f(θ−1∗ ϕ(d) − A) < m −Mh

so that in Ω

μ
2 , once again by (H-1),

H[w] ≥ m ≥ f(θ−1∗ ϕ(d) − A) +Mh ≥ f(w) + h(x).

This concludes the proof.
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Theorem 2.1 now follows as a direct consequence of Theorem 4.4 as we show below.

Proof of Theorem 2.1. By assumption we note that ρ ≤ 1, where ρ is the constant in (4.5). Since g satisfies
condition (g-θ), we use Remark 3.7 to choose j ∈ ℕ large enough such that λℓjg > ρ. Therefore with ℓ∗ = ℓ

j
g we

observe that (4.5) holds. Now we take Θ as in Theorem 4.4 to obtain the conclusion of Theorem 2.1.

We also make note of the following special case.

Corollary 4.6. Assume (H-1), (H-2), (f-1), (f-2), (f-4), (C-γ), (C-χ). If f(t) = o(tp) at infinity for some p > 1, then
for any h ∈ C(Ω) such that h+(x) = O(d−2p/(p−1)) as d(x)→ 0, problem (1.1) admits a maximal solution. In
particular, if f(t) = o(tp) at infinity for any p > 1, and h+(x) = O(d−Q) for some constant Q > 0 as d(x)→ 0,
then problem (1.1) has a maximal solution.

Proof. Let g(t) = |t|p−1t. Note that in this case (4.4) holds for any θ∗ > 0. In particular, the hypothesis on

h allows us to choose θ∗ > 0 small enough such that θ−1∗ λ > Θ∗(h+). Since in (4.5) we have ρ = 0, and
Θ

∗
g (h+) < Θ = θ−1∗ λ, Theorem 4.4 shows that problem (1.1) admits a maximal solution. To prove the second

assertion, it suffices to observe that given a constant Q > 0 we pick p > 1 such that 2p
p−1 > Q.

Corollary 4.6 shows, for instance, that the following problem admits a solution for any h ∈ C(Ω) such that

d(x)qh+(x) is bounded in Ω for some q > 0:

{
H[u] = u log3(|u| + 1) + h(x) in Ω,

u =∞ on ∂Ω.

Remark 4.7. If f satisfies (f-3) and (4.4) such that λℓ∗ > 1, then one can use f for g in (4.5).

An alternative existence result can be obtained by imposing indirect control on h through the solvability

of (2.3). We readily note that ψ ≥ 0 in Ω satisfies (2.3) if and only if the following holds:

M+γ [ψ] := P+λ,Λ(D
2ψ) + γ(x)|Dψ| =M+[ψ] ≤ −h+(x) in Ω. (4.12)

Remark 4.8. Condition (D-h) is satisfied, for instance, if

M+γ [v] = −h+(x), x ∈ Ω,

admits a solution v ∈ C(Ω) that is bounded in Ω from below. In fact, setting c = inf
Ω
v in this situation, then

ψ := v − c is a non-negative solution of (4.12). If, in addition, γ ∈ Lq(Ω) for some q > n and h+ ∈ Lp(Ω) for
some p > p

0
, then the equation M+γ [v] = −h+ has a solution v ∈ C(Ω), in which case condition (D-h) holds.

Here, p
0
= p

0
(n, λ, Λ) ∈ ( n

2

, n) is the Escauriaza exponent [19] (see also Crandall and Świȩch, [27]) such that
for any h ∈ Lp(Ω) with p > p

0
, solutions of P+λ,Λ(D

2u) ≥ h(x) satisfy the maximum principle. We refer the

reader to [29, Theorem 7.1] for details.

In the present approach for existence of solutions to (1.1), we can relax condition (C-γ) by requiring the

weaker condition (B-γ), while we need to strengthen condition (C-χ) to condition (C-χη) as described in the

Introduction.

We now have the following existence result.

Theorem 4.9. Assume (H-1), (H-2), (B-γ), (C-χη), (f-1), (f-2). If h ∈ C(Ω) and (D-h) holds withψ bounded above,
then problem (1.1) admits a maximal solution.

Proof. Let v be a solution of

{
M−[v] = f(v) in Ω,

v =∞ on ∂Ω.

We direct the reader to the Appendix, Lemma A.4, for justification of the existence of such a solution.

We now use condition (D-h) to find a solution ψ ≥ 0 of (2.3) which is bounded above on Ω. Then

w := v − ψ satisfies

M−[w] ≥M−[v] −M+[ψ] = f(v) + h+ ≥ f(w) + h in Ω.
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Consequently,

H[w] ≥ f(w) + h in Ω.

Sinceψ(x) is boundedaboveand v(x)→∞,wenote thatw(x)→∞as x → ∂Ω. Thereforew is a large solution

of (4.3). We invoke Lemma 4.3 to conclude the proof.

The following gives a generalization of the existence results of Alarcón and Quaas [2].

Corollary 4.10. Assume (H-1), (H-2), (B-γ), (C-χη), (f-1), (f-2). If h ∈ C(Ω) ∩ Lp(Ω) for some p > p0, where p0 is
the Escauriaza exponent, then problem (1.1) admits a maximal solution.

Proof. Note that by Remark 4.8, condition (D-h) holds. Therefore Theorem 4.9 shows that problem (1.1)

admits a maximal solution.

As pointed out in the Introduction condition (2.4) allows us to show existence of solutions to (1.1), and the

problem admits a positive solution provided hη is sufficiently small. This is the content of Theorem2.2, which

we now prove.

Proof of Theorem 2.2. Let η be the Dini continuous function as provided in the hypothesis. Then according

to [4], there is a positive function ψ
1
∈ C∞(Ω) ∩ C(Ω) such that

M+[ψ
1
] ≤ −

η(d(x))
d2(x)

, x ∈ Ω. (4.13)

We refer to theAppendix for how this assertion follows from theworkofAncona in [4]. Therefore (2.4) together

with (4.13) shows that condition (D-h) holds. Thus Theorem 4.9 shows that problem (1.1) admits a solution.

Let v ≥ 0 be a large solution ofM−[v] = f(v) inΩ.We refer to theAppendix for the existence of such a large

solution. By the Harnack inequality¹ (see [38]) we note that actually v > 0 in Ω. Let w := v − cψ
1
, where c > 0

is chosen such that cmax
Ω
ψ
1
< min

Ω
v. It follows that w > 0 in Ω and if hη < c, then (4.13) implies that

M+[cψ
1
] ≤ −

η(d(x))
d2(x)

c ≤ −η(d(x))
d2(x)

hη ≤ −h+(x), x ∈ Ω.

Consequently, we have

H[w] = H[v − cψ
1
] ≥M−[v − cψ

1
] ≥M−[v] − cM+[ψ

1
] ≥ f(v) + h+ ≥ f(w) + h.

We now invoke Lemma 4.3 to conclude that (1.1) has a solution u such that w ≤ u in Ω, and thus completing

the proof of the theorem.

5 Boundary asymptotic estimates
In this and the subsequent section, except in Theorem 5.3 and in the Appendix, we will assume that γ and χ
in (1.2) and (1.3) are non-negative constants.

Boundary asymptotic estimates of solutions to (1.1) can be derived provided condition (D-h) holds with

ψ(x) = O(ϕ(d(x)) as d(x)→ 0. The size of the following quantity will play a critical role in this derivation:

Ξ

∗(ψ) := lim sup

d(x)→0

ψ(x)
ϕ(d(x))

.

We have the following theorem on asymptotic boundary estimates of solutions to (1.1).

1 Let ρ > 0 such that v > 0 in Ωρ . For a fixed p > 1, let g(t) = f(t) for t ≤ max
Ω
ρ v and g(t) = f(max

Ω
ρ v)tp/(max

Ω
ρv)p for

t > max
Ω
ρ v. Then v is a solution of M−[v] = g(v) in Ω

ρ
. Since g satisfies all the assumptions of [38, Theorem 2.8], we see that

v > 0 in Ω

ρ
by the Harnack inequality.
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Theorem 5.1. Assume (H-1), (H-2) with γ, χ non-negative constants, (f-1), (f-2).
(i) Suppose that h ∈ C(Ω) satisfies Θ∗(h−) <∞. If there exists a positive constant A∗ ≥ 1 such that

Θ

∗(h−)
A∗
< lim inf

t→∞

f(A∗t)
A∗f(t)
− Λ, (5.1)

then for any continuous subsolution u of (1.1) we have

lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ A∗. (5.2)

(ii) Suppose that h ∈ C(Ω) satisfies (D-h). If there exists a positive constant A∗ ≤ 1 such that

lim sup

t→∞

f(A∗t)
A∗f(t)
< λ and Ξ

∗(ψ) < A∗, (5.3)

then for any supersolution u of (1.1) we have

0 < A∗ := A∗ − Ξ∗(ψ) ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

.

Proof. In the proof that follows it will be convenient to write Θ∗ for Θ∗(h−). For any 0 < ρ < μ let us consider
the following subsets of Ω:

Ω

−
ρ := {x ∈ Ω : ρ < d(x) < μ}, Ω

+
ρ := {x ∈ Ω : 0 < d(x) < μ − ρ}.

We start with the proof of (i), which will be carried out by showing that

w∗(x) := A∗ϕ(d(x) − ρ), x ∈ Ω−ρ ,

is a supersolution of the PDE in (1.1) on Ω

−
ρ for all 0 < ρ < μ and sufficiently small μ > 0. Let u ∈ C(Ω) be

a supersolution of (1.1) which we may suppose u > 0 in Ω

−
ρ . Given ε > 0, we use Remark 3.5 to obtain, for

a sufficiently small μ > 0,
√2F(ϕ(d − ρ))
f(ϕ(d − ρ))

(|P−λ,Λ(D
2d)| + γ) ≤ Λε.

Then, recalling (3.6) and the expression of ϕ, ϕ, computation shows that

M+[w∗] ≤ P−λ,Λ(D
2w∗) + γ|Dw∗|

≤ A∗f(ϕ(d − ρ))[Λ +
√2F(ϕ(d − ρ))
f(ϕ(d − ρ))

(|P−λ,Λ(D
2d)| + γ)]

≤ A∗f(ϕ(d − ρ))Λ(1 + ε). (5.4)

On using the assumption that Θ

∗(h−) <∞, we obtain the following estimates. Let us note that, according

to (5.1), we can take μ sufficiently small that

f(A∗ϕ(d − ρ))
A∗f(ϕ(d − ρ))

−
h−(x)

A∗f(ϕ(d − ρ))
> 0 in Ωμ .

By shrinking μ > 0 further, if necessary, the following hold in Ωμ:

A∗f(ϕ(d − ρ)) = f(A∗ϕ(d − ρ)) − h−(x)
f(A∗ϕ(d − ρ))
A∗f(ϕ(d − ρ))

−
h−(x)

A∗f(ϕ(d − ρ))

≤
f(A∗ϕ(d − ρ)) − h−(x)

f(A∗ϕ(d − ρ))
A∗f(ϕ(d − ρ))

−
h−(x)

A∗f(ϕ(d(x)))

≤
f(A∗ϕ(d − ρ)) − h−(x)

f(A∗ϕ(d − ρ))
A∗f(ϕ(d − ρ))

− (1 + ε)Θ
∗ + ε
A∗

. (5.5)
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By (5.1), we can choose μ > 0 sufficiently small so that

f(A∗ϕ(d − ρ))
A∗f(ϕ(d − ρ))

≥ (1 + ε)(Λ + Θ
∗ + ε
A∗ )

. (5.6)

Using (5.6) in (5.5), we find

A∗f(ϕ(d − ρ)) ≤ f(A
∗ϕ(d − ρ)) − h−(x)

Λ(1 + ε)
. (5.7)

Estimating (5.4) with (5.7), we get

M+[w∗] ≤ f(A∗ϕ(d − ρ)) − h−(x) ≤ f(A∗ϕ(d − ρ)) + h(x), (5.8)

which, on recalling (3.6), shows that w∗ is a supersolution in Ω

−
ρ of the PDE in (1.1).

Next, let u ∈ C(Ω) be a subsolution of (1.1) and set B∗ := max{u(x) : d(x) ≥ μ}. Then u ≤ w∗ + B∗ on ∂Ω−ρ
and we note that the following inequalities hold on Ω

−
ρ :

H[w∗ + B∗] ≤M+[w∗]
≤ f(w∗) + h from (5.8)

≤ f(w∗ + B∗) + h.

By the comparison principle we conclude that u ≤ w∗ + B∗ in Ω

−
ρ . Therefore

u(x)
ϕ(d(x) − ρ)

−
B∗

ϕ(d(x) − ρ)
≤ A∗ for x ∈ Ω−ρ .

On letting ρ → 0

+
, we see that the following holds on Ωμ:

u(x)
ϕ(d(x))

−
B∗

ϕ(d(x))
≤ A∗,

from which we get (5.2) upon letting d(x)→ 0.

Now we turn to the proof of (ii). For this consider the function

w∗(x) := A∗ϕ(d(x) + ρ), x ∈ Ω+ρ

andwewish to show thatw∗ is a subsolution of equationH[w∗] = f(w∗) inΩ+ρ provided μ is sufficiently small.

For ε ∈ (0, 1
2

) to be chosen small enough, using Remark 3.5, we take a sufficiently small μ > 0 in order that

√2F(ϕ(d + ρ))
f(ϕ(d + ρ))

(|P+λ,Λ(D
2d)| + γ) + ϕ(d + ρ)

f(ϕ(d + ρ))
≤ λε.

Then, on recalling (3.6) and the expression for ϕ, ϕ, direct computation in Ω

+
ρ shows that

H[w∗] ≥M−[w∗] ≥ P−λ,Λ(D
2w∗) − γ|Dw∗| − χw∗

≥ A∗f(ϕ(d + ρ))[λ −
√2F(ϕ(d + ρ))
f(ϕ(d + ρ))

(|P+λ,Λ(D
2d)| + γ) − ϕ(d + ρ)

f(ϕ(d + ρ))
χ]

≥ A∗λ(1 − ε)f(ϕ(d + ρ)). (5.9)

In the above, provided μ > 0 is small enough, by (5.3) we can make

f(A∗ϕ(d + ρ))
A∗f(ϕ(d + ρ))

≤ λ(1 − ε).

Inserting this in (5.9), we get

H[w∗] ≥ f(A∗ϕ(d + ρ)) ≥ f(w∗),

and this shows that w∗ is a subsolution in Ω

+
ρ as claimed.
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Set B∗ := A∗ϕ(μ) > 0. By the structure conditions,

H[w∗ − B∗] ≥ H[w∗] −M+[B∗] ≥ f(w∗) ≥ f(w∗ − B∗)

and w∗ − B∗ ≤ u on ∂Ω+ρ . On the other hand, considering the function ψ(x) provided by condition (D-d), we
also have in Ω

+
ρ

H[u + ψ] ≤ H[u] +M+[ψ] ≤ f(u) + h(x) − h+(x) ≤ f(u).

Moreover, since ψ ≥ 0 we have w∗ − B∗ ≤ u + ψ on ∂Ω+ρ . Therefore, by the comparison principle (see Propo-

sition 3.3 and Lemma 3.4) we find

w∗ − B∗ ≤ u + ψ in Ω

+
ρ ,

and therefore we have

A∗ ≤
u(x)

ϕ(d(x) + ρ)
+
ψ(x) + B∗
ϕ(d(x) + ρ)

for x ∈ Ω+ρ .

On letting ρ → 0

+
, we see that the following holds on Ωμ:

A∗ ≤
u(x)

ϕ(d(x))
+
ψ(x) + B∗
ϕ(d(x))

.

On recalling that ϕ(d(x))→∞, as d(x)→ 0, and using condition (5.3), we get

A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

+ Ξ∗(ψ),

and this concludes the proof of the second part of the theorem with A∗ := A∗ − Ξ∗(ψ).

If f satisfies Dindoš’ condition (f-θ) for some θ > 1, thenwe can easily choose constants 0 < A∗ ≤ 1 ≤ A∗ such
that (5.1) and (5.3) both hold. This leads to the following corollary.

Corollary 5.2. Assume (H-1), (H-2) with γ, χ non-negative constants, (f-1), (f-θ) and assume that h ∈ C(Ω) sat-
isfies Θ∗(h−) <∞. Then there exist constants 0 < A∗ ≤ A∗ <∞ such that if (D-h) holds with ψ ∈ C(Ω) and
Ξ

∗(ψ) < A∗, then
A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

≤ lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ A∗ (5.10)

for all solutions u of (1.1).

Proof. By hypothesis, f satisfies condition (f-θ) for some θ > 1. We now take the smallest j ∈ ℕ, depending
on ℓ, λ and Λ, such that

Θ

∗(h−) < θj(ℓj − Λ), θ−j ≤ 1 and ℓ−j < λ.

Then, recalling Remark 3.7, we see that inequality (5.1) holds with the choice A∗ = θj. If we now also require

Ξ

∗(ψ) < θ−j, then both inequalities in (5.3) hold with the choice A∗ = θ−j. We invoke Theorem 5.1 (i) and (ii)

to complete the proof.

In addition to requiring condition (D-h) in the statement of Theorem 4.9, we also needed the solution ψ
of (2.3) to be bounded on Ω from above. Thanks to Theorem 5.1 (i), we can now relax this restriction as we

now show.

Theorem 5.3. Assume (H-1), (H-2)with γ, χ satisfying (C-γ) and (C-χη), respectively, (f-1) and (f-θ). There exists
a positive constant Ξ = Ξ(θ, ℓ, λ) such that if condition (D-h) holds with a solution ψ such that Ξ∗(ψ) < Ξ, then
problem (1.1) admits a maximal solution.

Proof. By Lemma A.4 of the Appendix let v be a large solution of M−[v] = f(v) in Ω. Consider the function

w = v − ψ with ψ such that Ξ

∗(ψ) < Ξ. Here Ξ > 0 is a constant to be suitably chosen soon. As in the proof of
Theorem 4.9, we can show thatM−[w] ≥ f(w) + h.

It remains to prove that w(x)→∞ as d(x)→ 0, and then invoke Lemma 4.1 in order to complete the

proof. To this end, we use (f-θ) to find j ∈ ℕ large enough (see Remark 3.7) in order that ℓ−j < λ, set A∗ = θ−j

and Ξ = θ
−j
4

. If Ξ

∗(ψ) < Ξ, then the assumption of Theorem 5.1 are satisfied and

A∗ = A∗ − Ξ∗(ψ) ≥ A∗ − Ξ =
3

4

θ−j ,
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so that

lim inf

d(x)→0

v(x)
ϕ(d(x))

≥ A∗ > 0.

As a consequence, we have

lim inf

d(x)→0

w(x)
ϕ(d(x))

≥ lim inf

d(x)→0

v(x)
ϕ(d(x))

− lim sup

d(x)→0

ψ(x)
ϕ(d(x))

≥ A∗ − Ξ∗(ψ) ≥
3

4

θ−j − Ξ = θ
−j

2

> 0,

and w(x)→∞ when d(x)→ 0, as we wanted to show.

The following is an immediate consequence of Theorem 5.3.

Corollary 5.4. Assume that H, f and γ, χ satisfy the hypotheses of Theorem 5.3. If, in addition, γ ∈ Lq(Ω) for
some q > n and h+ ∈ Lp(Ω) for some p > p

0
, then problem (1.1) has a maximal solution.

Proof. It suffices to note, by Remark 4.8, that condition (D-h) holds with non-negative ψ ∈ C(Ω), and hence
Ξ

∗(ψ) = 0. Therefore the conclusion follows from Theorem 5.3.

We conclude this section with the proof of Theorem 2.3.

Proof of Theorem 2.3. We wish to show that Ξ

∗(ψ), where ψ is as in condition (D-h), is sufficiently small

as required for the conclusion of Theorem 5.3 to hold. Since all other assumptions of Theorem 5.3 hold,

this would establish the desired result. Nevertheless, the assumption concerning the smallness of Ξ

∗(ψ) is
satisfied since for some Dini continuous function η we have h+(x) = O(η(d(x))d−2(x)) as d(x)→ 0. Due to

the existence result of Ancona already used in Theorem 2.2 and discussed in (A.2) of the Appendix, there is

a non-negative ψ ∈ C2(Ω) ∩ C(Ω) such that

M+(ψ) ≤ −η(d(x))
d2(x)

.

Therefore, on noting that Ξ

∗(ψ) = 0, the proof is complete.

6 Uniqueness
In this section we discuss uniqueness of solutions of (1.1) under some additional conditions on H and f .
The asymptotic boundary behavior of solutions results of Section 5 will be crucial in developing the unique-

ness result. We will assume H satisfies the sub-homogeneity condition (H-3) and we will also suppose that f
satisfies the Dindoš’ condition (f-θ) for all θ > 1.

Remark 6.1. Suppose that (f-θ) holds for all θ > 1. Then θ → ℓθ is non-decreasing on (1,∞). In particular,

given θ̄ > 1 and 1 < τ < ℓθ̄, there is ̄t := t(θ̄, τ) such that

f(θt) ≥ τf(t) for all (θ, t) ∈ (θ̄,∞) × ( ̄t,∞).

The next result shows that any two solutions of (1.1) have the same rate of growth near the boundary. This

result is based on condition (D-h) andwill be proved under the technical assumption that the limit supremum

Ξ

∗(ψ) is actually a limit which will be denoted by Ξ(ψ):

Ξ

∗(ψ) := lim

d(x)→0

ψ(x)
ϕ(d(x))

≡ Ξ(ψ).

Theorem 6.2. Let (H-1)–(H-3) hold with γ, χ non-negative constants. Assume that f satisfies conditions (f-1),
(f-3) and (f-θ) for all θ > 1. Suppose that h ∈ C(Ω) is such that Θ∗(h−) <∞ and that (D-h) holds for some
ψ ∈ C(Ω). There is a constant Ξ > 0 such that if Ξ∗(ψ) = Ξ(ψ) < Ξ, then we have

lim

d(x)→0

u(x)
v(x)
= 1 (6.1)

for any solutions u and v of (1.1).
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Proof. Let u and v be two solutions of (1.1) in Ω, and let Ξ > 0 be the constant in Corollary 5.2. If Ξ(ψ) < Ξ,
then the estimates (5.10) lead to

θ := lim sup

d(x)→0

u(x)
v(x)
<∞.

To prove the theorem, we show that θ ≤ 1, for then reversing the roles of u and v we will have

1 ≤ lim inf

d(x)→0

v(x)
u(x)
≤ lim sup

d(x)→0

v(x)
u(x)
= θ ≤ 1.

By way of contradiction, let us suppose θ > 1. Let Ψ(x) := ψ(x) − Ξ(ψ)ϕ(d(x)). Note that

θ := lim sup

d(x)→0

u(x)
v(x) + Ψ(x)

.

We fix ε
0
> 0 small enough such that θ − ε

0
> 1. Let w := v + Ψ. Given ε ∈ (0, ε

0
), there is δ := δ(ε) ∈ (0, μ)

such that

{{{
{{{
{

u(x)
w(x)
≤ θ + ε if d(x) ≤ δ,

u(xε)
w(xε)
> θ − ε for some xε with d(xε) <

2

3

δ.
(6.2)

According to Corollary 5.2, we observe that

lim inf

d(x)→0

w(x)
ϕ(d(x))

≥ A∗

for some positive constant A∗. Therefore w(x)→∞ as d(x)→ 0. For the remainder of the proof we will

suppose μ > 0 is sufficiently small such that all of the following hold for x ∈ Ωμ:
(i) Since (f-θ) holds for all θ > 1 and recalling Remark 6.1 for ε ∈ (0, ε

0
), we have

f((θ − ε)v(x)) − (θ − ε)f(v(x)) ≥ mf(v(x)) > 0, (6.3)

with m := ℓθ−ε
0

− 1 > 0 (set θ = θ − ε
0
and apply Remark 6.1 with τ := 1

2

(1 + ℓθ)).
(ii) Use Corollary 5.2 to obtain

1

2

A∗ϕ(d(x)) ≤ w(x), v(x) ≤ 2A∗ϕ(d(x)). (6.4)

(iii) By Lemma 3.12, (ii) there is a positive constant cϕ such that

ϕ(3r) ≥ cϕϕ(r) for 0 < r < μ. (6.5)

Let 0 < ε < ε
0
be fixed, but arbitrary and let δ = δ(ε) be the corresponding positive number such that (6.2)

holds.

Let us now consider

O := {x ∈ Ω : u(x) > (θ − ε)w(x)} ∩ B(xε , r), where r := 1
2

d(xε) <
1

3

δ,

so that

r ≤ d(x) ≤ 3r for all x ∈ O ⊆ Ωδ . (6.6)

Let us note that, for sufficiently small μ > 0, see (4.7),

M−[ϕ(d(x))] > 0, x ∈ Ωμ .

By (H-1) and (H-3) we have the following on Ωμ:

H[(θ − ε)w] ≤ (θ − ε)H[v] + (θ − ε)M+[Ψ]
≤ (θ − ε)H[v] + (θ − ε)M+[ψ] − (θ − ε)Ξ(ψ)M−[ϕ(d(x))]
= (θ − ε)f(v) − (θ − ε)h−. (6.7)
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By appealing to Lemma3.12 (i) and Lemma3.9, respectively, and by shrinking μ if necessary, we can suppose
that both of the following hold for 0 < r < μ, and some positive constant cf , not necessarily the same:

f(1
2

A∗cϕϕ(r)) ≥ cf f(ϕ(r)) (6.8)

and

f(ϕ(r)) = 1

2r2
(
∞

∫
ϕ(r)

ds
√F(s)
)
2

f(ϕ(r)) ≥ cf
ϕ(r)
2r2

. (6.9)

From the monotonicity of the functions f , and ϕ (non-increasing), we find that for all x ∈ O ⊆ Ωμ,

f(v(x)) ≥ f(1
2

A∗ϕ(d(x))) (by (6.4))

≥ f(1
2

A∗ϕ(3r)) ≥ f(
1

2

A∗cϕϕ(r)) (by (6.5))

≥ cf f(ϕ(r)) (by (6.8)). (6.10)

On noting (6.7) and the fact that H[u] ≥ f(u) + h, we invoke Lemma 3.4 to find that the following hold

on O:

M+γ [u − (θ − ε)w] =M+[u − (θ − ε)w]
≥ (f(u) − (θ − ε)f(v)) + h+ + (θ − ε − 1)h−

≥ f((θ − ε)v) − (θ − ε)f(v)
≥ mf(v) (by (6.3)). (6.11)

Using (6.10) in (6.11) and recalling (6.6), we find that

M+γ [u − (θ − ε)w] ≥ mcf f(ϕ(r)), x ∈ O. (6.12)

We now observe that for all y ∈ B(xε , r) we have

f(ϕ(r)) ≥
cf
2

ϕ(r)
r2

(by (6.9))

≥
cf
2

ϕ(d(y))
r2

(by (6.6))

≥
cf
4A∗

w(y)
r2

(by (6.4)). (6.13)

Therefore, from (6.12) and (6.13) we conclude

M+γ [u − (θ − ε)w] ≥
C
r2
w(y) on O and for all y ∈ B(xε , r). (6.14)

In (6.14) we have set C := 1

4A∗mc2f which, we should note, is independent of ε.
For arbitrary, but fixed y ∈ B(xε , r) we consider the following auxiliary function:

z(x) := aCw(y)(1 − |x − xε|
2

r2
).

Since z(x) is concave and smooth, choosing 0 < a ≤ (2(Λn + bμ))−1 we have

M−γ [z] = −Λ∆z − b|Dz|
≥ −Λ‖∆z‖L∞(Ω) − b‖Dz‖L∞(Ω)
≥ −2aC[Λn + bμ]w(y)

r2

≥ −
C
r2
w(y). (6.15)

From (6.14), (6.15) and (3.3) the following inequality holds on O:

M+γ [u − (θ − ε)w + z] ≥ M+γ [u − (θ − ε)w] +M−γ [z] ≥ 0 for all y ∈ B(xε , r).



58 | A. Mohammed, V. D. Rădulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations

By the Alexandroff–Bakelman–Pucci maximum principle (see Proposition 3.3), we find that there is yε ∈ ∂O
such that

u(xε) − (θ − ε)w(xε) + z(xε) ≤ [u(yε) − (θ − ε)w(yε) + z(yε)]+. (6.16)

We infer that yε ∈ ∂B(xε , r). In fact, supposing the contrary yε ∈ B(xε , r), then u(yε) = (θ − ε)w(yε), andhence
we would have a contradiction:

z(xε) < u(xε) − (θ − ε)w(xε) + z(xε) ≤ z(yε).

Therefore indeed yε ∈ ∂B(xε , r). Consequently, from (6.16) we obtain

aCw(y) = z(xε) ≤ u(yε) − (θ − ε)w(yε) for all y ∈ B(xε , r). (6.17)

Therefore, since d(yε) < δ, we use (6.2) to estimate (6.17) as

aCw(y) ≤ (θ + ε)w(yε) − (θ − ε)w(yε) = 2εw(yε). (6.18)

Setting y = yε in (6.18) and rearranging, we find

aCw(yε) ≤ 2εw(yε).

Taking, ε = min{1
2

ε
0
,

1

4

aC} leads to a contradiction, thus completing the proof of the theorem.

Our next result is a uniqueness theorem, and this requires themonotonicity condition (f-m) on f stated in the
Introduction.

Theorem 6.3. Suppose that the assumptions of Theorem 6.2 on H and f are satisfied and that (f-m) holds as
well. Suppose also that h ∈ C(Ω) is such thatΘ∗(h−) <∞ and (D-h) holds withψ. There is a constant Ξ > 0 such
that if Ξ∗(ψ) = Ξ(ψ) < Ξ, then problem (1.1) admits at most one solution.

Proof. Letψ ∈ C(Ω)be as in (D-h).We suppose that Ξ(ψ) < Ξ, where Ξ is the positive constant in Theorem6.2.

Note that Theorem 6.2 applies. Let u be a positive solution of (1.1). According to Theorem 5.3, and by taking

Ξ smaller if needed, problem (1.1) admits a maximal solution v and therefore u ≤ v in Ω. For the purpose

of obtaining a contradiction, we suppose that u(x
0
) < v(x

0
) for some x

0
∈ Ω. Let ε > 0 be arbitrary. Consider

wε := (1 + ε)u + εψ. Then the set
Oε := {x ∈ Ω : wε(x) < v(x)}

contains x
0
for all sufficiently small ε > 0. Given z ∈ Ω, it is clear that there is ε such that z ∈ Oε. If this is not

the case, then (1 + ε)u(z) + εψ(z) ≥ v(z) for all sufficiently small ε > 0. But then this implies u(z) = v(z). On
recalling that u ≤ v in Ω and hence by Lemma 3.4, we haveM+γ [v − u] ≥ f(v) − f(u) ≥ 0, the Strong Maximum

Principle implies that u = v in Ω, contradicting u(x
0
) < v(x

0
). As a consequence of (6.1) we see that Oε ⋐ Ω

for each ε > 0.
By (f-m), we let t

0
> 0 such that

f(t)
t is non-decreasing for t ≥ t

0
. Let 0 < ϱ < μ such that u(x) ≥ t

0
for

all x ∈ Ωϱ. We note that there is ε
0
> 0 such that

Oε,ϱ := Oε ∩ Ωϱ , 0 < ε < ε
0
,

is non-empty. Otherwise there is a sequence {εj} that converges to zero and

Oεj ∩ Ωϱ = 0.

Then (1 + εj)u(x) + εjψ ≥ v(x) on Ωϱ, for all j. This implies u ≥ v on Ωϱ, and hence u = v on Ωϱ. But then

M+γ [v − u] ≥ f(v) − f(u) ≥ 0 in Ω, and v = u on ∂Ωϱ implies, by the Alexandroff–Bakelman–Pucci maximum

principle, that u ≥ v on Ω

ϱ
and therefore u = v in Ω, which contradicts the assumption that u(x

0
) < v(x

0
).

By (H-1) we see that

H[wε] ≤ H[(1 + ε)u] + εM+[ψ]. (6.19)

Therefore, by (H-3) and (6.19) we have the following in Oε,ϱ:

H[wε] ≤ (1 + ε)H[u] + εM+[ψ] ≤ (1 + ε)f(u) + (1 + ε)h − εh+ ≤ f((1 + ε)u) + h − εh−

≤ f(wε) + h (by (f-1)).
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On Oε,ϱ, 0 < ε < ε0, we see that

M+γ [v − wε] ≥ f(v) − f(wε) (by Lemma 3.4)

≥ 0.

RecallingOε,ϱ ⋐ Ω, we see that v − wε ∈ C(Oε,ϱ), and hence by the ABPmaximum principle, Proposition 3.3,

we have

v − wε ≤ max

∂Oε,ϱ
(v − wε). (6.20)

Let us note that ∂Oε,ϱ = (∂Oε ∩ Ωϱ) ∪ (Oε ∩ ∂Ωϱ). We also observe that the maximum on the right of

(6.20) cannot occur on ∂Oε ∩ Ωρ. Therefore for 0 < ε ≤ ε0 the maximum on the right of (6.20) is achieved

on Oε ∩ ∂Ωϱ. Since Oε ∩ ∂Ω = 0, this means

v − wε ≤ max

Oε∩{x:d(x)=ϱ}
(v − wε).

We let ε → 0

+
to obtain

v − u ≤ max

d(x)=ϱ
(v − u) := κ in Ωϱ .

On noting that

{
M+γ [v − (u + κ)] ≥ f(v) − f(u) ≥ 0 in Ω,

v ≤ u + κ on ∂Ωρ ,

we conclude, by the maximum principle, that v ≤ u + κ on Ω

ρ
. Consequently, v ≤ u + κ on Ω. Let us also

note that κ ≥ v(x
0
) − u(x

0
) > 0. SinceM+γ [v − (u + κ)] ≥ 0 in Ω, by the Strong Maximum Principle (see [3] for

instance) we conclude v = u + κ in Ω. Now we find that

f(u) + h(x) = H(x, u, Du, D2u) = H(x, u, D(u + κ), D2(u + κ))
≥ H(x, u + κ, D(u + κ), D2(u + κ)) (by (H-1), see Remark 3.1)

= H(x, v, Dv, D2v) = f(v) + h(x).

But u ≤ v inΩ implies that f(u) ≤ f(v). Thereforewe have f(u) = f(v) = f(u + κ) inΩ. If x∗ ∈ Ωϱ, then according
to (f-4) we have

f(u(x∗))
u(x∗)

≤
f(u(x∗) + κ)
u(x∗) + κ

.

Therefore, since f(u(x∗)) = f(u(x∗) + κ), we have u(x∗) ≥ u(x∗) + κ. Of course, this is not possible. This proves
the uniqueness theorem.

Remark 6.4. Suppose that the assumptions of Theorem 6.3 on H and f hold. Assume that h+ ∈ C(Ω) ∩ Lp(Ω)
for some p > p

0
, where p

0
is the Escauriaza exponent. Then problem (1.1) admits at most one solution. Thus

Theorem 6.3 improves the uniqueness result of [2].

Finally, we give the proof of Theorem 2.4.

Proof of Theorem 2.4. Note that all the assumptions of Theorem 6.3, except for the existence of ψ that sat-

isfies (D-h) with Ξ

∗(ψ) = Ξ(ψ) small enough, are stated explicitly in the theorem to be proved. As already

observed in the proof of Theorem 2.3, this missing assumption is satisfied with Ξ

∗(ψ) = Ξ(ψ) = 0 by the

hypothesis made on h+. Thus the proof is completed upon invoking Theorem 6.3.

A Appendix
Given a bounded C2 domainΩ ⊆ ℝn, in this appendix,wewish to study the existence of non-negative solution
to

{
H[u] = f(u) in Ω,

u =∞ on ∂Ω,
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under the assumption that H satisfies (H-1), (H-2) and f satisfies (f-1), (f-2). The coefficients γ, χ ∈ C(Ω) are
allowed to be unboundedwith their growth near the boundary controlled in accordancewith conditions (C-γ)
and (C-χη).

Our analysis is basedona result due toAncona [4, Proposition11,Remark6.1]. Let η be aDini continuous
function. According to the result in [4] cited above, there is a positive function ψ ∈ C∞(Ω) ∩ C(Ω) such that

{{
{{
{

Lψ ≤ −η(d(x))
d2(x)

in Ω,

ψ = 0 on Ω,

(A.1)

for any uniformly elliptic differential operator Lw := tr(A(x)D2w) + b(x) ⋅ Dw with fixed ellipticity constants

0 < λ ≤ Λ. Here A(x) := [aij(x)] with A(x) ∈ Aλ,Λ , and |b(x)| is continuous on Ω such that |b(x)|d(x) suffi-

ciently small near the boundary ∂Ω (see [4, Remark 6.1]).

SinceP+λ,Λ(D
2w) := sup{tr(AD2w) : λIn ≤ A ≤ ΛIn}, it follows that (A.1) is valid withM+γ taking the place

of L. Therefore we have
{{
{{
{

H[ψ] ≤M+[ψ] =M+γ [ψ] ≤ −
η(d(x))
d2(x)

in Ω,

ψ = 0 on ∂Ω.
(A.2)

As a consequence of (A.2) we may proceed as in [4, Theorem 4] to prove the following existence result.

While we only need a special case of the next lemma for our purpose, we present it in the generality stated

as it may be of independent interest. Due to the nonlinearity of the underlying operator the proof requires

careful consideration.

Lemma A.1. Let ϑ ∈ C(Ω)with d2(x)|ϑ(x)| ≤ η(d(x)) near the boundary ∂Ω for someDini continuous function η.
For any constant κ ≥ 0 the Dirichlet problem

{
H[w] = ϑ(x) in Ω,

w = κ on ∂Ω,
(A.3)

has a viscosity solution w ∈ C(Ω).

Proof. We present the proof in three steps. Throughout the proof we fix an exhaustion {Oj} of Ω by smooth

subdomains Oj ⋐ Ω.

Step 1. We first show the existence of a solution w ∈ C(Ω) to

{
H[w] = −ϑ− in Ω,

w = κ on ∂Ω.
(A.4)

By hypothesis, there is a positive constant c = c(ϑ) such that

ϑ−(x) ≤ cη(d(x))
d2(x)

in Ω.

Then, taking (A.2) into consideration,we see thatM+[cψ] ≤ −ϑ− inΩ. Let z := cψ + κ. ThenM+[z] ≤ −ϑ− inΩ
and z = κ on ∂Ω. For each j, let wj ∈ C(Oj) be the solution of

{
H[wj] = −ϑ− in Oj ,

wj = κ on ∂Oj .
(A.5)

For the existence of a solution to problem (A.5) we refer, for instance, to [13, Theorem 1.1]. Note that

M+[κ − wj] ≥ ϑ−, and therefore by Proposition 3.3 we see that wj ≥ κ in Oj. Similarly, we have wj ≤ wj+1
in Oj for all j. Furthermore, we have

M+[wj − z] ≥ 0 in Oj .

Since z ≥ κ in Ω, again by Proposition 3.3, we have wj ≤ z in Oj. Let

w := lim
j→∞

wj in Ω.

Then we note that w is a viscosity solution of H[w] = −ϑ− in Ω, and since κ ≤ w ≤ z, we conclude that w is

a solution of (A.4) as desired.
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Step 2. Here we show the existence of a solution v ∈ C(Ω) to

{
H[v] = ϑ+ in Ω,

v = κ on ∂Ω.
(A.6)

On recalling the assumptions on ϑ and χ, we note that there is a positive constant C := C(ϑ, κ, χ) such that

ϑ+ + κχ ≤ Cη(d(x))
d2(x)

in Ω.

By (A.2) we conclude thatM+[Cψ] ≤ −ϑ+ − κχ. Let z := −Cψ + κ. ThenM−[z] ≥M−[−Cw] − κχ = ϑ+ in Ω and

z = κ on ∂Ω. Thus H[z] ≥ ϑ+ in Ω and z = κ on ∂Ω. For each positive integer j, let vj ∈ C(Oj) such that

{
H[vj] = ϑ+ in Oj ,

vj = κ on ∂Oj .

ThenM+[z − vj] ≥ 0 in Oj and since z ≤ κ in Ω, we see from the maximum principle that hence z ≤ vj in Oj.

Similarly, by the maximum principle vj ≤ κ in Oj. As before, vj ≤ vj+1 in Oj. Consequently, the limit v solves
(A.6) and v ≥ κ in Ω.

Step 3. We now show the existence of a solution to (A.3). Let w and v be solutions of (A.4) and (A.6),

respectively. We recall that v ≤ κ ≤ w in Ω. Let uj ∈ C(Oj) be a solution of

{
H[uj] = ϑ in Oj ,

uj = v on ∂Oj .

Then

M+[v − uj] ≥ ϑ− ≥ 0 in Oj .

By the maximum principle we have v ≤ uj in Ω. Similarly, M+[uj − w] ≥ ϑ+ ≥ 0 in Oj. Moreover, uj = v ≤ w
on ∂Oj. Therefore uj ≤ w inOj.We also observe that uj ≤ uj+1 inOj. Therefore the limit u := limj→∞ uj satisfies
v ≤ u ≤ w, and hence u satisfies (A.3) as was to be shown.

One can use Lemma A.1 to establish solvability of the Dirichlet problem where the right-hand side depends

on the unknown. To be specific, we consider the following Dirichlet problem:

{
H[u] = f(u) in Ω,

u = κ on ∂Ω,
(DH)

for any non-negative constant κ.
For this we need the following comparison lemma, which is a direct consequence of Proposition 3.3 and

Lemma 3.4. For completeness we include the short proof.

Lemma A.2. Suppose w, v ∈ C(Ω) such that H[v] ≥ f(v) and H[w] ≤ f(w) in Ω. If v ≤ w on ∂Ω, then v ≤ w on Ω.

Proof. Given ε > 0, we note that v < w + ε in Ωδ for any sufficiently small δ > 0. Moreover, it follows from
condition (H-1) that

H[w + ε] ≤ H(x, w + ε, Dw, D2w) ≤ H[w] ≤ f(w) ≤ f(w + ε).

Suppose thatO := {w + ε > v} ∩ Ωδ is non-empty. By Lemma 3.4, we haveM+[w + ε − v] ≥ f(w + ε) − f(v) ≥ 0
inO := {w + ε > v} ∩ Ωδ. Therefore, by ABP, v ≤ w + ε inO, which is a contradiction. It follows thatO is empty

and v ≤ w + ε. Since ε and δ are arbitrary, we obtain the desired conclusion.

Now we can state the following result on the solvability of problem (DH).

Lemma A.3. Suppose that f : ℝ→ ℝ satisfies (f-1). Given a constant κ ≥ 0, problem (DH) has a solution
u ∈ C(Ω).
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Proof. We recall from (3.6) that H[κ] ≤M+[κ] = 0. Let u
0
∈ C(Ω) such that

{
H[u

0
] = f(κ) in Ω,

u
0
= κ on ∂Ω.

The existence of such solutions follows from Lemma A.1. SinceM+[u
0
− κ] ≥ 0 in Ω, by Lemma A.2 we find

that u
0
≤ κ in Ω.

For j ≥ 1, let uj ∈ C(Oj) be a solution of

{
H[uj] = f(uj) in Oj ,

uj = u0 on ∂Oj .
(A.7)

Existence of a solution to problem (A.7) follows, for instance, from [13, Theorem 1.1]. SinceM+[uj − κ] ≥ 0
in Ω, we proceed as in the above to conclude that uj ≤ κ in Ω. Consequently,

M+[u
0
− uj] ≥ f(κ) − f(uj) ≥ 0 in Oj .

Therefore, again by the comparison principle we find that u
0
≤ uj in Oj for all j. Similarly, it follows that

uj ≤ uj+1 in Oj. Thus in summary, we have shown that

u
0
≤ uj ≤ uj+1 ≤ κ in Oj for all j = 1, 2, . . . .

ByAscoli–Arzelá and the stability of viscosity solutionswe conclude that u := lim uj is a solution of (DH).

Lemma A.4. Let f satisfy conditions (f-1) and (f-2). The following problem has a solution:

{
H[u] = f(u) in Ω,

u =∞ on ∂Ω.
(A.8)

Proof. Now that we know problem (DH) is solvable for any constant κ ≥ 0, we can proceed as in the proof of
Theorem 4.2 to show that problem (A.8) has a solution u ∈ C(Ω). Since f(0) = 0, we note that u ≥ 0 in Ω.
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