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The present paper aims to address the flow-shop sequence-dependent group scheduling problem with learning effect (FSDGSLE).
The objective function to be minimized is the total completion time, that is, the makespan. The workers are required to carry out
manually the set-up operations on each group to be loaded on the genericmachine.The operators skills improve over time due to the
learning effects; therefore the set-up time of a group under learning effect decreases depending on the order the group is worked in.
In order to effectively cope with the issue at hand, a mathematical model and a hybrid metaheuristic procedure integrating features
from genetic algorithms (GA) have been developed. A well-known problem benchmark risen from literature, made by two-, three-
and six-machine instances, has been taken as reference for assessing performances of such approach against the two most recent
algorithms presented by literature on the FSDGS issue. The obtained results, also supported by a properly developed ANOVA
analysis, demonstrate the superiority of the proposed hybrid metaheuristic in tackling the FSDGSLE problem under investigation.

1. Introduction

Scheduling problems have received extensive attention since
the middle of the last century. One of the basic assumptions
of the classic scheduling theory is that job descriptors like
processing times and setup times are a priori known and do
not change during the time horizon. Nowadays, due to the
availability of computational resources, it is possible to con-
sider a more realistic situation where such descriptors may
vary due to the learning effect. In fact, the workers improve
their performance by repeating the provided operations and,
as a result, processing or/and set-up times of a job may be
reduced if it is scheduled later in the sequence.

The first studies about learning effect had been developed
byWright [1] and Biskup [2].They stated that the production
time of a job under learning effect decreases depending on the
order the job is worked in. The corresponding learning effect
model, which computes the processing time of job 𝐽𝑗 when it
is scheduled in the 𝑟th position, is defined as

𝑝𝑗[𝑟] = 𝑝𝑗𝑟
𝑎
, (1)

where 𝑝𝑗 is the normal processing time of job 𝐽𝑗 and 𝑎 =

log2LR < 0 is the learning index, which is a function of
the learning rate LR < 1. The processing time needed

decreases by the number of repetitions,meaning that learning
is primarily based on the repetition of a task, such asmachine
setup.

In alternative to the above position based learningmodel,
Kuo and Yang [3] proposed a sum-of-processing-time based
learning model which is time dependent:

𝑝𝑖 = 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝑝⌊𝑘⌋)

𝑎

. (2)

Starting from these two fundamental models, some authors
proposed other learning models that are a modification of
the above models or a combination of those. Cheng et al.
[4] proposed model of learning effects in which the actual
processing time of a job is a function of the total normal
processing times of the jobs already processed and of the job’s
scheduled position. Yin et al. [5] developed a general learning
effects model where the actual processing time of a job is
not only a function of the total normal processing times of
the jobs already processed, but also a function of the job’s
scheduled position. Soroush [6] considers a single machine
scheduling problem with general past-sequence-dependent
setup time and log-linear learning in which the setup times
and learning effects are job-dependent.
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Biskup [7] reviews extensively the literature on schedul-
ing problems that considers the two types of learning
effects.

The learning effect has been widely applied on the single
machine scheduling problems. Recently, Lee [8] proposed
a model where the setup time is past-sequence-dependent,
and the actual job processing time is a general function
of the processing times of the jobs, already processed, and
its scheduled position. Costa et al. [9] consider the single
machine total weighted completion time scheduling problem.
The jobs have nonzero release time and processing time
increases during the production due to the effect of deteri-
oration on the machine.The setup time and the removal time
are influenced by the ability of the worker, which depends on
work experience and learning capacity: Zhang [10] studied a
single machine model where the jobs are grouped in families
and the learning effect influences both processing time of the
jobs and set-up time of the groups.

Some authors applied the principle of learning effect
to other manufacturing models. Vahedi-Nouri et al. [11]
investigated a nonpermutation flow shop scheduling problem
with the objective of minimizing the total flow time. Each job
has nonzero release time and the processing time depends on
its position in the sequence, because of the learning effect.
Liu [12] studied the scheduling problems of jobs on identical
parallels machines where delivery times are past-sequence-
dependent and the learning effect on processing times is
considered. Sun et al. [13] studied a permutation flow shop
scheduling, where the actual processing time of a job is
defined by a general nonincreasing function of its scheduled
position. To solve this problem, several algorithms derived
from the corresponding single machine scheduling problem
are presented.

To the best of our knowledge, the learning effect has
not been investigated so far in the context of flow shop
where the jobs are grouped in families. This scheduling
problem is known as flow-shop group scheduling (FSGS)
problem. A set of 𝑁 jobs has to be processed through 𝑀

serial machines arranged in a flow-shop layout. According
to group technology (GT) manufacturing principles, the
whole set of jobs to be worked may be partitioned into 𝐺

smaller subsets, called groups or families, made by jobs
sharing the same technological requirements in terms of
tooling and setups. Amajor setup is required when switching
from one family to another, whilst the setup time between
jobs belonging to the same family either is assumed to
be negligible or it can be included along with the run
time. The solution to the problem is represented by the
permutation of the jobs of each family and the permutation
order of the groups. In a more realistic context as printed
circuit board (PCBs) manufacturing [14, 15] or automotive
sector [16] the set-up time depends on the sequence of
the group in the schedule, and this problem is addressed
as flow-shop sequence-dependent group scheduling
(FSDGS).

The FSDGS problem has been taken into consideration
by a significant number of researchers: Zhu and Wilhelm
[17] proposed a complete review. Salmasi et al. [18] pre-
sented hybrid ant colony optimization (HACO) algorithm for

minimizing makespan in a flow-shop sequence-dependent
group scheduling problem. Hajinejad et al. [19] proposed
a hybrid particle swarm optimization (PSO) algorithm that
outperforms the HACO proposed by Salmasi et al. [18].
Recently, Naderi and Salmasi [20] proposed two different
MILP formulations, together with a metaheuristic tech-
nique hybridising genetic and simulated annealing algorithm,
called GSA, to cope with the FSDGS issue under the total
completion time minimization viewpoint.

The aim of this paper is to propose the flow-shop
sequence-dependent group scheduling problem with learn-
ing effect (FSDGSLE). The objective function to be mini-
mized is the total completion time, that is, the makespan. In
this scheduling problem theworkers are required tomanually
carry out the set-up operations on each group to be loaded on
the generic machine. An anticipatory set-up is assumed; that
is, the set-up of each group can be started by a worker even
though the first job of the group is not yet available on the
machine to be set-up. The workers are not a critical resource:
that is, a worker from the crew is always available to perform
a set-up activity on a machine, thus preventing machine
starvation and consequent delays in themakespan.The ability
of operators increases over time due to the learning effect;
therefore the set-up time of a group under learning effect
decreases according to the order the group is worked in.
The jobs processing time does not change because they are
automatically worked on every machine of the flow shop. A
new mathematical model for this problem and an efficient
heuristic algorithm to solve also large-sized problems are
proposed.

The remainder of the paper is organized as follows:
Section 2 presents the mixed integer programming mathe-
maticalmodel for the proposed FSDGSLE problem. Section 3
describes the proposed heuristic algorithm based on the
evolutionary principle. Section 4 deals with an extensive
comparison between the proposed optimization procedure
and other two algorithms in the field of FSDGS problems.
Finally, Section 5 concludes the paper.

2. The FSDGSLE Mathematical Model

The proposed mathematical model integrates the learning
effect on the group setup time with the flow-shop sequence-
dependent group scheduling problem (FSDGS) by means
of a mixed integer linear programming (MILP) approach.
According to the formalization proposed in Pinedo [15],
this problem can be denoted as: 𝐹𝑚 | 𝑓𝑚𝑙𝑠, 𝑆𝑝𝑙𝑚, 𝑝𝑟𝑚𝑢,
𝑆𝑝𝑙𝑚 = 𝑆𝑝𝑙𝑚 𝑟

𝑎
| 𝐶max, where 𝐹𝑚 indicates a flow-

shop with 𝑚 machines, 𝑓𝑚𝑙𝑠 indicates that the jobs are
assigned to different groups, 𝑆𝑝𝑙𝑚 means that the set-up
of each group is sequence-dependent, 𝑝𝑟𝑚𝑢 refers to a
permutation type process (i.e., all the jobs and the groups are
processed by respecting the same order on each machine),
and 𝑆𝑝𝑙𝑚 = 𝑆𝑝𝑙𝑚 𝑟

𝑎 means that the setup time depends on
the position of the group in the sequence order of the groups,
while 𝐶max, that is, the makespan, is the objective to be
minimized.

The following notation has been adopted where a slot is
a position of the sequence of groups that should be occupied
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just by a single group; that is, each group should be assigned
to one slot.

Indices/Parameters

𝑀: number of machines,

𝐺: number of groups,

𝑘, 𝑙, 𝑝 = 0, 1, . . . , 𝐺: indexes of groups,

𝑁𝑙: number of jobs in group 𝑙,

𝑖 = 0, 1, . . . , 𝐺: index of group slots,

𝑗 = 1, 2, . . . , 𝑁𝑙: index of jobs in group 𝑙,

𝑟 = 1, 2, . . . , 𝑁𝑙: index of job slots in group 𝑙,

𝑚 = 1, 2, . . . ,𝑀: index of machines,

𝑃𝑙𝑗𝑚: processing time of job 𝑗 of group 𝑙 on machine
𝑚,

𝑆𝑝𝑙𝑚: setup time of group 𝑙 preceded by group 𝑝 on
machine𝑚,

𝑎: learning index,

𝐵: a big number.

Binary Variables. Consider

𝑊𝑖𝑝𝑙

{{

{{

{

1 if group 𝑝 is assigned to slot 𝑖
and immediately precedes group 𝑙

0 otherwise,

𝑖 = 0, 1, . . . , 𝐺 − 1, 𝑝 = 0, 1, . . . , 𝐺, 𝑙 = 1, 2, . . . , 𝐺,

𝑋𝑙𝑗𝑟 {
1 if job 𝑗 occupies slot 𝑟 in group 𝑙
0 otherwise,

𝑙 = 1, 2, . . . , 𝐺, 𝑗 = 1, 2, . . . , 𝑁𝑙, 𝑟 = 1, 2, . . . , 𝑁𝑙.

(3)

Continuous Variables

𝐶𝑙𝑟𝑚: completion time of job processed in slot 𝑟 of
group 𝑙 on machine𝑚,

ST𝑙𝑚: starting time of group 𝑙 on machine𝑚,

𝐹𝑙𝑚: finishing time of group 𝑙 on machine𝑚,

𝐶max: makespan.

Objective. Consider

minimize 𝐶max (4)

subject to

𝐺

∑

𝑝=0

𝐺

∑

𝑙=1

𝑊𝑖𝑝𝑙 = 1, 𝑖 = 0, 1, . . . , 𝐺 − 1, (5)

𝐺−1

∑

𝑖=0

𝐺

∑

𝑝=0

𝑊𝑖𝑝𝑙 = 1, 𝑙 = 1, 2, . . . , 𝐺, (6)

𝐺−1

∑

𝑖=0

𝐺

∑

𝑙=1

𝑊𝑖𝑝𝑙 ≤ 1, 𝑝 = 0, 1, . . . , 𝐺, (7)

𝐺

∑

𝑝=0

𝑊(𝑖−1)𝑝𝑙 =

𝐺

∑

𝑘=1

𝑊𝑖𝑙𝑘,

𝑖 = 1, 2, . . . , 𝐺 − 1, 𝑙 = 1, 2, . . . , 𝐺,

(8)

𝑁𝑙

∑

𝑗=1

𝑋𝑙𝑗𝑟 = 1, 𝑙 = 1, 2, . . . , 𝐺, 𝑟 = 1, 2, . . . , 𝑁𝑙, (9)

𝑁𝑙

∑

𝑟=1

𝑋𝑙𝑗𝑟 = 1, 𝑙 = 1, 2, . . . , 𝐺, 𝑗 = 1, 2, . . . , 𝑁𝑙, (10)

ST𝑙𝑚 ≥ 𝐹𝑝𝑚 +
𝐺−1

∑

𝑖=0

𝑊𝑖𝑝𝑙 ⋅ 𝑆𝑝𝑙𝑚 ⋅ (𝑖 + 1)
𝑎
− 𝐵

⋅ (1 −

𝐺−1

∑

𝑖=0

𝑊𝑖𝑝𝑙) ,

𝑝 = 0, 1, . . . , 𝐺, 𝑙 = 1, 2, . . . , 𝐺, 𝑚 = 1, 2, . . . ,𝑀,

(11)

𝐶𝑙1𝑚 ≥ 𝑆𝑇𝑙𝑚 +

𝑁𝑙

∑

𝑗=1

𝑋𝑙𝑗1 ⋅ 𝑃𝑙𝑗𝑚,

𝑙 = 1, 2, . . . , 𝐺, 𝑚 = 1, 2, . . . ,𝑀,

(12)

𝐶𝑙𝑟𝑚 ≥ 𝐶𝑙(𝑟−1)𝑚 +

𝑁𝑙

∑

𝑗=1

𝑋𝑙𝑗1 ⋅ 𝑃𝑙𝑗𝑚,

𝑙 = 1, 2, . . . , 𝐺, 𝑟 = 2, 3, . . . , 𝑁𝑙, 𝑚 = 1, 2, . . . ,𝑀,

(13)

𝐶𝑙𝑟𝑚 ≥ 𝐶𝑙𝑟(𝑚−1) +

𝑁𝑙

∑

𝑗=1

𝑋𝑙𝑗1 ⋅ 𝑃𝑙𝑗𝑚,

𝑙 = 1, 2, . . . , 𝐺, 𝑟 = 1, 2, . . . , 𝑁𝑙, 𝑚 = 2, 3, . . . ,𝑀,

(14)

𝐹𝑙𝑚 ≥ 𝐶𝑙𝑁𝑙𝑚
,

𝑙 = 1, 2, . . . , 𝐺, 𝑚 = 1, 2, . . . ,𝑀,

(15)
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𝐹0𝑚 = 0, 𝑚 = 1, 2, . . . ,𝑀, (16)

𝐶max ≥ 𝐹𝑙𝑀, 𝑙 = 1, 2, . . . , 𝐺, (17)

𝑊𝑖𝑝𝑙, 𝑋𝑙𝑗𝑟 ∈ {0; 1} . (18)

Constraints (5), (6), and (7) ensure that each group is assigned
to only one slot, being preceded by one and only one group
and preceding one other group at most. Constraint (8) states
that if group 𝑙 is assigned to slot 𝑖, being 𝑖 < 𝐺, theremust be a
group 𝑘 preceded by group 𝑙. Constraints (9) and (10) ensure
that each job of a given group is assigned to one only slot and
that each slot does not hold more than one job. Constraint
(11) defines the starting time of each group on the basis of
the finishing time of the previous one. Constraint (12) ensures
that the first job of each group starts after the starting point of
the group.Constraint (13) forces each job to be processed after
the previous job of the same group is finished. Constraint (14)
states that each job must be processed after it is concluded on
the previousmachine. Constraint (15) links the finishing time
of the group to the completion time of the last job processed
in the group itself. Constraint (16) forces the finishing time
of dummy group 0 to be null. Constraint (17) defines the
makespan.

3. The Proposed Genetic Hybrid Algorithm

The FSDGSLE problem is NP-hard and the exact solution
of the mathematical model can be reached for problems with
a limited number of groups. For this reason a metaheuristic
algorithm based on evolutionary principle has been pro-
posed. Starting from a genetic algorithm properly adapted
to a group scheduling problem, the proposed genetic hybrid
algorithm aims to enhance the efficiency of the genetic
procedure by embedding a local search algorithm.

Generally, a genetic algorithm works with a set of prob-
lem solutions called population. At every iteration, a new
population is generated from the previous one by means of
two operators, crossover and mutation, applied to solutions
(chromosomes) selected on the basis of their fitness, that is,
the objective function value; thus, best solutions have greater
chances of being selected. Crossover operator generates new
solutions (offspring) by coalescing the structures of a couple
of existing ones (parents), while mutation operator brings
a change into the scheme of selected chromosomes, with
the aim of avoiding that the procedure remains trapped
in the local optima. The algorithm proceeds by evolving
the population through successive generations, until a given
stopping criterion is reached.

Whenever a real problem should be addressed through
an evolutionary algorithm, the choice of a proper encoding
scheme (i.e., the way a solution is represented by a string of
genes) plays a key role under both the quality of solutions
and the computational burden viewpoints [21]. In addition,
a valid decoding procedure able to transform a given string
into a feasible solution should be provided.

The following subsections provide a detailed description
of the proposed GA-based optimization procedure, named
GHA.

3.1. Problem Encoding. Problem encoding is the way a given
problem to be optimized through a metaheuristic procedure
can be represented by means of a numerical chromosome.
With reference to the proposed GHA, a matrix-encoding
scheme has been employed. Following the same notation
adopted in Section 2 and indicating by 𝑛𝑘 the number of
jobs within each group 𝑘 (𝑘 = 1, 2, . . . , 𝐺), each solution
is described by a (𝐺 + 1) × 𝑛max matrix, being 𝑛max =

max𝑘=1,...,𝐺{𝑛𝑘}. The first𝐺 rows are made by the permutation
vectors 𝜋𝑘 indicating the sequence of jobs within each group
𝑘, while the last row is the permutation vectorΩ representing
the sequence of groups to be processed:

[
[
[
[
[
[
[
[
[
[
[

[

𝜋
1
1 , . . . , 𝜋

1
𝑛1

.

.

.

𝜋
𝑘
1 , . . . , 𝜋

𝑘
𝑛𝑘

.

.

.

𝜋
𝐺
1 , . . . , 𝜋

𝐺
𝑛𝐺

Ω1, . . . , Ω𝐺

]
]
]
]
]
]
]
]
]
]
]

]

. (19)

Each row 𝑟 (𝑟 = 1, 2, . . . , 𝐺) of the partitioned matrix codes
a specific schedule concerning the problem in hand and it
is worth pointing out that it is independent from the other
sequences; hereinafter it will be denoted as a subchromo-
some. Thus, a certain subchromosome 𝑟 corresponds to the
sequence of jobs scheduled within group 𝑟; subchromosome
𝑟 = 𝐺 + 1 identifies the sequenceΩ of groups. For the sake of
clarity, a feasible solution for a problem in which 𝐺 = 5 and
𝑛max = 5 could be represented by the following chromosome
[𝐶1]:

[𝐶1] =

[
[
[
[
[
[
[

[

3 1 2 0 0

2 5 1 4 3

2 1 0 0 0

3 4 1 2 0

1 2 3 0 0

5 1 3 2 4

]
]
]
]
]
]
]

]

. (20)

Subchromosomes from 1 to 5 hold the schedules of jobs
within each group (i.e., schedule 3-1-2 for group 1, schedule 2-
5-1-4-3 for group 2, schedule 2-1 for group 3, schedule 3-4-1-2
for group 4, and schedule 1-2-3 for group 5); subchromosome
𝑟 = 𝐺 + 1 fixes the sequence of groups Ω = 5-1-3-2-4.
All the digits equal to zero do not take part either in the
solution decoding or in the genetic evolutionary process.
Once the problem encoding is defined, the fitness function
of𝑁pop individuals pertaining to the genetic population may
be computed.

3.2. Crossover Operator. Through crossover operator, the
genetic material of two properly selected parent chromo-
somes is recombined in order to generate two offspring. The
selection mechanism employed by the proposed GHA is the
well-known roulettewheel scheme [22], which assigns to each
solution a probability of being selected inversely proportional
to the makespan value. Once two parent chromosomes have
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2 3 6 1 5 4 9 7 8

4 8 1 3 2 5 7 6 9

P1

2 1 6 3 5 4 9 7 8 O1

P2

4 2 1 3 7 5 8 6 9 O2

Figure 1: Position based crossover (PBC).

been selected, each couple of subchromosomes belonging to
the parent solutions is selected for crossover according to an
a priori fixed probability, hereinafter called 𝑝cr. Twomethods
of crossover operators have been adopted to recombine alleles
within each couple of subchromosomes: they are denoted as
position based crossover (PBC) and two-point crossover (TPC),
respectively. Both of these two crossover operators have been
largely adopted by literature within GAs applied to combina-
torial problems [23]; PBC generates offspring by considering
the relative order in which some alleles are positioned within
the parents. Indeed, it works on a couple of subchromosomes
(P1) and (P2) as follows: (1) one or more alleles are randomly
selected; (2) the alleles genetic information of parent 1 (P1) are
reordered in offspring 1 (O1) in the same order as they appear
within parent 2 (P2); (3) remaining elements are positioned in
the sequence by copying directly from parent 1 the unselected
alleles. The same procedure is followed in the second parent,
that is, parent 2, to obtain offspring (O2). Figure 1 shows the
implementation of the PBC on a couple of parents where
alleles in positions {2}, {4}, {5}, and {7} have been selected.
As far as the TPC method is concerned, two positions
are randomly selected and each subchromosome parent is
divided into three blocks of alleles: both head and tail blocks
are copied directly in the corresponding offspring, while the
alleles belonging to themiddle block are reordered within the
offspring in the same order as they appear in the other parent
subchromosome (see Figure 2). A “fair coin toss” probability
equal to 0.5 has been chosen for selecting either PBC or TPC
crossover.

3.3.MutationOperator. After a newpopulation has been gen-
erated from the previous one bymeans of crossover, mutation
operator is applied according to an a priori fixed probability
𝑝𝑚. Whether mutation occurs, a chromosome is randomly
chosen from the population; within such chromosome, a sub-
chromosome is randomly selected formutation. Two kinds of
operators have been adopted in the present research: an allele
swapping operator (ASO), which performs an exchange of two
randomly selected alleles of the subchromosome, and a block
swapping operator (BSO), which performs a block exchange
(see Figure 3). To avoid any loss of the current best genetic
information, the survival of the two current fittest individ-
uals within the population is ensured by an elitist strategy.

2 3 6 1 5 4 9 7 8

4 8 1 3 2 5 7 6 9

P1

2 3 6 4 1 5 9 7 8 O1

P2

4 8 1 2 3 5 7 6 9 O2

Figure 2: Two-point crossover (TPC).

2 3 4 1 5 P1

2 1 4 3 5 O1

(a)

2 3 4 1 5 P1

1 5 4 2 3 O1

(b)

Figure 3: (a) Allele swapping (ASO) and (b) block swapping (BSO)
mutation operators.

A “fair coin toss” probability equal to 0.5 has been chosen for
selecting either ASO or BSO mutation operator.

3.4. Diversity Operator. A population diversity control tech-
nique has been embedded within the proposed optimization
procedure, in order to mutate those identical chromosomes
exceeding a preselected value 𝐷max. In the present research,
a 𝐷max value equal to 2 has been selected, thus avoiding
having more than two identical solutions within the current
population.

3.5. Local Search and Termination Rule. In order to improve
the performances of the proposed metaheuristic procedure,
a local search algorithm has been embedded within the
evolutionary optimization strategy of the proposed GHA.
Such procedure operates only on a subpopulation, having size
𝑁best, of the best individuals obtained after each generation.
For each selected individual 𝐶𝑠 (𝑠 = 1, 2, . . . , 𝑁best), a sample
of 𝑁LS neighbour solutions is generated by modifying the
sequence Ω of groups, that is, the subchromosome 𝑟 = 𝐺 +

1, pertaining to 𝐶𝑠. In the present research 𝑁LS has been
set equal to 4. In the new sequence each group is casually
ordered, each group is drawn with different probability
depending on the initial position.The new sequence replaces
the starting sequence if it leads to a better makespan value.
Such procedure is executed for all the 𝑁best individuals
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Table 1: Benchmark of instances for the FDSGSLE problem.

Factor Level Value

Number of groups
1 𝑈[1, 5]

2 𝑈[6, 10]

3 𝑈[11, 16]

Number of jobs in a group
1 𝑈[2, 4]

2 𝑈[5, 7]

3 𝑈[8, 10]

Number of machines
1 2
2 3
3 6

originally selected. Then, the newly obtained population
undergoes the next generation cycle.

The termination rule of the proposed GHA consists in𝑁⋅

𝑀 seconds of CPU time, similarly being done by Naderi and
Salmasi [20].

4. Computational Experiments and Results

In order to evaluate the efficiency of the proposed GHA
algorithm a benchmark of problems has been generated using
the scheme provided by Salmasi et al. [18]. Processing times
of each job on each machine has been randomly drawn from
the range [1, 20]. The instances are generated according to
three factors varied to three levels, namely, the number of
groups, the number of machines, and the number of jobs
within each group. The levels of setup times are three in the
case of problems with 2 and 6 machines and nine in the case
of problems with 3 machines. The value corresponding on
each level of the benchmark is showed in Tables 1 and 2,
where symbol𝑈[𝑎, 𝑏] denotes a value extracted by a uniform
distribution between 𝑎 and 𝑏.

Two distinct replicates have been randomly generated for
each problem of the proposed benchmark.

Therefore, a total of 54 (two machines) + 162 (three
machines) + 54 (six machines) = 270 separate instances have
been created.

The results of the proposed GHA have been compared
with those obtained solving the mathematical model and
two effective algorithms from the relevant literature on
the flow shop group scheduling. The first algorithm is a
hybrid particle swarm optimization (hereinafter coded as
PSH) devised by Salmasi et al. [18]. Such method employs
a real number matrix-encoding scheme and makes use
of a properly developed transformation procedure able to
convert the components of each solution to integer numbers,
so as to obtain the sequence of groups and jobs within
groups to be scheduled. Furthermore, the authors equipped
the algorithm with a neighborhood search strategy, called
individual enhancement, aimed to enhance the search by
balancing exploration and exploitation power.

The second algorithm is a metaheuristic procedure
hybridizing genetic and simulated annealing algorithms

(hereinafter coded as GSA) proposed by Naderi and Salmasi
[20]. Similar to the proposed GHA, such algorithm works
with an integer number matrix-encoding scheme. It employs
a twofold optimization strategy: a genetic algorithm is used
to find the sequence of groups, while a simulated annealing-
based local search engine drives the search towards better job
sequences.

The overall set of instances has been solved by means of
the three optimization procedures to be compared, namely,
GHA, PSH, and GSA. All the heuristic algorithms has
been coded in MATLAB language; the mathematical model
has been solved through MILP solver into ILOG CPLEX
commercial tool. The optimization procedures are executed
on a 2GB RAM virtual machine embedded on a workstation
powered by twoquad-core 2.39GHzprocessors.The stopping
criterion was set to 𝑁 ⋅ 𝑀 seconds of CPU time for all
algorithms tested. The MILP solver has been stopped to
3,600 sec of CPU time: the exact solutions are those obtained
before this time and correspond to a subset of 130 instances,
in particular the first 30 instances of the problems with 2 and
6 machines and the first 70 instances of the problems with 3
machines.

The values of the learning effects are 90% and 80%,
which correspond to a learning index of −0.152 and −0.322
according to Biskup’s [2] model, respectively. Thus, a total
of (270 (instances) × 3 (algorithms) + 130 (mathematical
model))× 2 (learning index) = 1880 runs have been taken into
account. The key performance indicator used to compare the
alternative metaheuristics is the relative percentage deviation
(RPD), calculated as follows:

RPD = 100 ⋅
ALGsol − BESTsol

BESTsol
, (21)

where ALGsol is the makespan solution provided by a given
algorithm with reference to a certain instance and BESTsol is
the exact solution or the lowest makespan value among those
obtained by the provided optimization procedures.

Before starting the experimental design a preliminary
tuning of theGHAalgorithmwas performed to determine the
optimal parameter configuration. Table 3 reports the selected
values.

Tables 4, 5, and 6 show the numerical results by the tested
algorithms in terms of RPD values, for 2, 3, and 6 machines,
respectively. Notably, every table refers to a given number of
machines and two levels of learning effect equal to −0.152 and
−0.323, respectively. The bold values indicate the minimum
value reached by the algorithms. Both italic and bold values
denote the aforementioned BESTsol. If the minimum value is
obtained by only one algorithm than it is underlined.

In the bottomof each table are reported four performance
indicators to evaluate the effectiveness of the algorithms:

(i) RPDaverage is the average value of all RPDs;

(ii) 𝑁opt denotes the number of times each optimization
procedure reaches the best solution;

(iii) 𝑁exact represents the number of times an algorithm
reaches the global minimum;
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Table 2: Benchmark of instances for the FDSGSLE problem.

Factor Level Value
Setup
times of
machine
𝑀𝑖

1 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[17, 67]

2 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[1, 50]

3 𝑀1 → 𝑈[17, 67] 𝑀2 → 𝑈[1, 50]

Factor Level Value

Setup
times of
machine
𝑀𝑖

1 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[45, 95]

2 𝑀1 → 𝑈[17, 67] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[17, 67]

3 𝑀1 → 𝑈[45, 95] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[1, 50]

4 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[17, 67]

5 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[1, 50]

6 𝑀1 → 𝑈[17, 67] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[45, 95]

7 𝑀1 → 𝑈[17, 67] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[1, 50]

8 𝑀1 → 𝑈[45, 95] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[45, 95]

9 𝑀1 → 𝑈[45, 95] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[17, 67]

Setup
times of
machine
𝑀𝑖

1 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[17, 67] 𝑀3 → 𝑈[45, 95] 𝑀4 → 𝑈[92, 142] 𝑀5 → 𝑈[170, 220] 𝑀6 → 𝑈[300, 350]

2 𝑀1 → 𝑈[1, 50] 𝑀2 → 𝑈[1, 50] 𝑀3 → 𝑈[1, 50] 𝑀4 → 𝑈[1, 50] 𝑀5 → 𝑈[1, 50] 𝑀6 → 𝑈[1, 50]

3 𝑀1 → 𝑈[300, 350] 𝑀2 → 𝑈[170, 220] 𝑀3 → 𝑈[92, 142] 𝑀4 → 𝑈[45, 95] 𝑀5 → 𝑈[17, 67] 𝑀6 → 𝑈[1, 50]

Table 3: Parameters of GHA.

Parameter Notation Value
Population size 𝑁pop 70
Crossover probability 𝑝cr 0.9
Mutation probability 𝑝𝑚 0.1
Number of individuals
subjected to local search
procedure

𝑁best 0.3 ⋅ 𝑁pop,

(iv) 𝑁best represents the number of times the algorithm is
the best one among the three metaheuristics.

The results on Table 4, which refer to the benchmark with
2 machines, show the effectiveness of both GHA and PSH
in solving the problem at hand, with a superiority of the
proposed genetic hybrid algorithm. In fact, when the learning
effect is −0.152, GHA assures the lowest average RPDaverage
equal to 0.12 and reaches the best solution in the 85% of the
test cases. The 25% of the GHA solutions match the absolute
minima of the problem and GHA is the best among the three
algorithms in the 24% of times. The performances between
GHAandPSH are rather comparablewhen the learning effect
is −0.323, with exception of the RPDaverage indicator, as the
PSH algorithm reaches 0.25 while GAH reaches 0.35.

Tables 5 and 6, which, respectively, hold the results from
the benchmark with 3 machines and 6 machines, confirm
the same findings discussed before: GHA and PSH perform
significantly better than GSA, and GHA outperforms PSH
under all the performance indicators viewpoints.

A slight difference among the three algorithms can be
observed in terms of 𝑁exact as all of them can easily reach

0.125

1.250

2.375

3.500

GHA PSH GSA
−1.000

Figure 4: Means plot with 95% LSD intervals obtained for 2-
machine problems.

the exact solution due to the small dimension of the solution
space.

The learning effect strongly affects the RPDaverage indica-
tor, particularly in the benchmark with 3 machines; the other
measures of performance seem to be less influenced by that.

In order to infer statistical conclusion regarding the
observed differences among the tested algorithms, an
ANOVA analysis has been performed throughDesign Expert
7.0.0 version commercial tool, calculating LSD intervals at
95% confidence level for the RPDaverage performancemeasure
connected to each optimization procedure. The analysis
has been carried out for each scenario problem at varying
machines, considering themean of the RPDaverage values.The
corresponding charts are reported in Figures 4, 5, and 6.

All the charts clearly show the superiority of GHA and
PSH algorithms compared to GSA. In Figure 4, when 2
machines are taken into account, even though the average
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Table 4: Results of 2 machines benchmarks.

Instances
2 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.32 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 1.54 0.00 0.73 2.25 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00
22 1.55 0.00 0.00 0.00 0.55 0.00
23 0.70 1.26 0.00 0.76 1.69 0.00
24 0.00 3.10 0.00 0.00 5.10 0.00
25 0.42 3.05 0.42 0.88 1.92 0.35
26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.57 0.00 0.00 0.64 0.00
28 1.71 2.94 0.00 0.87 2.43 0.00
29 0.59 2.82 0.34 0.00 1.29 0.08
30 0.00 3.97 0.00 0.00 1.18 0.00
31 0.00 1.20 0.00 0.00 0.00 0.00
32 0.00 2.32 0.37 0.00 0.35 0.00
33 0.00 1.14 0.00 0.00 0.00 0.00
34 0.00 0.00 0.00 0.00 0.00 0.00
35 0.00 1.23 0.38 0.00 0.95 0.00
36 0.25 1.33 0.00 0.00 0.81 0.00
37 1.81 11.01 0.00 1.70 7.58 0.00
38 0.00 8.97 0.78 0.00 4.73 1.15
39 3.75 9.40 0.00 2.15 8.66 0.00
40 0.16 4.44 0.00 0.00 2.64 2.02
41 1.33 2.15 0.00 0.37 2.48 0.00
42 0.00 4.43 1.22 0.00 4.40 0.02
43 0.17 2.90 0.00 0.24 0.00 0.55
44 0.11 7.70 0.00 1.70 3.92 0.00
45 0.62 6.74 0.00 0.61 4.82 0.00
46 1.82 8.72 0.00 0.19 2.75 0.00
47 0.00 3.83 0.20 0.56 3.06 0.00
48 0.00 6.06 1.60 0.00 1.25 1.32

Table 4: Continued.

Instances
2 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

49 0.38 2.76 0.00 0.00 2.80 0.66
50 0.00 0.05 0.84 0.00 0.89 0.39
51 0.00 2.85 0.28 1.37 3.08 0.00
52 1.05 3.49 0.00 0.00 2.19 0.20
53 0.24 3.99 0.00 0.81 3.63 0.00
54 2.03 3.27 0.00 0.00 2.97 0.17
RPDaverage 0.35 2.21 0.12 0.25 1.50 0.13
𝑁optimum 69% 43% 85% 72% 46% 81%
𝑁exact 46% 41% 52% 46% 39% 52%
𝑁best 13% 0% 24% 17% 2% 24%
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Figure 5: Means plot with 95% LSD intervals obtained for 3-
machine problems.

RPDaverage related to GHA is lower than those obtained
by PSH procedure, such a difference cannot be considered
statistically significant, as LSD intervals of the two algorithms
are overlapped. On the other hand, the narrow difference of
performance between the two algorithms should depend on
the poor computational complexity of the instances. As for
the benchmarks with 3 and 6machines, the superiority of the
proposed GHA approach is clear from a statistical viewpoint
as no overlap exists between its LSD interval and those of PSH
and GSA.

5. Conclusions

In this paper the scheduling of a group of jobs in a flow
shop environment managed by workforce having different
levels of learning abilities is considered (FSDGSLE). The
set-up times of the scheduled groups is influenced by the
reciprocal position of the groups in the sequence and by
the workforce ability. The jobs are automatically worked on
every machine of the flow shop; therefore the processing
time is not influenced by the learning effect of the oper-
ators. The objective of the scheduling is the minimization
of the completion time. The operators are not a critical
resource for the scheduling issue under investigation. A new
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Table 5: Results of 3 machines benchmarks.

Instances
3 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.78 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.03 0.00 0.00 0.16 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00
25 0.22 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.27 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 0.00 0.00 0.00 0.00 0.00 0.00
32 0.00 1.24 0.00 0.00 1.47 0.00
33 0.00 0.00 0.00 0.00 0.00 0.00
34 0.00 0.00 0.00 0.00 0.00 0.00
35 0.00 0.00 0.00 0.00 0.00 0.00
36 0.00 0.00 0.00 0.61 0.19 0.00
37 0.00 0.00 0.00 0.00 0.00 0.00
38 0.00 0.00 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.38 0.00 0.00
40 0.43 0.00 0.35 0.45 0.00 0.00
41 0.00 0.15 0.00 0.00 0.00 0.00
42 0.17 1.52 0.00 0.11 0.16 0.11
43 0.00 0.00 0.00 0.00 0.00 0.00
44 0.00 0.00 0.00 0.08 0.13 0.08
45 0.93 0.08 0.00 0.00 0.00 0.00
46 0.00 0.00 0.00 0.00 0.00 0.00
47 0.00 0.00 0.00 0.00 0.00 0.00
48 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Continued.

Instances
3 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

49 0.00 0.00 0.00 0.00 0.00 0.00
50 0.23 0.00 0.00 0.24 0.00 0.00
51 0.00 0.00 0.00 0.00 0.00 0.00
52 0.26 0.00 0.00 0.00 0.00 0.00
53 1.79 0.65 0.00 0.15 0.00 0.00
54 0.00 0.00 0.00 0.00 0.00 0.00
55 0.00 0.00 0.00 0.00 0.00 0.00
56 0.62 5.76 2.07 0.41 3.93 0.00
57 0.00 0.00 0.00 0.00 0.00 0.00
58 0.46 3.03 0.00 0.00 0.57 0.00
59 0.44 1.91 0.57 0.70 2.62 0.21
60 0.00 4.01 0.00 0.00 2.21 0.00
61 0.18 1.20 0.00 0.00 5.62 0.20
62 0.00 0.00 0.00 0.00 0.00 0.00
63 0.00 1.08 0.00 1.12 0.30 0.00
64 0.00 0.00 0.00 0.00 0.00 0.00
65 0.00 1.43 0.00 0.00 0.00 0.00
66 0.00 0.07 0.00 0.00 0.00 0.00
67 0.00 1.23 0.00 0.00 0.00 0.00
68 0.00 2.00 0.00 0.00 0.00 0.00
69 0.00 1.12 0.00 0.00 1.94 0.00
70 0.27 5.67 0.27 0.28 2.95 0.00
71 0.00 0.00 0.00 0.00 0.02 0.00
72 0.00 0.00 0.00 0.00 0.00 0.00
73 0.00 3.24 0.00 0.72 2.39 1.48
74 0.00 0.00 0.00 0.00 0.00 0.00
75 0.49 1.30 0.00 0.00 0.94 0.00
76 0.28 0.57 0.00 0.44 0.71 0.29
77 0.00 3.59 0.00 0.00 1.51 0.24
78 1.54 0.44 0.00 0.00 0.00 0.00
79 0.70 0.38 0.00 0.13 1.51 0.13
80 0.00 0.21 0.21 0.00 1.49 0.43
81 0.00 2.94 1.06 0.00 0.41 0.00
82 0.00 0.70 0.00 0.05 0.05 0.44
83 0.32 0.54 0.32 0.00 0.27 0.00
84 0.00 0.00 0.00 0.00 0.00 0.00
85 0.00 1.74 0.00 0.00 1.08 0.00
86 0.53 1.01 0.53 0.99 0.32 0.38
87 1.81 0.88 0.78 0.52 0.98 0.98
88 0.21 1.65 0.82 1.24 1.30 0.37
89 0.15 1.10 0.15 0.00 2.67 0.00
90 1.24 0.15 0.00 0.00 0.57 0.00
91 0.00 0.00 0.00 0.00 0.00 0.00
92 0.69 2.50 0.00 0.86 1.64 0.00
93 0.00 3.68 0.00 0.00 1.00 0.00
94 0.00 0.90 0.13 0.33 1.39 0.33
95 0.00 0.00 0.24 0.00 0.00 0.00
96 0.13 0.51 0.00 0.12 0.00 0.12
97 0.00 1.28 0.54 0.34 1.10 0.31
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Table 5: Continued.

Instances
3 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

98 0.00 1.30 0.00 0.10 0.14 0.00
99 0.00 1.53 0.45 1.32 0.56 0.72
100 0.00 1.10 0.24 0.50 1.05 0.50
101 0.00 2.76 0.00 0.00 0.00 0.00
102 0.00 0.74 0.00 0.00 1.30 0.00
103 0.00 0.00 0.01 0.10 1.42 0.00
104 0.14 0.00 0.01 1.21 0.92 0.77
105 0.00 0.00 0.00 0.00 0.00 0.00
106 0.21 0.21 0.00 0.22 1.94 0.00
107 0.00 0.00 0.00 0.00 0.00 0.00
108 0.54 0.46 0.00 0.31 0.00 0.00
109 2.04 7.57 0.00 2.68 6.55 0.00
110 0.77 5.87 0.00 0.00 2.82 0.20
111 0.00 3.93 2.95 1.78 4.89 0.00
112 4.63 10.01 0.00 0.00 4.29 0.53
113 1.12 6.28 0.00 0.00 4.49 0.26
114 0.23 4.12 0.00 0.12 4.60 0.00
115 3.12 10.68 0.00 1.09 6.88 0.00
116 1.80 8.16 0.00 0.05 5.25 0.00
117 0.50 9.07 0.00 1.07 8.33 0.00
118 1.71 10.93 0.00 2.57 7.65 0.00
119 2.11 9.54 0.00 2.78 5.97 0.00
120 1.87 10.69 0.00 0.86 5.11 0.00
121 0.00 7.78 0.67 0.31 4.48 0.00
122 0.00 7.92 0.40 0.00 2.67 0.00
123 2.01 5.85 0.00 0.40 4.82 0.00
124 2.12 5.37 0.00 0.00 3.29 0.48
125 0.00 1.97 1.02 1.18 6.31 0.00
126 1.17 3.41 0.00 0.00 3.36 0.57
127 1.42 4.41 0.00 0.35 4.54 0.00
128 2.65 5.27 0.00 0.00 5.18 1.48
129 1.80 4.84 0.00 0.62 3.82 0.00
130 0.42 3.36 0.00 0.00 2.22 1.58
131 1.88 4.58 0.00 1.29 3.65 0.00
132 0.00 4.83 1.17 0.00 3.75 0.21
133 0.00 5.01 0.01 0.67 5.48 0.00
134 1.76 4.26 0.00 1.55 3.29 0.00
135 0.00 6.06 0.15 1.88 3.98 0.00
136 0.00 5.63 0.00 0.00 1.03 0.45
137 1.87 6.39 0.00 0.07 6.18 0.00
138 2.06 5.01 0.00 0.28 2.82 0.00
139 0.28 3.31 0.00 0.43 3.63 0.00
140 0.00 7.06 2.01 0.48 4.85 0.00
141 1.47 5.36 0.00 0.50 3.69 0.00
142 1.31 6.99 0.00 1.51 4.18 0.00
143 0.48 5.96 0.00 0.62 4.04 0.00
144 0.00 2.02 1.10 0.00 0.94 0.00
145 0.00 3.12 0.54 0.00 1.79 0.33
146 0.00 1.91 0.75 0.35 2.23 0.00

Table 5: Continued.

Instances
3 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

147 0.06 5.13 0.00 0.09 3.43 0.00
148 1.95 2.89 0.00 0.38 1.59 0.00
149 0.66 4.62 0.00 0.67 4.33 0.00
150 1.00 5.69 0.00 0.26 3.67 0.00
151 0.31 2.84 0.00 0.49 1.90 0.00
152 0.00 4.31 0.03 0.99 4.62 0.00
153 0.00 2.83 0.00 0.00 2.73 0.90
154 0.83 5.23 0.00 0.89 3.24 0.00
155 1.18 1.00 0.00 0.10 0.66 0.00
156 0.36 0.44 0.00 0.00 0.75 0.59
157 0.00 2.20 0.08 0.00 2.46 0.06
158 0.00 2.07 0.00 0.00 2.03 0.05
159 0.00 2.76 0.62 0.17 2.39 0.00
160 0.32 3.73 0.00 0.46 2.80 0.00
161 0.00 4.21 0.16 0.82 3.63 0.00
162 0.00 4.54 2.18 0.33 2.86 0.00
RPDaverage 0.40 2.15 0.14 0.28 1.59 0.10
𝑁optimum 65% 39% 81% 61% 44% 85%
𝑁exact 41% 35% 49% 48% 43% 55%
𝑁best 14% 1% 30% 12% 2% 29%
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Figure 6: Means plot with 95% LSD intervals obtained for 6-
machine problems.

mathematical model is considered to optimally solve small-
and medium-sized instances of this FSDGSLE scheduling
problem. Due to the large computational time required to
cope with large-sized instances a genetic hybrid algorithm
(GHA) is proposed. A comparison campaign based on three
separate benchmarks risen from literature involving two-
, three- and six-machine problems has been fulfilled in
order to test the performance of GHA with respect to the
two latest metaheuristic procedures presented by literature
in the field of FSDGS scheduling problems. An ANOVA
analysis focusing on a statistical validation of the obtained
outcomes has been performed. The obtained numerical
results highlight the effectiveness of GHA in approaching
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Table 6: Results of 6 machines benchmarks.

Instances
6 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.38 0.00 0.00
10 0.00 0.00 0.00 0.26 0.01 0.26
11 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00
15 0.89 1.92 0.08 1.85 2.11 0.24
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.13 0.13 0.00 0.07 0.07 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.87 0.00
21 0.00 0.00 0.00 0.00 0.31 0.00
22 0.23 0.46 0.46 0.99 0.00 0.00
23 0.00 0.21 0.00 0.09 0.30 0.09
24 0.37 1.70 0.00 0.18 1.21 0.00
25 0.00 0.53 0.00 0.03 0.25 0.00
26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.13 3.35 0.00 0.41 2.49 0.05
28 2.01 3.75 1.36 0.80 3.59 0.00
29 0.48 0.63 0.19 0.37 0.20 0.20
30 0.04 0.19 0.00 0.00 0.42 0.00
31 0.00 0.00 0.00 0.00 0.42 0.00
32 0.00 0.31 0.00 0.00 0.73 0.00
33 0.00 0.14 0.00 1.75 1.38 1.31
34 0.87 2.35 0.00 0.48 2.56 0.00
35 0.24 0.24 0.00 0.41 0.18 0.14
36 0.53 0.50 0.00 0.00 0.47 0.00
37 0.90 1.62 0.00 0.41 2.09 0.00
38 0.00 0.72 0.04 0.06 1.32 0.00
39 0.00 5.68 2.09 0.06 1.04 0.00
40 0.78 5.44 0.00 0.00 5.12 2.85
41 0.17 0.95 0.00 0.00 0.54 0.03
42 0.31 1.76 0.00 0.00 1.36 0.36
43 0.10 0.85 0.00 0.00 1.05 0.36
44 0.74 1.33 0.00 0.28 2.12 0.00
45 1.92 4.38 0.00 1.29 4.36 0.00
46 0.00 3.58 0.48 0.95 3.03 0.00
47 0.07 0.15 0.00 0.16 1.15 0.00
48 0.24 1.38 0.00 0.00 1.28 0.00

Table 6: Continued.

Instances
6 machines

−0.152 learning effect −0.323 learning effect
PSH GSA GHA PSH GSA GHA

49 0.18 0.55 0.00 0.00 1.32 0.08
50 0.29 1.07 0.00 0.00 1.07 0.08
51 0.20 2.84 0.00 0.34 4.01 0.00
52 2.57 4.69 0.00 1.48 3.96 0.00
53 1.29 1.76 0.00 0.39 1.87 0.00
54 0.23 1.61 0.00 0.49 1.12 0.00
RPDaverage 0.29 1.05 0.09 0.26 1.03 0.11
𝑁optimum 54% 39% 93% 56% 37% 87%
𝑁exact 41% 37% 46% 41% 33% 54%
𝑁best 7% 0% 44% 11% 2% 37%

the scheduling problem at hand, regardless of the specific
class of problem to be analyzed. Further research should
involve other variants of the flow-shop group scheduling
issue, especially inspired to real-world applications. For
instance, it would be interesting to investigate manufacturing
system wherein workers have different learning abilities or
machines are affected by deterioration effects.
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